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ABSTRACT
In multiagent systems, the complex interaction of fixed incentives

can lead agents to outcomes that are poor (inefficient) not only
for the group, but also for each individual. Price of anarchy is a

technical, game-theoretic definition that quantifies the inefficiency

arising in these scenarios—it compares the welfare that can be

achieved through perfect coordination against that achieved by

self-interested agents at a Nash equilibrium. We derive a differen-

tiable, upper bound on a price of anarchy that agents can cheaply

estimate during learning. Equipped with this estimator, agents can

adjust their incentives in a way that improves the efficiency in-

curred at a Nash equilibrium. Agents do so by learning to mix their

reward (equiv. negative loss) with that of other agents by following

the gradient of our derived upper bound. We refer to this approach

as D3C. In the case where agent incentives are differentiable, D3C

resembles the celebrated Win-Stay, Lose-Shift strategy from behav-

ioral game theory, thereby establishing a connection between the

global goal of maximum welfare and an established agent-centric

learning rule. In the non-differentiable setting, as is common in mul-

tiagent reinforcement learning, we show the upper bound can be

reduced via evolutionary strategies, until a compromise is reached

in a distributed fashion. We demonstrate that D3C improves out-

comes for each agent and the group as a whole on several social

dilemmas including a traffic network exhibiting Braess’s paradox,

a prisoner’s dilemma, and several multiagent domains.
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1 INTRODUCTION
We consider a setting consisting of many interacting artificially

intelligent agents, each with specific individual incentives. It is well

known that the interactions between individual agent goals can lead

to inefficiencies at the group level, for example, in environments

exhibiting social dilemmas [6, 15, 21]. In order to resolve these

fundamental inefficiencies, agents must reach a compromise.

Any arbitration mechanism with a central coordinator
1
faces

challenges when scaling to large populations. The coordinator’s

task becomes intractable as it must both query preferences from a

larger population and make decisions accounting for the exponen-

tial growth of agent interactions. If agents are permitted to modify

their incentives over time, the coordinator must collect all this infor-

mation again, exacerbating the computational burden. In addition,

a central coordinator represents a single point of failure for the

system whereas successful multiagent systems identified in nature

(e.g., market economies, ant colonies, etc.) are often robust to node

failures [10]. Therefore, we focus on decentralized approaches.

Design Criteria: The celebrated Myerson-Satterthwaite theo-

rem [3, 14, 27, 38] states that no mechanism can simultaneously

achieve optimal efficiency (welfare-maximizing behavior), budget-

balance (no taxing agents, burning side-payments, or hallucinating

rewards), appeal to rational individuals (individuals want to opt-in

to the mechanism), and be incentive compatible (resulting behavior

is a Nash equilibrium). While this impossibility result precludes a

mechanism that satisfies the above criteria perfectly, it says noth-

ing about a mechanism that satisfies them approximately, which is

our aim here. In addition, the mechanism should be decentralized,

extensible to large populations, and adapt to learning agents with

evolving incentives in possibly non-stationary environments.

Design: We formulate compromise as agents mixing their in-

centives (rewards or losses) with others. In other words, an agent

may become incentivized to minimize a mixture of their loss and

other agents’ losses. We design a decentralized meta-algorithm that

allows agents to search over the space of these possible mixtures.

1
For example, the Vickrey-Clarke-Groves (VCG) mechanism [7].
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We model the problem of efficiency using price of anarchy. The
price of anarchy, 𝜌 ∈ [1,∞), is a measure of inefficiency from algo-

rithmic game theory with lower values indicating more efficient

games [29]. Forcing agents to minimize a group (average) loss with

a single local minimum results in a “game” with 𝜌 = 1. Note that

any optimal group loss solution is also Pareto-efficient. Computing

the price of anarchy of a game is intractable in general. Instead,

we derive a differentiable upper bound on the price of anarchy

that agents can optimize incrementally over time. Differentiabil-

ity of the bound makes it easy to pair the proposed mechanism

with, for example, deep learning agents that optimize via gradient

descent [22, 31]. Budget balance is achieved exactly by placing con-

straints on the allowable mixtures of losses. We appeal to individual

rationality in three ways. One, we initialize all agents to optimize

only their own losses. Two, we include penalties for agents that

deviate from this state and mix their losses with others. Three, we

show empirically on several domains that opting into the proposed

mechanism results in better individual outcomes. We also provide

specific, albeit narrow, conditions under which agents may achieve

a Nash equilibrium, i.e. the mechanism is incentive compatible,

and demonstrate the agents achieving a Nash equilibrium under

our proposed mechanism in a traffic network problem. Note that

budget-balance is the only property we guarantee is satisfied in

absolute terms. All other properties are appealed to either indirectly

via design choices (e.g., minimizing 𝜌) or post-hoc analysis.

Our Contribution: We propose a differentiable, local estima-

tor of game inefficiency, as measured by price of anarchy. We

then present two instantiations of a single decentralized meta-

algorithm, one 1st order (gradient-feedback) and one 0th order

(bandit-feedback), that reduce this inefficiency. This meta-algorithm

is general and can be applied to any group of individual agent learn-

ing algorithms. In contrast to the centralized training, decentralized

execution framework popular in multiagent reinforcement learning

(MARL), we demonstrate the success of our meta-algorithm in a

more challenging online setting (decentralized training, decentral-

ized execution) on a range of games and MARL domains.

This paper focuses on how to enable a group of agents to respond

to an unknown environment and minimize overall inefficiency.

Agents with distinct losses may find their incentives well aligned

to the given task, however, they may instead encounter a social
dilemma (§3). We also show that our approach leads to sensible

behavior in scenarios where agents may need to sacrifice team

reward to save an individual (Appx. F.6) or need to form parties

and vote on a new team direction (Appx. F.5). Ideally, one meta-

algorithm would allow a multiagent system to perform sufficiently

well in all these scenarios. The approach we propose, D3C (§2),

represents a holistic effort to design such a meta-algorithm.
2
All

appendices can be found in the longer version of this paper [13].

