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ABSTRACT
To become helpful assistants in our daily lives, robots must be able
to understand the effects of their actions on their environment. A
modern approach to this is the use of a physics simulation, where
often very general simulation engines are utilized. As a result, spe-
cific modeling features, such as multi-contact simulation or fluid
dynamics, may not be well represented. To improve the represen-
tativeness of simulations, we propose a framework for combining
estimations of multiple heterogeneous simulations into a single
one. The framework couples multiple simulations and reorganizes
them based on semantically annotated action sequence information.
While each object in the scene is always covered by a simulation,
this simulation responsibility can be reassigned on-line. In this
paper, we introduce the concept of the framework, describe the
architecture, and demonstrate two example implementations. Even-
tually, we demonstrate how the framework can be used to simulate
action executions on the humanoid robot Rollin’ Justin with the
goal to extract the semantic state and how this information is used
to assess whether an action sequence is executed successful or not.
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1 INTRODUCTION
It is understood that robots affect the environment they reside in.
A robot that does not affect its surrounding cannot be of much
practical use. Furthermore, the environment also affects the robot
because its current state determines possible actions the robot can
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Figure 1: Example of a reconfiguration of a model ensemble
due to a trigger. First all objects are simulated in the main
physics simulation. Due to new action sequence information
at 𝑡𝑖+1 the in-hand localization takes over responsibility for
the object next to the hand of the robot. Nowboth simulations
share responsibility for the scene.

take. Thus, it is important that robots are able to determine the
current state of their surrounding and understand how their actions
change that state. Only this way they are able to create plans that
let them achieve their goals.

While it is, on the one hand, important to understand how actions
can change the state of the world in a predictive manner, it is,
certainly not of lesser importance to have a deep understanding of
the current world state in an interpretative manner. For planning it
is important to know effects of actions to create a plan, but if the
initial state was assumed wrongly, most plans will end up not being
executable. Thus, our goal is to have a reliable model of the robot
and its environment. Through the broad availability of simulation
frameworks like gazebo [11], simulations are widely used to create
such models, acting as digital twins of the robot [8].

However, simulations are usually limited in their representative-
ness since they are tuned for specific scenarios. Rigid-body simu-
lations, for example, are not suited to simulate soft body contacts
and often simulations have hard times dealing with multi-contact
scenarios such as grasping. Therefore, previous work on inferring
environmental states based on action execution data [1] had to
confine to simple interactions due to the limitations of simulation.
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Especially when grasps with multi-finger hands occur in simu-
lations, researchers often have to take shortcuts by binding the
grasped object rigidly to the robot manipulator in the simulation.
Furthermore, simulations usually come with significant computa-
tional costs. Designers that represent the environment of a robot in
a simulation are, thus, faced with a trade-off between high accuracy
of their simulation and runtime.

A solution to the mentioned problems lies in using specialized
simulations that are tuned to simulate the task at hand. The draw-
back of that solution is that specialized solutions usually do not
integrate well into an existing digital twin of the system. Most sim-
ulations do not provide a simple coupling-mechanism with other
simulations, thus, connecting specialized simulations with the digi-
tal twin is not straightforward. Therefore, we propose a framework
for a Multi-Agent Heterogeneous Digital Twin simulation that com-
bines multiple simulations of the robot and the environment into
one digital twin. It allows to use an ensemble of specialized models
for specific tasks and dynamically rearranges the mapping between
objects and the models. Thus, it allows to transfer the responsibil-
ity for simulating parts of the robot or the environment based on
external triggers. We’ll refer to this ability as dynamic responsibility
allocation.

The ensemble does not exclusively consist of simulations butmay
also involve simpler models like observers that only involve certain
aspects of the environment. This draws inspiration from work
showing that humans understand and predict their environment by
creating models [10] and simulations [7]. The framework allows to
connect different models together in order to model the agent and
the environment on different levels of detail and with different foci.

The scenario shown in fig. 1 serves as a running example for our
framework in this paper. It consists of the robot Rollin’ Justin [3]
being tasked to pick up a tennis ball. Standard physics simulations
are not able to simulate the grasping of the ball with a four fingered
hand out of the box, but tend to “explode” due to the high number
of contacts. This can be circumvented but requires careful tuning
of the simulation which comes at the cost of reduced accuracy of
the simulation in other parts of the environment. In our case we
have two models: one that is specialized at simulating grasping of
objects and a general simulation. A trigger, that detects beginning
grasps, triggers a rearrangement of the ensemble as the hand moves
and the grasping of the ball is simulated in the specialized grasping
model. The results of the specialized model are fed back into the
general simulation and the task can be simulated accurately without
impairing the accuracy of the general simulation.

The contributions of this paper are (i) a concept for a heteroge-
neous digital twin simulation, (ii) a prototypical implementation of
the concept, and (iii) tests on the humanoid robot Rollin’ Justin.

The rest of the paper is structured as follows: First, we introduce
related research activities in section 2. Then, we describe the het-
erogeneous multi-agent digital twin framework in section 3. Next,
we demonstrate how the framework can be used to interpret action
effects based on action execution data from the robot in section 4,
followed by a discussion in section 5. Finally, we conclude the paper
in section 6.

2 RELATEDWORK
This chapter links our work to related work in the field. We begin
by describing related work that focuses on how simulations are
used in decision making processes. Then we give a short overview
of the commonly used simulations in robotics and finally present
existing co-simulation approaches and multi-physics simulations.

2.1 The Role of Simulations and Models for
Decision Making

While this work focuses on the application of simulations and mod-
els in robotics, it draws inspiration from psychological research
on mental models. It is believed that humans create mental mod-
els as internal representations of their perceived reality and use
them for decision making and to filter new information [10]. It has
also been shown that these mental models are used in conjunc-
tion with mental simulations to interpret perceived scenes. In [7]
participants were asked to perform tasks like predicting where
the blocks of a tower would land if the tower tumbled, deciding
whether moving dots behaved according to physical or social rules,
or simply watching physical events. The authors of that study claim
to have identified a brain region that is selectively engaged in these
physic-related tasks, which they refer to as a “‘physics engine’ in
the brain” [7].

Inspired by that, researchers investigated how to make use of
simulations as internal models in robotics. One application they
found, was to use simulations as a means to represent the belief
of the robot about its environment which could be used to infer
the results of actions in the environment when perception was not
applicable [1]. Another approach used simulations to distill causal
relations between actions observed from humans in a virtual reality
environment [24].

Apart from using simulations to interpret effects and causal
links between actions, they are also widely used to predict action
outcomes. Any motion planner that checks for collisions using a
model can be seen as a static “simulation” that evaluates whether a
collision occurs based on a given configuration of the robot and the
environment. An example for predicting high level action outcomes
can be found in [12] where the authors use a simulation to test
different parameterizations of an action regarding the desired effect.
Another use case is described in [2] where the authors use multiple
simulations to probabilistically predict the outcome of an action in
conjunction with a learning-based algorithm.

2.2 Simulations in Robotics
Simulations are widely used in robotics not only because they can
be used to generate mental models, but because they can be used
to test algorithms before bringing them to hardware, because they
offer cheap alternatives to real robots, and because they allow to
generate huge amounts of training data fast and cheaply. There
is a large amount of physics simulation engines and simulation
environments specifically for robotics, for an overview see [4].

A drawback of the existing simulations and simulation frame-
works is that they each only use a single simulation engine. A
comparison of different simulation engines for robotics concluded
with the insight that “each engine performs best on the type of
system it was designed for” [6]. This reminds of the infamous “no
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free lunch theorem” for optimization [25] which states that no sin-
gle optimization algorithm outperforms all other algorithms on an
average over all types of optimization problems.

2.3 Co-Simulation Approaches
We are not the first ones to suggest to couple multiple simulations
for increased representativeness of the coupled system. In the realm
of factory and production planning, complex assembly lines or facto-
ries are simulated using an approach called co-simulation [5, 17, 22].
In co-simulations of production lines, all elements possess a simula-
tion that is specialized for this specific element, e.g a simulation for
a conveyor belt and simulations for multiple robots and multiple
machining tools [5]. The simulations communicate via a unified
interface known as functional mock-up interface (FMI).

The main drawback of this approach, for using it in robotics, is
that there is a static mapping between elements in the world and
simulators. We, however, want to be able to dynamically change
the assignment of objects to models. This is particularly important
when revisiting the example from fig. 1. An object that can be
grasped should not always be simulated by a grasping simulation,
but only when it is actively being grasped. Therefore dynamic
responsibility allocation is one of the key concepts of the framework
we present in the following.