2 DYNAMICALLY CHANGING THE GAME
In our approach, agents may consider slight re-definitions of their

original losses, thereby changing the definition of the original game.

Critically, this is done in a way that conserves the original sum of

2
D3C is agnostic to any action or strategy semantics. We are interested in rich environ-

ments where high level actions with semantics such as “cooperation” and “defection”

are not easily extracted or do not exist.

losses (budget-balanced) so that the original group loss can still be

measured. In this section, we derive our approach to minimizing

the price of anarchy in several steps. First we formulate minimizing

the price of anarchy via compromise as an optimization problem.

Second we specifically consider compromise as the linear mixing of

agent incentives. Next, we define a local price of anarchy and derive
an upper bound that agents can differentiate. Then, we decompose

this bound into a set of differentiable objectives, one for each agent.

Finally, we develop a gradient estimator to minimize the agent

objectives in settings with bandit feedback (e.g., RL) that enables

scalable decentralization.

2.1 Notation and Transformed Losses
Let agent 𝑖’s loss be 𝑓𝑖 (𝒙) : 𝒙 ∈ X → Rwhere 𝒙 is the joint strategy

of all agents. Let 𝑓 𝐴
𝑖
(𝒙) denote agent 𝑖’s transformed loss which

mixes losses among agents. Let 𝒇 (𝒙) = [𝑓1 (𝒙), . . . , 𝑓𝑛 (𝒙)]⊤ and

𝒇𝐴 (𝒙) = [𝑓 𝐴
1
(𝒙), . . . , 𝑓 𝐴𝑛 (𝒙)]⊤ where 𝑛 ∈ Z denotes the number of

agents. In general, we require 𝑓 𝐴
𝑖
(𝒙) > 0 and

∑
𝑖 𝑓
𝐴
𝑖
(𝒙) = ∑

𝑖 𝑓𝑖 (𝒙)
so that total loss is conserved

3
. Under these constraints, the agents

will simply explore the space of possible non-negative group loss

decompositions. We consider transformations of the form 𝒇𝐴 (𝒙) =
𝐴⊤𝒇 (𝒙) (note the tranpose) where each agent 𝑖 controls row 𝑖 of

𝐴 with each row constrained to the simplex, i.e. 𝐴𝑖 ∈ Δ𝑛−1
. For

example, agent 1’s loss is mixed according to the first column of

𝐴 which may not sum to 1, and not the first row, which it controls:

𝑓 𝐴
1
(𝒙) = ⟨

[𝐴11,𝐴21,𝐴31 ]︷         ︸︸         ︷
[0.9, 0.3, 0.5], [𝑓1 (𝒙), 𝑓2 (𝒙), 𝑓3 (𝒙)]⟩. (1)

Lastly, [𝑎;𝑏] = [𝑎⊤, 𝑏⊤]⊤ signifies row stacking of vectors, and X∗
denotes the set of Nash equilibria.

2.2 Price of Anarchy
Nisan et al. [29] define price of anarchy as the worst value of an

equilibrium divided by the best value in the game. Here, value

means sum of player losses, best means lowest, and Nash is the

chosen equilibrium concept. It is well known that Nash can be

arbitrarily bad from both an individual agent and group perspective;

Appx. B presents a simple example and demonstrates how opponent

shaping [12, 23] is not a balm for these issues. With the above

notation, the price of anarchy is defined as

𝜌X (𝒇𝐴)
def
=

maxX∗
∑
𝑖 𝑓
𝐴
𝑖
(𝒙∗)

minX
∑
𝑖 𝑓
𝐴
𝑖
(𝒙)

≥ 1. (2)

Note that computing the price of anarchy precisely requires

solving for both the optimal welfare and the worst case Nash equi-

librium. We explain how we circumvent this issue in §2.4.

2.3 Compromise as an Optimization Problem
Given a game, we want to minimize the price of anarchy by per-

turbing the original agent losses:

min

𝒇 ′=𝜓𝐴 (𝒇 )
1⊤𝒇 ′=1⊤𝒇

𝜌X (𝒇 ′) + 𝜈D(𝒇 ,𝒇 ′) (3)

3
The strict definition of price of anarchy assumes positive losses. This is relaxed in §2.5

to allow for losses in R.
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where 𝒇 and 𝒇 ′ = 𝜓𝐴 (𝒇 ) denote the vectors of original and per-

turbed losses respectively, 𝜓𝐴 : R𝑛 → R𝑛 is parameterized by

weights 𝐴, 𝜈 is a regularization hyperparameter, and D penalizes

deviation of the perturbed losses from the originals or represents

constraints through an indicator function. To ensure minimizing

the price of anarchy of the perturbed game improves on the origi-

nal, we incorporate the constraint that the sum of perturbed losses

equals the sum of original losses, 1⊤𝒇 ′ = 1⊤𝒇 . We refer to this

approach as 𝜌-minimization.

Our agents reconstruct their losses using the losses of all other

agents as a basis. For simplicity, we consider linear transformations

of their loss functions, although the theoretical bounds hereafter

are independent of this simplification. We also restrict ourselves

to convex combinations so that agents do not learn incentives

that are directly adverse to other agents. The problem can now be

reformulated. Let𝜓𝐴 (𝒇 ) = 𝐴⊤𝒇 and D(𝒇 ,𝒇 ′) = ∑
𝑖 D𝐾𝐿 (𝒆𝑖 | | 𝐴𝑖 )

where𝐴 ∈ R𝑛×𝑛 is a right stochastic matrix (rows are non-negative

and sum to 1), 𝒆𝑖 ∈ R𝑛 is a unit vector with a 1 at index 𝑖 , and D𝐾𝐿
denotes the Kullback-Liebler divergence.

2.4 A Local Price of Anarchy
The price of anarchy, 𝜌 ≥ 1, is defined over the joint strategy

space of all players. Computing it is intractable for general games.

However, many agents learn via gradient-based training, and so

only observe the portion of the strategy space explored by their

learning trajectory. Hence, we imbue our agents with the ability to

locally estimate the price of anarchy along this trajectory.

Definition 1 (Local Price of Anarchy). Define

𝜌𝒙 (𝒇𝐴,Δ𝑡) =
maxX∗𝜏

∑
𝑖 𝑓
𝐴
𝑖
(𝒙∗)

min𝜏 ∈[0,Δ𝑡 ]
∑
𝑖 𝑓
𝐴
𝑖
(𝒙 − 𝜏𝐹 (𝒙))

≥ 1 (4)

where 𝐹 (𝒙) = [∇𝑥1
𝑓 𝐴
1
(𝒙); . . . ;∇𝑥𝑛 𝑓 𝐴𝑛 (𝒙)], Δ𝑡 is a small step size,

𝑓 𝐴
𝑖

is assumed positive ∀ 𝑖 , and X𝜏 denotes the set of equilibria of the
game when constrained to the line.

Figure 1: Agents estimate the price of anarchy assuming the
joint strategy space, X, of the game is restricted to a local
linear region,X𝜏 , extending from the currently learned joint
strategy, 𝑥𝑡 , to the next, 𝑥𝑡+1. 𝜌X and 𝜌𝑥 denote the global and
local price of anarchy.

To obtain bounds, we leverage theoretical results on smooth
games, summarized as a class of games where “the externality

imposed on any one player by the others is bounded” [36]. We

assume a Lipschitz property on all 𝑓 𝐴
𝑖
(𝒙) (details in Theorem 1),

which allows us to appeal to this class of games. The bound in

equation 7 is tight for some games. Proofs can be found in Appx. D.

For convenience, we repeat the core definition and lemma put

forth by Roughgarden [36] here.

Definition 2 (Smooth Game). A game is (𝜆, 𝜇)-smooth [36] if:
𝑛∑
𝑖=1

𝑓 𝐴𝑖 (𝑥𝑖 , 𝑥
′
−𝑖 ) ≤ 𝜆

𝑛∑
𝑖=1

𝑓 𝐴𝑖 (𝑥𝑖 , 𝑥−𝑖 ) + 𝜇
𝑛∑
𝑖=1

𝑓 𝐴𝑖 (𝑥
′
𝑖 , 𝑥
′
−𝑖 ) (5)

for all 𝒙, 𝒙 ′ ∈ X where 𝜆 > 0, 𝜇 < 1. 𝑥−𝑖 denotes all player 𝑗 ≠ 𝑖

strategies and
∑
𝑖 𝑓
𝐴
𝑖
(𝒙) is assumed to be non-negative for any 𝒙 ∈ X.

The last condition is needed for the price of anarchy, a ratio of

welfares, to be meaningful as a positive measure of inefficiency.

Lemma 1 (SmoothGames Imply a Bound on Price ofAnarchy).

The price of anarchy is bounded above by a ratio of the coefficients
that satisfy the smooth game definition [36]:

1 ≤ 𝜌X (𝒇𝐴) ≤ inf

𝜆>0,𝜇<1

[ 𝜆

1 − 𝜇

]
. (6)

Theorem 1 (Local Utilitarian Price of Anarchy). Assuming
each agent’s loss is positive and its loss gradient is Lipschitz, there
exists a learning rate Δ𝑡 > 0 sufficiently small such that, to O(Δ𝑡2),
the local utilitarian price of anarchy of the game, 𝜌𝒙 (𝒇𝐴,Δ𝑡), is
upper bounded by

max

𝑖
{1 + Δ𝑡 ReLU

( 𝑑
𝑑𝑡

log(𝑓 𝐴𝑖 (𝒙)) +
| |∇𝑥𝑖 𝑓 𝐴𝑖 (𝒙) | |

2

𝜇𝑓 𝐴
𝑖
(𝒙)

)
} (7)

where 𝑖 indexes each agent, 𝜇 ∈ R≥0 is a user-defined upper bound
on the true 𝜇, ReLU(𝑧) def= max(𝑧, 0), and Lipschitz implies there exists
a 𝛽𝑖 such that | |∇𝑥𝑖 𝑓 𝐴𝑖 (𝒙) − ∇𝑦𝑖 𝑓

𝐴
𝑖
(𝒚) | | ≤ 𝛽𝑖 | |𝒙 −𝒚 | | ∀𝒙,𝒚, 𝐴.

Proof Sketch: For a small enough region (grayed in Figure 1), we

can approximate each agent’s loss function with its Taylor series

expansion. By rewriting all losses in the smoothness constraint

(equation 5) in terms of expansions about 𝒙 or 𝒙 ′, i.e., quantities
we can measure before and after a joint gradient step, we can

proceed to define the smoothness constraint with 𝜇 and 𝜆 in terms

of measurable quantities. The smoothness constraint is formulated

as a sum over the 𝑛 agents, but we can decompose this constraint

into 𝑛 individual constraints with their own 𝜇𝑖 ’s and 𝜆𝑖 ’s. If each

agent can ensure local individual smoothness, which is possible

for a small enough region, we show this is sufficient to satisfy

the original local smoothness condition with 𝜇 = max𝑖 {𝜇𝑖 } and
𝜆 = max𝑖 {𝜆𝑖 }. Each agent can further estimate their own individual

price of anarchy, 𝜌𝑖 , via equation 6 which reduces to a tractable two

dimensional constrained optimization problem with a closed form

solution.We further show that we can upper bound the local price of

anarchy for the group (equation 4) with the max of these individual

estimates. Finally, using another expansion along with the log-trick

famous from the policy gradient theorem, we recover the final result

presented in Theorem 1 below. The Lipschitz assumption exists

simply to ensure the series approximations are sufficiently accurate

for a small enough region. The full proof is in Appx. D.