2.4 Multi-Physics Simulation
Multi-physics simulations are simulations that combine multiple
physics simulations to simulate setups with many objects.

A framework that implements the idea of combining multiple
simulations into one big simulation is ARGoS [? ]. ARGoS was
designed to support and parallelize the simulation of large swarms
of robots. Therefore, it consists of multiple physics simulations that
each govern a part of the whole simulation space. Each simulation is
responsible for simulating the objects residing in the space governed
by it. ARGoS shares some ground principles with our framework
but differs in two core design choices: First, ARGoS focuses on
physics simulations while we propose a very general framework
that supports any kind of model, not only physics based models.
Second, the responsibility allocation in ARGoS follows a spatial
subdivision of the simulated space. In contrast, our approach uses a
more general trigger mechanism to decide which object is governed
by which simulation.

Another multi-physics dynamics engine is Chrono [? ]. The
strength of Chrono lies in using parallelization to simulate large
dynamic systems. The drawback for our scenario is that Chrono
is a monolithic program and does not allow to combine multiple
heterogeneous physics simulations. Thus it is impossible to reuse
existing digital twin models and all implementation of models must
happen in Chrono itself. Furthermore, similar to ARGoS, Chrono
focuses on physics simulations while we aim to combine different
types of models.

3 MULTI-AGENT HETEROGENEOUS DIGITAL
TWIN SIMULATIONS

In this chapter we provide insights into the framework we devel-
oped for multi-agent heterogeneous digital twin simulations. First,

we give a brief overview over the design choices behind the frame-
work, then we present the modules in more detail. Whenever we
speak of a set of models and the corrseponding Model Conductor
interacting with each another, we refer to that as an ensemble. In
contrast we will use the notion of scene to describe the state of the
environment, e.g. in terms of objects and their positions.

3.1 Rationale Behind the Framework
Our framework is centered around the concept of models. Models
in this context are representations of entities in the world, be it
physical entities such as objects or virtual concepts. Our framework
connects multiple models in order to have a more accurate and
wholesome representation of the environment. From a cognitive
science point of view, we are inspired by the insight that humans
use models to understand and predict their surrounding (for an
overview see [9]).

The framework consists of multiple components that are later de-
scribed in detail. The central hub of communication and information
sharing is the Model Conductor that coordinates and orchestrates
all models in the scene. The number of models is not restricted
but there must be one main model that times the updates of all
other models. Furthermore, the framework allows the definition
of triggers that are activated by the output of certain models and
trigger a reconfiguration of the scene. Communication between the
different modules is based on cyclic communication that is used
to continuously publish data and acyclic communication imple-
menting a simple request-response mechanism. This is in line with
commonly known robotic middleware like ROS [19] or Links and
Nodes [21].

In more concrete terms, we consider two types of models: simula-
tions and observers. Simulations can be anything from a multi-body
physics simulation to implementations of equations modeling the
cooling of a cup of coffee. The core peculiarity of simulations is their
ability to predict the next state given the history of old states and
possibly any external input. In that sense, simulations are predic-
tive. In contrast to that, observers are models that evaluate abstract
predicates based on the current state. Thus, observers implement
interpretative models.

It is important to note, that all simulations in the framework can
dynamically allocate responsibility for certain attributes of other
objects. Usually the main model is a multi-body physics simulation
that is responsible for the positions of all objects in the world at
the start. This represents the fact that all objects passively obey
the laws of physics when they are not actuated. If now an object
moves because it is actuated, it can allocate responsibility over its
own position. Similarly an object can allocate responsibility for
the position of another object, e.g. the model of the robot allocates
responsibility of an object when it grasps that object.

The definition of the initial state of the scene is provided via a
human-readable configuration file. It specifies the models in the
scene, active triggers, and the initial allocation of objects to models.

3.2 Model Interfaces
In order to provide the functionalities presented above, models must
offer a standardized interface to the Model Conductor. As every
model implements a (partial) digital twin of an object or concept,
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Figure 2: Interface of the model class. Arrows represent in-
coming and outgoing communication. Dashed arrows specify
cyclic communication and solid arrows acyclic communica-
tion. Communication with the Model Conductor goes to the
left, communication with other models to the right.

our interface is loosely inspired by the Functional Mock-up Interface
for co-simulations1. The main interfaces of models are shown in
fig. 2 and described in the following.

Registration at the Model Conductor is important to advertise
the model and make it available also to other models. During the
registration process the Model Conductor creates a unique id for
each model that is later used to address the model.

Initialization of a model is performed in a multi-step approach.
First, the Model Conductor queries the parameters required by
the model, resolves them internally, and finally passes them in
an initialization call to the model. Parameters can be any kind of
information needed for a successful initialization of a model like
object poses, object types, or ids of other models. Finally each model
offers an interface method for starting the model.

During runtime each model can notify the Model Conductor of
events that it observed. These events are used to activate triggers
that re-allocate model responsibilities. A responsibility is defined
as a parameter of an entity in the world, as for example the position
of an object, the temperature of a cup of coffee, or the charging state
of a battery. Handing over of responsibilities is managed by the
Model Conductor and implemented via corresponding interfaces at
the model level.

To actually run models, they must implement one of three pos-
sible interfaces. Either they are stepped via an acyclic service call,
or they step internally based on an external clock signal, or they
step without any external trigger. These three possibilities result
in different behaviors. If the update of a model is triggered via
an acyclic service, the main model blocks until the model finishes
the update step. This ensures that the model has enough time to
complete computation before the main model steps again. On the
other hand, if the model triggers the update internally via a clock
signal, the main model is not aware of the time required by the
model for an update step. Thus, the main model can not wait for
the model and they might run out of sync. Finally, if the model
does not require any temporal information (e.g. because it does not
model dynamics), it can run at its own pace.

1see https://github.com/modelica/fmi-standard/releases/tag/v2.0.2 (accessed
04.02.2022)

The difference between these types of updates results in a trade-
off between runtime (blocking calls might slow down the whole
framework substantially) and synchronization (internal updates
via subscription can result in the model skipping update steps). In
the end it is left to the designer of a model to decide how the step
method of a model should be implemented.

Finally, the output of a model is made available to other models
via cyclic communication. In the same way, any model can read
properties of other models via incoming cyclic communication.

3.3 Triggers and Evaluators
Triggers and evaluators are a means to reconfigure a scene. Triggers
react to certain events by triggering other events and evaluators are
a shorthand form to specify preconditions for triggers and resolve
variables.

3.3.1 Triggers. Triggers either get activated by service calls or
monitor certain topics and activate if the topic publishes certain
values. Upon activation, a trigger may check for extra preconditions
if specified. Only if the preconditions hold, the trigger activates an
effect.

A possible effect of a trigger is to transfer responsibilities of ob-
jects between models. An example could be a trigger that activates
when an objects slips out of the grasp of a robot. It connects to
an observer that monitors the grasp status of the robot. While the
object is grasped, its position is simulated by the robot model. As
soon as the object is being released, the responsibility for simulating
the position of the object is transferred from the robot model to the
main physics simulation.

Triggers do not only transfer responsibilities but they are also
used to trigger events in other modules. In the example above
imagine that the object grasped by the robot was a glass. After the
glass slipped out of the hand of the robot, it falls down and after
some seconds gets in contact with the floor. Another trigger, that
is activated whenever the glass makes contact with another object,
becomes active. It then triggers the model of the glass to check
whether the glass broke on impact or not.

A special case for service calls that activate triggers is action
sequence information. In the Action Template framework of [14] for
example, action execution data is annotated with semantic infor-
mation about the action sequence. When executing an action, the
robot does not only publish telemetry data, but also semantic anno-
tations like an identifier for the operation it executes. Making use
of that data, we can, for example, define a grasping model that gets
activated when the robot executes a move_hand operation (see also
fig. 1). We extensively make use of that feature in the evaluation in
section 4.

As can be seen from the examples, triggers specify the evolution
of a scene. With their preconditions and effects they encode the
logic of the framework. Thus, care must be given when defining
them.

3.3.2 Evaluators. Sometimes it comes in handy to be able to reuse
preconditions in our framework. For example, multiple triggers
could depend on the precondition of a hand being free. There-
fore, we introduce the concept of evaluators as shortcut. Instead of
defining each time how exactly to check whether a hand is free, an
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Figure 3: This figure shows an abstract overview of the mod-
ules of the simulation framework and the communication
between them. TheModel Conductor dynamically configures
the model ensemble and logs its evolution.

evaluator is written once and is later reused in multiple precondi-
tions.