Recall that this work focuses on price of anarchy defined using

total loss as the value of the game. This is a utilitarian objective. We

also derive an upper bound on the local egalitarian price of anarchy
where value is defined as the max loss over all agents (replace

∑
𝑖

with max𝑖 in equation 4; see Appx. D.2), possibly of independent

interest.

Theorem 2. Given 𝑛 positive losses, 𝑓 𝐴
𝑖
(𝒙), 𝑖 ∈ {1, . . . , 𝑛}, with

𝛽𝑖 -Lipschitz gradients there exists a Δ𝑡 > 0 sufficiently small such
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that, to O(Δ𝑡2), the local egalitarian price of anarchy of the game
is upper bounded by

𝜌𝑒 ≤ 1 + Δ𝑡 ReLU
( 𝑑
𝑑𝑡

log(max

𝑖
{𝑓 𝐴𝑖 (𝒙)}) +

∑𝑛
𝑖=1
| |∇𝑥𝑖 𝑓 𝐴𝑖 (𝒙) | |

2

𝜇 max𝑖 {𝑓 𝐴𝑖 (𝒙)}

)
.

(8)

2.5 Decentralized Learning of the Loss Mixture
Matrix 𝐴

Minimizing equation 3 w.r.t. 𝐴 can become intractable if 𝑛 is large.

Moreover, if solving for 𝐴 at each step is the responsibility of a

central authority, the system is vulnerable to this authority failing.

A distributed solution is therefore appealing, and the local price of

anarchy bound admits a natural relaxation that decomposes over

agents (max𝑖 𝑧𝑖 ≤
∑
𝑖 𝑧𝑖 for 𝑧𝑖 ≥ 0). Equation 3 then factorizes as

min

𝐴𝑖 ∈Δ𝑛−1

𝜌𝑖 + 𝜈D𝐾𝐿 (𝒆𝑖 | | 𝐴𝑖 ) (9)

where 𝜌𝑖 = 1+Δ𝑡 ReLU
(
𝑑
𝑑𝑡

log(𝑓 𝐴
𝑖
(𝒙)) + | |∇𝑥𝑖 𝑓

𝐴
𝑖
(𝒙) | |2

𝑓 𝐴
𝑖
(𝒙)𝜇

)
. Local price

of anarchy is subdifferentiable w.r.t. each 𝐴𝑖 with gradient

∇𝐴𝑖
𝜌𝑖 ∝ ∇𝐴𝑖

ReLU
( 𝑑
𝑑𝑡

log(𝑓 𝐴𝑖 (𝒙)) +
| |∇𝑥𝑖 𝑓 𝐴𝑖 (𝒙) | |

2

𝑓 𝐴
𝑖
(𝒙)𝜇

)
. (10)

The log appears due to price of anarchy being defined as the worst

case Nash total loss divided by the minimal total loss. We propose

the following modified learning rule for a hypothetical price of

anarchy which is defined as a difference and accepts negative loss:

𝐴𝑖 ← 𝐴𝑖 − 𝜂𝐴 ˜∇𝐴𝑖
(𝜌𝑖 + 𝜈D𝐾𝐿) where 𝜂𝐴 is a learning rate and

˜∇𝐴𝑖
𝜌𝑖 = ∇𝐴𝑖

ReLU
( 𝑑
𝑑𝑡

𝑓 𝐴𝑖 (𝒙) + 𝜖
)
. [𝜖 is a hyperparameter.] (11)

The update direction in (11) is proportional to ∇𝐴𝑖
𝜌𝑖 asymptotically

for large 𝑓 𝐴
𝑖
; see Appx. D.1.1 for further discussion. Each agent 𝑖

updates 𝑥𝑖 and 𝐴𝑖 simultaneously using ∇𝑥𝑖 𝑓 𝐴𝑖 (𝒙) and ˜∇𝐴𝑖
(𝜌𝑖 +

𝜈D𝐾𝐿).
Improve-Stay, Suffer-Shift—Win-Stay, Lose-Shift (WSLS) [35]

is a strategy shown to outperform Tit-for-Tat [33] in an iterated

prisoner’s dilemma [18, 30]. It was also shown to be psychologically

plausible [42] in research on human play. The D3C update direction,

∇𝐴𝑖
𝜌𝑖 , encodes the rule: if the loss is decreasing, maintain the

mixing weights, otherwise, change them. We can interpret this rule

as a generalization of WSLS to learning (derivatives) rather than

outcomes (losses). Therefore, we have shown that a sensible, agent-

centric learning rule (WSLS) can be derived from minimization

of the global, game theoretic concept price of anarchy by simply

a) restricting agents’ strategy spaces to be local to their learning

trajectory, a form of bounded rationality, and b) having the agents

consider improvements (derivatives) instead of direct outcomes.

Furthermore, the fact that a lower price of anarchy entails a higher

welfare at a Nash equilibriummeans this style ofWSLS is ultimately

compatible with achieving high performance for the entire system.

Note that the trival solution of minimizing average group loss

coincides with 𝐴𝑖 𝑗 =
1

𝑛 for all 𝑖, 𝑗 . If the agent strategies converge

to a social optimum, this is a fixed point in the augmented strategy

space (𝒙, 𝐴). This can be seen by noting that 1) convergence to an

optimum implies ∇𝑥𝑖 𝑓 𝐴𝑖 (𝒙) = 0 and 2) convergence alone implies

𝑑𝑓𝑖
𝑑𝑡

= 0 for all agents so ∇𝐴𝑖 = 0 by equation 11 assuming 𝜖 = 0.