Evaluators are not limited to only return boolean true or false
values but can return arbitrary values. This is used to dynamically
resolve arguments. Given a trigger for a move_hand operation that
transfers the responsibility over the pose of the object that is being
grasped to a simulation model. This trigger needs to evaluate which
object is about to being grasped right now. Therefore it specifies
an evaluator that returns the object closest to the fingers of the
robot and assigns its value to a variable. This variable is then used
to specify the effect of the trigger.

3.4 Model Conductor
The Model Conductor is key to our framework. It orchestrates
the ensemble of models in the scene and forms the glue between
them. To act as the central information hub, the Model Conductor
loads a configuration from a human-readable .yaml file. This file
specifies the scene by means of the models in the scene, the initial
responsibilities, triggers, and evaluators. To the outside, the Model
Conductor exposes a service to start simulating a scene. This service
must be called with an initial geometric description of the scene in
terms of the objects and their locations.

The input to articulated models of the scene can stem from
either of two possible sources: Either the framework simulates the
evolution of a scene based on input from a real robot, or it is based
on prerecorded data. The origin of input data must also be specified
in the call to the service starting the simulation. It is important to
note, that each model in the scene must be able to step in real-time
when the framework is connected to live data. If prerecorded data
is used to control the models in the simulation, the playback of the
data is organized in the main model and adapts speed automatically
to all models that are stepped via a service call.

When the Model Conductor is called to simulate a scene, it first
initializes all models. Then it sets up connections of the models to
the specified data source and creates a process for the triggers. It
registers all triggers to that process and creates a logging process to
record the output of the models. Finally it starts the models. While

the models are running, the trigger process constantly checks for
signals that are connected to the existing triggers. When such a
signal occurs, the corresponding triggers are activated. The simula-
tion of the scene finishes when either the prerecorded data ends or
a service for stopping the simulation is called.

Figure 3 shows an overview of themodules of themulti-agent dig-
ital twin framework and how they interact. The Model Conductor
configures the model ensemble and logs its output. Configuration
happens both initially and, in form of re-configuration, on-line. On-
line reconfiguration is provoked by triggers defined in the Model
Conductor.

4 EVALUATION
Having introduced and described the heterogeneous simulation
framework in the previous section, this section shows three exem-
plary use cases and their evaluation. Our focus in the evaluation
lies on a qualitative evaluation. The goal of the developed approach
is to enable a robot to correctly interpret or predict the (symbolic)
effect of its actions. We do not focus on a quantitative evaluation
of our simulations in terms of real-time factors because this metric
depends strongly on the models that are used in the framework
and not so much on the framework itself. Instead, the goal of the
evaluation section is to demonstrate that our framework allows
to simulate complex actions that state of the art methods fail to
simulate. Thus, we evaluate our work based on the symbolic effects
interpreted after simulating a scene using telemetry data and action
sequence information. This is closely related to the work of [1] but
with more complex actions than their framework, of using a single
simulation, allowed for.

In order to give a complete picture of our approach, we briefly
describe a scenario that shows the usefulness of our framework
quantitatively. After that we focus on the qualitative evaluation by
describing two scenarios and then report the findings for each of
them in detail.

4.1 Quantitative Evaluation
As noted above, the quantitative evaluation of our approach is not
at the center of our evaluation. It solely describes why it makes
sense to subdivide complex simulations in multiple smaller modules
as we propose in our approach.

The scenario we chose for this evaluation is the one of simulating
the behavior of a fluid in a cup. The fluid is abstracted by multiple
spheres in a cup that is placed in front of the robot on a table. The
simulation is implemented in gazebo [11], using the ODE2 engine
for simulating physics. We decide to focus on gazebo as it is the
most widely used simulation environment in robotics in terms of
citations [4, Fig. 2 ].

We defined five setups and report the real-time factor achieved
by gazebo for each of them. The first setup consists of only the
robot, the table, and the cup without any particles (“bare simulation
w/o particles”). This serves as a reference for the real-time factors as
the real-time factor depends on many design decisions and we are
solely interested in the difference between real-time factors. The
second setup consists of setup 1 plus 50 particles in the cup (“robot
with 50 particles”). This setup reflects the baseline for our approach
2https://www.ode.org/ (accessed 04.02.2022)
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Table 1: Real-time factors for different simulation setups.