2.6 Decentralized Learning & Extending to
Reinforcement Learning

The time derivative of each agent’s loss,
𝑑
𝑑𝑡

𝑓 𝐴
𝑖
(𝒙), in equation 11

requires differentiating through potentially all other agent loss

functions, which precludes scaling to large populations. In addition,

this derivative is not always available as a differentiable function. In

order to estimate
˜∇𝐴𝑖

𝜌𝑖 when only scalar estimates of 𝜌𝑖 are avail-

able as in, e.g., multiagent reinforcement learning (MARL), each

agent perturbs their loss mixture and commits to this perturbation

for a random number of training steps. If the loss increases over

the trial, the agent updates their mixture in a direction opposite the
perturbation. Otherwise, no update is performed.

This is formally accomplished with approximate one-shot gradi-

ent estimates [39] or evolutionary strategies [34]. A one-shot gra-

dient of 𝜌𝑖 (𝐴𝑖 ) is estimated by first perturbing 𝐴𝑖 with entropic

mirror ascent [4] as 𝐴̃𝑖 = softmax(log(𝐴𝑖 ) + 𝛿 𝒂̃𝑖 ) where 𝛿 > 0

and 𝒂𝑖 ∼ 𝑈𝑠𝑝 (𝑛) is drawn uniformly from the unit sphere in R𝑛 .

The perturbed weights are then evaluated 𝜌𝑖 = 𝜌𝑖 (𝐴̃𝑖 ). Finally, an
unbiased gradient is given by

𝑛
𝛿
𝜌𝑖𝒂𝑖 . In practice, we cannot evalu-

ate in one shot the
𝑑
𝑑𝑡

𝑓 𝐴
𝑖
(𝒙) term that appears in the definition of

𝜌𝑖 . Instead, Algorithm 1 uses finite differences and we assume the

evaluation remains accurate enough across training steps.

Algorithm 1 D3C Update for RL Agent 𝑖

Input: 𝜂𝐴 , 𝛿 , 𝜈 , 𝜏min, 𝜏max, 𝐴
0

𝑖
, 𝜖 , 𝑙 , ℎ, L, iterations 𝑇

𝐴𝑖 ← 𝐴0

𝑖
{Initialize Mixing Weights}

𝐺 = 0 {Initialize Mean Return of Trial}

{Draw Initial Random Mixing Trial}

𝐴̃𝑖 , 𝒂̃𝑖 , 𝜏, 𝑡𝑏 ,𝐺𝑏 = trial(𝛿, 𝜏min, 𝜏max, 𝐴𝑖 , 0,𝐺)
for 𝑡 = 1 : 𝑇 do
𝑔 = L𝑖 (𝐴̃ 𝑗 ∀ 𝑗) {Update Policy With Mixed Rewards}

Δ𝑡𝑏 = 𝑡 − 𝑡𝑏 {Elapsed Trial Steps}

𝐺 = (𝐺 (Δ𝑡𝑏 − 1) + 𝑔)/Δ𝑡𝑏 {Update Mean Return}

if Δ𝑡𝑏 == 𝜏 {Trial Complete} then
𝜌𝑖 = ReLU(𝐺𝑏−𝐺

𝜏 + 𝜖) {Approximate 𝜌}

∇𝐴𝑖
= 𝜌𝑖 𝒂̃𝑖 − 𝜈𝒆𝑖 �𝐴𝑖 {Estimate Gradient —(11)}

𝐴𝑖 = softmax 𝑙 ⌊log(𝐴𝑖 )−𝜂𝐴∇𝐴𝑖
⌉ℎ {Update}

{Draw New Random Mixing Trial}

𝐴̃𝑖 , 𝒂̃𝑖 , 𝜏, 𝑡𝑏 ,𝐺𝑏 = trial(𝛿, 𝜏min, 𝜏max, 𝐴𝑖 , 𝑡,𝐺)
end if

end for

Algorithm 1 requires several arguments: 𝜂𝐴 is a global learning

rate for each 𝐴𝑖 , 𝛿 is a perturbation scalar for the one-shot gradient

estimate, 𝜏min and 𝜏𝑚𝑎𝑥 specify the lower and upper bounds for

the duration of the mixing trial for estimating a finite difference of

𝑑
𝑑𝑡

𝑓 𝐴
𝑖
(𝒙) ≈ −(𝐺 −𝐺𝑏 )/𝜏 , 𝑙 and ℎ specify lower and upper bounds

for clipping𝐴 in logit space (𝑙 ⌊·⌉ℎ), and L𝑖 (Algorithm 3) represents

any generic reinforcement learning algorithm augmented to take

𝐴 as input (in order to mix rewards) and outputs discounted return.
� indicates elementwise division.
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Algorithm 2 trial—helper function

Input: 𝛿 , 𝜏min, 𝜏max, 𝐴𝑖 , 𝑡 , 𝐺

𝒂̃𝑖 ∼ 𝑈𝑠𝑝 (𝑛) {Sample Perturbation Direction}

𝐴̃𝑖 = softmax(log(𝐴𝑖 ) + 𝛿 𝒂̃𝑖 ) {Perturb Mixture}

𝜏 ∼ Uniform{𝜏min, 𝜏max} {Draw Random Trial Length}

Output: 𝐴̃𝑖 , 𝒂̃𝑖 , 𝜏, 𝑡,𝐺

Algorithm 3 L𝑖—example learner

Input: 𝐴̃ = [𝐴̃1; . . . ; 𝐴̃𝑛]
while episode not terminal do

draw action from agent policy

play action and observe reward 𝑟𝑖
broadcast 𝑟𝑖 to all agents

update policy with 𝑟𝑖 =
∑
𝑗 𝐴̃ 𝑗𝑖𝑟 𝑗

end while
Output: return over episode 𝑔

2.7 Assessment
We assess Algorithm 1 with respect to our original design criteria.

As described, agents perform gradient descent on a decentralized

and local upper bound on the price of anarchy. Recall that a min-

imal global price of anarchy (𝜌 = 1) implies that even the worst

case Nash equilibrium of the game is socially optimal; similarly,

Algorithm 1 searches for a locally socially optimal equilibrium. By

design, 𝐴𝑖 ∈ Δ𝑛−1
ensures the approach is budget-balancing. We

justify the agents learning weight vectors 𝐴𝑖 by initializing them

to attend primarily to their own losses as in the original game.