Setup Real-Time Factor
bare simulation w/o particles 0.98

robot with 50 particles 0.55
50 particles w/o robot 0.97
100 particles w/o robot 0.75

100 particles w/o robot, 1.5* step size 1.09

of simulating the whole environment in a single simulation. The
third setup consists of only the cup and 50 particles in the cup and
the fourth setup consists of only the cup and 100 particles in it (“50
particles w/o robot” and “100 particles w/o robot”). These setups
correspond to two possible models for our approach of different
accuracy. Finally, the last setup is equal to the fourth setup but
uses 1.5 times larger time steps in the simulation (“100 particles
w/o robot, 1.5* step size”). The real-time factors for each of the
setups are shown in table 1. The real-time factors for setup 3-5
are reported with a simulation of the robot and the environment
running in parallel.

In general, the more particles are in a simulation, the slower it
gets. This is because the simulation has to conduct more collision
checks. The results show two main findings:

First of all, separating the simulation intomultiple sub-simulation
increases the real-time factor substantially. This is again because
the number of collision checks is reduced. Especially the robot
consists of a lot of non-convex elements which makes collision
computation expensive. If the simulation is split up into a model
for the particles in the cup and one for the rest of the environment,
the real-time factor increases by 76%. Even if we double the number
of particles in the “fluid simulation”, the set of two simulations is
still 36% faster than the single simulation.

Second, our framework allows to reduce the temporal resolution
of a model without impairing the temporal resolution of other
models. With this, as the last setup shows, we can run the additional
simulation potentially at a lower pace without slowing down the
main simulation by making use of parallelization.

4.2 Common Setup and Baseline Algorithms
For the evaluation we created an implementation of the concept
described in section 3. The implementation realizes cyclic commu-
nication via topics and acyclic communication via services using
the Links and Nodes [21] communication framework.

Both of the two exemplary scenarios share some commonmodels.
We use gazebo [11] as the main model and create a gazebo-plugin
that implements the model of the humanoid robot Rollin’ Justin [3].
Both scenarios also share a handmodel for grasping of objects based
on an in-hand localization [18] and a simple grasp monitor. The
in-hand localization predicts the most likely position of the grasped
object in the hand based on position and torque measurements of
the fingers. Since the in-hand localization is a specialized model
for prediction of grasp poses, it operates on the assumption that
the object in focus is grasped. As we additionally want to verify
this assumption, we add the grasp monitor that is tuned to observe
whether anything is grasped but not how it is grasped.

We compare our results with state of the art methods for ro-
bot simulations. The first baseline approach is to only use a single
physics simulation and simulate grasping together with the robot
in that simulation. The second baseline is an extension to the first
baseline by rigidly binding the grasped object to the manipulator of
the robot upon a “bind” signal and releasing it upon a “release” sig-
nal. As a slight evaluation to the second baseline, the third baseline
uses a gazebo-plugin that binds grasped objects to the manipula-
tor without the need for semantic signals like “bind” and “release”
based on simulated forces between the robot and the objects3.

After simulating the actions, we extract the resulting semantic
state using the framework from [1] as described in [2].

4.3 Interpreting Action Effects in an Uncertain
Environment

The first scenario is based on data from [2]. In that work the authors
recorded telemetry from a robot that grasped tennis balls from a
stand on a table and dropped them over different containers. They
learned success probabilities based on a Bayesian approach and
used semantic similarity to previously executed actions to generate
meaningful priors. The setup they used consists of Rollin’ Justin, a
table, the tennis ball on a stand, and one of four different containers
as seen in fig. 4a. Relevant symbolic labels for this evaluation are
(in _container Ball) specifying whether the ball ended up
being in the container or not. Since the data set contains labels
marking whether the task was executed correctly (i.e. whether the
ball ended up in the container), we are able to evaluate the result
of our framework against ground truth data and compare it with
the baseline approach.

In the initial configuration of the ensemble, all objects are gov-
erned by the main model which is a gazebo simulation with the
ODE engine. We additionally specified the following two triggers:
The first trigger reacts to “move_hand” operations (c.f. [13]) in the
action execution data and checks whether the manipulator being
moved is free (via the grasp monitor) and whether an object is
in graspable distance of that manipulator. If both preconditions
evaluate true, responsibility of modeling the pose of the graspable
object is allocated by the in-hand localization.