If they can minimize their original loss, then they never shift at-

tention according to equation 11 because
𝑑𝑓𝑖
𝑑𝑡
≤ 0 for all 𝑡 . They

only shift 𝐴𝑖 if their loss increases. We also include a KL term to

encourage the weights to return to their initial values. In addition,

in our experiments with symmetric games, learning 𝐴 helps the

agents’ outcomes in the long run. We also consider experiments in

Appx. E.2.1 where only a subset of agents opt into the mechanism.

If each agent’s original loss is convex with diagonally dominant

Hessian and the strategy space is unconstrained, the unique, glob-

ally stable fixed point of the game defined with mixed losses is a

Nash (see Appx. H.4). Exact gradients ∇𝐴𝑖
𝜌𝑖 require each agent

differentiates through all other agents’ losses precluding a fully de-

centralized and scalable algorithm. We circumvent this issue with

noisy oneshot gradients. All that is needed in terms of centraliza-

tion is to share the mixed scalar rewards; this is cheap compared to

sharing 𝑥𝑖 ∈ R𝑑≫1
. As mentioned in the introduction, the cost of

communicating rewards can be mitigated by learning 𝐴𝑖 via sparse

optimization or sampling but is outside the scope of this paper.

2.8 Related Work
Collective Intelligence or COIN, surveyed in [46], examines the

problem of how to design reward functions for individual agents

such that a decentralized multiagent system maximizes a global

world utility function. Wolpert and Tumer [46] describe several

approaches taken by an array of diverse fields and motivate the cre-

ation of a collective intelligence as an important challenge. Follow-

upworks focus on aiding researchers in deriving static agent reward

functions that are consistent with optimizing the desired world util-

ity via, for instance, useful visualizations [1, 2]. Unlike conventional

COIN approaches, D3C learns agent reward functions dynamically

through online interaction with the environment. On the other

hand, like D3C, studies in COIN find that agents optimizing mod-

ified versions of their original reward functions not only achieve

high global utility, but also perform better individually [41].

In recent MARL work, Lupu and Precup [25] augment the agents’

action space with a “gifting” action where agents can send a +1
reward to another agent. They evaluate this approach on a variant

of Harvest we explore in Appx. F.4. They look at three different

reward budget settings; ours is most similar to their zero-sum set-

ting in which gifts are budget-balanced by matching −1 penalties.

In contrast to [25], we consider a continuum of “gifting” amounts

automatically grounded in the scale of the original rewards via

mixing on the simplex.

Similarly, Hostallero et al. [16] introduce PED-DQNwhere agents

gift their peers by a reciprocal amount proportional to the positive

externality they perceive (as measured by their td-error) receiving
from the group. Although they make no direct reference to price of

anarchy, the stated goal is to shift the system’s equilibrium towards

an outcome that maximizes social welfare. In contrast to [16], D3C

agents learn to share varying rewards with individual agents rather

than sharing an average gift with everyone in their predefined

peer group. This is important as the latter prevents the possible

discovery of teams as demonstrated by D3C in Appx. F.5.

Yang et al. [47] propose an algorithm LIO (Learning to Incen-

tivize Others) that equips agents with “gifting” policies represented

as neural networks. At each time step, each agent observes the en-

vironment and actions of all other agents to determine how much

reward to gift to the other agents. The parameters of these net-

works are adjusted to maximize the original environment reward

(without gifts) minus some penalty regularizer for gifting meant to

approximately maintain budget-balance. In order to perform this

maximization, each agent requires access to every other agent’s

action-policy, gifting-policy, and return making this approach dif-

ficult to scale and decentralize. Yang et al. [47] demonstrate LIO’s

ability to maximize welfare and achieve division of labor on a very

restricted version of the Cleanup game we evaluate in §3.5. We also

evaluate D3C on this restricted variant in the Appx. F.3.

Inspired by social psychology,McKee et al. [26] explored imbuing

agents with a predisposed social value orientation that modifies their

rewards. Populations with heterogeneous populations achieved

higher fitness scores than homogeneous ones in an evolutionary

training approach (i.e., learning occurs outside the agent’s lifetime).

One key innovation of D3C beyond the above works is its budget-

balance guarantee. In [16, 26, 47], agents manifest extra reward to

gift to peers, but no explanation is given for where this extra re-

ward might come from. Also, none of these works tie their proposed

approaches to the fundamental game theoretic concept price of anar-

chy. The derivation of D3C from first principles provides an explicit

link, showing an agent-centric learning rule can be approximately

consistent with the global objective of maximal social welfare.

Like D3C, OpenAI Five [31] also linearly mixed agents rewards

which each other, but where the single “team spirit" mixture pa-

rameter (𝜏) is manually annealed throughout training from 0.3 to

1.0 (i.e., 𝐴𝑖𝑖 = 1 − 0.8𝜏,𝐴𝑖 𝑗 = 0.2𝜏, 𝑗 ≠ 𝑖).
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Finally, we point out that loss transformation is consistent with

human behavior. Within social psychology, interdependence the-
ory [19] holds that humans make decisions based on self interest

and social preferences, allowing them to avoid poor Nash equilibria.

3 EXPERIMENTS
Here, we show that agents minimizing local estimates of price of

anarchy achieve lower loss on average than selfish, rational agents

in five domains. In the first two domains, a traffic network (4 play-

ers) and a generalized prisoner’s dilemma (10 players), players

optimize using exact gradients (see equation 11). Then in three

RL domains—Trust-Your-Brother, Coins and Cleanup—players opti-

mize with approximate gradients as handled by Algorithm 1. Agents

train with deep networks and A2C [11]. We refer to both algorithms

as D3C (decentralized, differentiable, dynamic compromise).

For D3C, we initialize𝐴𝑖𝑖 = 0.99 and𝐴𝑖 𝑗 =
0.01

𝑛−1
, 𝑗 ≠ 𝑖 . We initial-

ize away from a onehot because we use entropic mirror descent [4]

to update𝐴𝑖 , and this method requires iterates to be initialized to the

interior of the simplex. In the RL domains, updates to𝐴𝑖 are clipped

in logit-space to be within 𝑙 = −5 and ℎ = 5 (see Algorithm 1). We

set theD𝐾𝐿 coefficient to 0 except for in Coins, where 𝜈 = 10
−5
. Ad-

ditional hyperparameters are specified in Appx. G. In experiments

where we cannot compute price of anarchy (equation 2) exactly,

we either report the total loss of the learning algorithm (e.g., D3C)

along with the loss achieved by fully cooperative agents (𝐴𝑖 𝑗 =
1

𝑛 )

or the ratio of these losses referred to as “ratio to optimal”.

3.1 Traffic Networks and Braess’s Paradox
In 2009, New York city’s mayor closed Broadway near Times Square

to alleviate traffic congestion [28]. This counter-intuitive phenom-

enon, where restricting commuter choices improves outcomes, is

called Braess’s paradox [5, 6, 43], and has been observed in real traf-

fic networks [40, 48]. Braess’s paradox is also found in physics [48],

decentralized energy grids [45], and can cause extinction cascades

in ecosystems [37]. Knowing when a network may exhibit this para-

dox is difficult, which means knowing when network dynamics

may result in poor outcomes is difficult.

Figure 2a presents a theoretical traffic network.Without edge AB,

drivers commute according to the Nash equilibrium, either learned

by gradient descent or D3C. Figure 3a shows the price of anarchy

approaching 1 for both algorithms. If edge AB is added, the network

now exhibits Braess’s paradox. Figure 3b shows that while gradient

descent converges to Nash (𝜌 = 80

65
), D3C achieves an average

“ratio to optimal“ near 1. Figure 2b shows that when faced with a

randomly drawn network, D3C agents achieve shorter commutes

on average than agents without the ability to compromise.

3.2 Prisoner’s Dilemma
In an𝑛-player prisoner’s dilemma, each player must decide to defect

or cooperate with each of the other players creating a combinatorial

action space of size 2
𝑛−1

. This requires a payoff tensor with 2
𝑛 (𝑛−1)

entries. Instead of generalizing prisoner’s dilemma [33] to 𝑛 players

using 𝑛th order tensors, we translate it to a game with convex loss

functions. Figure 4a shows how we can accomplish this. General-

izing this to 𝑛 players, we say that for all 𝑖, 𝑗, 𝑘 distinct, 1) player 𝑖

wants to defect against player 𝑗 , 2) player 𝑖 wants player 𝑗 to defect

𝑛𝑆𝐴 ∈ {0 − 4}, 𝑛𝐵𝐸 ∈ {0 − 4}
10𝑛𝑆𝐴 + 10𝑛𝐵𝐸 < 10𝑛𝑆𝐴 + 45

10𝑛𝑆𝐴 + 10𝑛𝐵𝐸 < 10𝑛𝐵𝐸 + 45

(a) Traffic Network

(b) Random Network Results

Figure 2: (a) Four drivers aim to minimize commute time
from S to E. Commute time on each edge depends on the
number of commuters, 𝑛𝑖 𝑗 . Without edge AB, drivers distrib-
ute evenly across SAE and SBE for a 65 min commute. After
edge AB is added, switching to the shortcut, SABE, always
decreases commute time given the other drivers maintain
their routes, however, all drivers are incentivized to take the
shortcut resulting in an 80 min commute. (b) The mean “ra-
tio to optimal“ over training for 1000 randomly generated
networks exhibiting Braess’s paradox with ±1 stdev shaded.

against player 𝑘 , and 3) player 𝑖 wants player 𝑗 to cooperate with

itself. In other words, each player desires a free-for-all with the

exception that no one attacks it. See Appx. E.2 for more details.

For three players, we can define the vector of loss functions with

𝒇 (𝒙) =
∑

𝑐𝑜𝑙𝑢𝑚𝑛𝑠

[( 
𝒙⊤

𝒙⊤

𝒙⊤

 −𝐶
)

2
]

(12)

where 𝒙 = [𝑥𝑖 𝑗 ] is a column vector (𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1, 𝑛 − 1])
containing the players’ (randomly initialized) strategies and 𝐶 is

an 𝑛 × 𝑛(𝑛 − 1) matrix with entries that either equal 0 or 𝑐 ∈ R+.
Figure 5 shows that D3C with a randomly initialized strategy

successfully minimizes the price of anarchy. In contrast, gradient

descent learners provably converge to Nash at the origin with

𝜌 = 𝑛
𝑐 (𝑛−1) . The price of anarchy grows unbounded as 𝑐 → 0

+
. We

set 𝑛 = 10 and 𝑐 = 1 (𝜌 = 10

9
) in this experiment with additional

settings explored in Appx. F.1.

Figure 6 highlights a single training run. Both agents are initial-

ized to minimize their original loss, but then learn over training to

minimize the mean of the two player losses.