The first part of the evaluation is concerned with successful
runs from the dataset, during which the robot was able to drop the
tennis ball into the container. Therefore we randomly select five
successful runs and replay them in our framework and with the
baseline implementations. Four out of the five runs are successfully
simulated by our framework. The first baseline approach of a single
physics simulation does not even manage to grasp the tennis ball
once. The spherical surface of the ball and the small surface of the
fingers of the robot make the ball always roll out of the hand. Also
the third baseline approach does not perform well. Similar to the
first baseline, the ball starts moving upon the first contact with the
robot finger such that the grasp never builds up enough internal
force to activate the binding mechanism. Only the second baseline
approach manages to reliably bind the ball successfully as it reacts
to semantic triggers. When it comes to dropping the ball into the

3https://github.com/JenniferBuehler/gazebo-pkgs/tree/master/gazebo_grasp_plugin
(accessed 04.02.2022)
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(a) (b)

Figure 4: Evaluation scenarios. (a) Uncertain Environment: Rollin’ Justin in front of a table with a tennis ball in hand about to
drop it into a cylindrical container. (b) Insertion Action: Rollin’ Justin in front of the SPU, about to connect the DIP to the SPU.

containers, however, the second baseline only succeeds in 2 out of
the five runs.

The second part of the evaluation is concerned with five unsuc-
cessful examples, where the ball did not end up in the container.
Reasons can be that either the robot dropped the ball early or the
ball simply did not hit the container. Baseline one and baseline three
again fail to grasp the ball from the stand. Our approach correctly
predicts that the ball does not fall into the container all the times,
the second baseline as well. The findings are summarized in table 2.

It should be noted that we chose not to report the number of
times baseline 1 and baseline 3 ended up with the ball not being in
the container when interpreting data of failed action executions in
table 2. As they did not manage to simulate a grasp at all, it is un-
derstood that they never reported a ball in the container. However,
this does not seem to imply any sort of correct result.

4.4 Simulating Inserting Actions
The second scenario is linked to a task from [20] on the SOLEX
proving ground [15]. This scenario was set up to resemble a Martian
solar farm. It was used in experiments where astronaut onboard
the International Space Station (ISS) commanded Rollin’ Justin to
do maintenance tasks [20]. In the specific task, the robot is facing
a Smart Payload Unit (SPU) and has to connect to it with its Data
Interface Probe (DIP) as shown in fig. 4b. The crunch of this scenario
is that it is hard to accurately model the snapping of the DIP in the
tight hole of the SPU. Especially when the robot did not accurately
localize the SPU, the chances are high, that the DIP in simulation
does not perfectly fit into the SPU. On the real robot the problem
of potentially bad localization is compensated to a certain degree
through the use of a compliant controller.

Thus, we created a very simple additional model for the SPU
that’s only tasked with modeling whether the DIP is connected
to the SPU. To do so it constantly compares the position of the
DIP with respect to the SPU against the ideal position that repre-
sents a connection between DIP and SPU. When the DIP enters a
cylindrical area defined around the ideal position, the SPU model
allocates responsibility over the DIPs collisions to keep the physics

simulation from becoming instable because of collisions between
SPU and DIP. If the DIP enters another smaller cylinder around the
ideal position, the SPU model also allocates responsibility over the
position of the DIP, signaling that DIP and SPU are connected.

In this scenario we start with the DIP already grasped by the
robot. We use data of five successful executions and replay them in
our framework and with the baselines. With our framework it is
possible to simulate successful connections three out of five times.
When the robot does not successfully connect the DIP to the SPU it
is so far away from the ideal connection point, that the SPU model
does not bind the DIP. In the first baseline of using one physics
simulation, the DIP falls out of the hands after the robot is moving a
bit and can never successfully be connected to the SPU. The second
and the third baseline successfully manage to keep the DIP grasped
but when they get close to the hole in the SPU, the DIP collides
with the SPU and the simulation becomes unstable.

5 DISCUSSION
The evaluation shows that our approach is able to simulate complex
tasks that can not be simulated with a single simulation alone. To
achieve this result, we combine multiple models into a Multi-Agent
Heterogeneous Digital Twin simulation. Due to the standardized
interfaces between the models and the Model Conductor, we are
able to extend the framework easily. In the following we’ll discuss
some properties of our framework.

5.1 Real-Time Factor of Simulations
Especially when using the framework as a digital twin for a running
robot and its environment, the real-time factor of the simulation
matters a lot. If the simulation is not able to run in real-time, the
simulated state of the world deviates from the real world state. In
our experiments the simulation ran with a real-time factor of ≈0.4
on a standard notebook. While this does not allow to run as a digital
twin for a robot, it should be noted that we did not optimize our
simulations for speed. Especially the in-hand localization usedmuch
of the resources on the system. In the end we believe that using
multiple smaller simulations instead of one big simulation might
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Table 2: Results from the first evaluation. The result of the simulations is compared to ground truth data about execution
success. Numbers show correct interpretations out of all tests. Baseline 1 and 3 are not applicable for failed execution because
they do not even manage to simulate a grasp of the tennis ball.

scenario ground truth
our approach

(model ensemble)
baseline 1

(pure simulation)
baseline 2

(rigid binding)
baseline 3

(force binding)

Uncertain
Environment

execution successful 4/5 0/5 2/5 0/5
execution failed 5/5 n/a 5/5 n/a

Insertion Action execution successful 3/5 0/5 0/5 0/5

even be beneficial for the simulation speed. Instead of simulating
the whole environment on a common level of detail, the modular
approach lets users simulate different aspects of the surrounding
at different levels of detail. In our example the models used very
different timings. While the gazebo simulation ran with ≈ 400
iterations per second, the grasp monitor only ran at a rate of 15
iterations per second. Also running multiple models in parallel
offers a simple approach to parallelized simulation.

5.2 Accuracy of the Framework
We evaluated our approach with the question in mind: “Is the frame-
work able to interpret the correct symbolic state of the environment
after a task execution?” Other metrics for simulation accuracy could
be the distance between objects in simulations and ground truth
positions. We did not focus more on accuracy since the overall
accuracy of our ensemble of simulations is closely connected to
the accuracy of the models themselves. It is up to the user of the
system to create models that are as accurate as needed. However,
we could show that very simple models, such as the model of the
SPU, could greatly improve the outcome of our framework.

5.3 Scalability
The framework can be extended by adding models to it. In our
setup in the evaluation we used at max 4 models: the main gazebo
simulation, the in-hand localization, the grasp monitor, and the
SPU model. Generally the framework is as fast as its slowest model.
Therefore it is important to create light-weight models that are
only activated selectively. In our example, the in-hand localization
was not active all the time but only got activated when a grasp
occurred. Following these two guidelines, light-weight models that
are selectively active, we expect the framework to scale well to
bigger problems.

6 CONCLUSION
In this work we presented a concept to create representative simu-
lation of a robot and its environment by making use of an ensemble
of models. We introduced the concept of a Multi-Agent Hetero-
geneous Digital Twin simulation and showed how it is used in
a prototypical implementation to simulate tasks that are hard to
simulate otherwise. The evaluation was based on the interpretative

power of the framework, that is its ability to correctly interpret the
course of action based on recorded data.

In the future we plan to work on two main topics related to this
work, namely on improving the simulation framework itself and
making use of the simulated outcomes. For the first topic, we plan
to combine the robot model with a simulink controller to be able
to consider forces in the simulation and make the framework also
useful for predictive simulations. Furthermore, we aim to improve
the accuracy of existing models and implement more complex mod-
els as, for example, fluid simulation to simulate and detect spilling
when operating with fluids. We will also integrate more physics
simulations with our framework such as MuJoCo [23], AMBF [16],
or Isaac Sim4. Moreover, we are interested in learning triggers for
reconfiguration of the ensemble. Last but not least, we plan to
extend the framework to support parallel simulations in order to
create distributions of results reflecting uncertainty in the initial
state.

In the realm of exploiting the simulation results we are especially
interested in using the outcomes to detect and explain erroneous
task executions of the robot. By comparing the data from different
simulation runs with the planned optimal task execution, we aim
to detect discrepancies. We plan to use this approach to prevent
errors by avoiding critical action parameterizations during plan-
ning (predictive) or to explain why an action failed in hindsight
(interpretative).
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