3.3 Trust-Your-Brother
In this game, a predator chases two prey around a table. The preda-

tor uses a hard-coded policy to move towards the nearest prey

unless it is already adjacent to a prey, in which case it stays put. If
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(a) Without Shortcut (Edge AB Removed)

(b) With Shortcut (Edge AB Included)

Figure 3: Traffic Network—(a) Without edge AB, agents are
initialized with random strategies and train with either gra-
dient descent (left) or D3C (right)—similar performance is
expected. Statistics of 1000 runs are plotted over training.
Median 𝜌max tracks the median over trials of the longest-
commute among the four drivers. The shaded region cap-
tures ± 1 stdev around the mean. (b) After edge AB is added,
agents are initialized with random strategies and trained
with either gradient descent (left) or D3C (right).

(a) Prisoner’s Dilemma (b) Trust-Your-Brother

Figure 4: (a) A reformulation of the prisoner’s dilemma us-
ing convex loss functions instead of a normal form payoff
table. (b) A bot chases two agents around a table. The preda-
tor’s prey can only escape if the other prey simultaneously
moves out of the way. Selfish (top), cooperative (bottom).

the prey are equidistant to the predator, the predator selects its prey

at random. The prey receive 0 reward if they chose not to move

and −.01 if they attempted to move. They additionally receive −1 if

the predator is adjacent to them after moving.

The prey employ linear softmax policies (no bias term) and train

via REINFORCE [44]. Both prey receive the same 2-d observation

vector. The first feature specifies the counter-clockwise distance to

the predator minus the clockwise distance for the blue prey. The

second feature specifies the same for the green prey.

Figure 5: Prisoner’s Dilemma—Convergence to 𝜌 = 1 (left)
and the unique optimal joint strategy (right) over 1000 runs.
The shaded region captures ± 1 standard deviation around
the mean (too small to see on left). Gradient descent (not
shown) provably converges to Nash.

Figure 6: Prisoner’s Dilemma—Single run: relative loss atten-
tion measured as ln

( 𝐴𝑖𝑖

𝐴 𝑗≠𝑖

)
(left) and player losses, 𝑓𝑖 , (right).

Figure 7 shows D3C approaches maximal total return over train-

ing; this is achieved by the agents compromising on their original

reward incentives and attending to those of the other agent instead.

Figure 7: Trust-Your-Brother—Median return achieved dur-
ing training for agents trained with policy gradient vs pol-
icy gradient augmented with D3C (left); relative reward at-
tention is measured as ln

( 𝐴𝑖𝑖

𝐴 𝑗≠𝑖

)
where a positive value cor-

responds to selfish attention and a negative value to other-
regarding (right). The ± 1 standard deviation shading about
the mean for both players overlaps (1000 runs).

3.4 Coin Dilemma
In the Coins game [8, 22], two agents move on a fully-observed 5×5

gridworld, on which coins of two types corresponding to each agent

randomly spawn at each time step with probability 0.005. When

an agent moves into a square with a coin of either type, they get a
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(a) Cleanup: 10 Run Stats (b) Individual Run

(c) Individual Run (d) Individual Run

Figure 9: Cleanup (a) Mean total returns over ten train-
ing runs. D3C hyperparameters were selected using five in-
dependent validation runs. Cooperative agents trained to
maximize total return represent the best possible baseline.
Shaded region captures ± 1 standard deviation around the
mean. (b-d) Three randomly selected runs. Each curve shows
the mean return up to the current epoch for 1 of 5 agents.

(a) Coin Dilemma: 10 Run Avg (b) Individual Run: ln

( 𝐴𝑖𝑖
𝐴𝑗≠𝑖

)

(c) Individual Run: Return (d) Individual Run: Coins

Figure 8: Coin Dilemma—(a) Mean total return over ten
training runs for agents. Mean return over all epochs is re-
ported in the legend. D3C hyperparameters were selected
using five independent validation runs. Cooperative agents
trained to maximize total return represent the best possi-
ble baseline. Shaded region captures ± 1 standard deviation
around the mean. (b-d) One training run (𝐴0

𝑖𝑖
= 0.9): relative

reward attention measured as ln

( 𝐴𝑖𝑖

𝐴 𝑗≠𝑖

)
(b); sum of agent re-

turns (c); % of coins picked up that were the agent’s type (d).

reward of 1. When an agent picks up a coin of the other player’s

type, the other agent receives −2. The episode lasts 500 steps. Total

reward is maximized when each agent picks up only coins of their

own type, but players are tempted to pick up all coins.

D3C agents approach optimal cooperative returns (see Figure 8a).

We compare against Metric Matching Imitation [9], which was pre-

viously tested on Coins and designed to exhibit reciprocal behavior

towards co-players. Figure 8b shows D3C agents learning to coop-

erate, then temporarily defecting before rediscovering cooperation.

Note that the relative reward attention of both players spikes to-

wards selfish during this small defection window; agents collect

more of their opponent’s coins during this time. Oscillating between

cooperation and defection occurred across various hyperparame-

ter settings. Relative reward attention trajectories between agents

appear to be reciprocal (see Appx. H.2 for analysis).

3.5 Cleanup
We provide additional results on Cleanup, a five-player gridworld

game [17]. Agents are rewarded for eating apples, but must keep a

river clean to ensure apples receive sufficient nutrients. The option

to freeload and only eat apples presents a social dilemma. D3C

increases both welfare and individual reward over A2C (no loss

mixing). We also observe that direct welfare maximization (Co-

operation) always results in three agents collecting rewards from

apples while two agents sacrifice themselves and clean the river. In

contrast, D3C avoids this stark division of labor. Agents take turns

on each task and all achieve some positive cumulative return.

4 CONCLUSION
We formulate learning incentives as a price of anarchy minimiza-

tion problem and propose a decentralized, gradient-based approach

(D3C) that incrementally adapts agent incentives to the environ-

ment at hand. We demonstrate its effectiveness on achieving near-

optimal agent outcomes in socially adversarial environments.

It is conceptually possible to scale our approach to very large

populations through randomly sharing incentives according to the

learnedmixtureweights or sparse optimization over the simplex [20,

24, 32], but we leave this challenge to future work.
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