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ABSTRACT
The notion of envy-freeness is a natural and intuitive fairness re-

quirement in resource allocation. With indivisible goods, such fair

allocations are unfortunately not guaranteed to exist. Classical

works have avoided this issue by introducing an additional divisi-

ble resource, i.e., money, to subsidize envious agents. In this paper,

we aim to design a truthful allocation mechanism of indivisible

goods to achieve both fairness and efficiency criteria with a limited

amount of subsidy. Following the work of Halpern and Shah, our

central question is as follows: to what extent do we need to rely on

the power of money to accomplish these objectives? We show that,

when agents have matroidal valuations, there is a truthful allocation

mechanism that achieves envy-freeness and utilitarian optimality

by subsidizing each agent with at most 1, the maximum marginal

contribution of each item for each agent. The design of the mecha-

nism rests crucially on the underlying matroidal M-convexity of the

Lorenz dominating allocations. For superadditive valuations, we

show that there is a truthful mechanism that achieves envy-freeness

and utilitarian optimality, with each agent receiving a subsidy of

at most𝑚; furthermore, we show that the amount𝑚 is necessary

even when agents have additive valuations.
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1 INTRODUCTION
Consider a group of employees with preferences over their shifts;

some may prefer to work in the morning, whereas others may

prefer to work in the afternoon. All employees are willing to work,

but they may differ in the extent to which they like each time slot.

How can shifts be scheduled such that the resulting allocation is

fair among employees? This question falls under the realm of the

fair division problem, whereby indivisible resources are distributed

among heterogeneous participants.

The notion of fairness that has been extensively studied in the

literature is envy-freeness [22]. It requires that no agent wants to

swap their bundle with that of another agent. When the resource

to be allocated is divisible, the classical result ensures the existence

of an envy-free allocation [41]; when the resource is indivisible,

envy-freeness is not a reasonable goal. A relevant example is the

case of one item and two agents: no matter how we allocate the

single item, the agent who gets nothing envies the other. Hence,

the only “fair” solution is to give nothing to both agents.

One way to circumvent this issue is monetary compensation.

In the preceding example, the employer may attempt to balance

the inequality, e.g., by compensating employees who are assigned

to the night shifts. Another example is a governmental body that

subsidizes health workers in rural and remote areas.

In mechanism design with money, envy-freeness can indeed

be achieved by the well-known Vickrey–Clarke–Groves (VCG)

auctionmechanism [17, 26, 42] in cases when each agent’s valuation

is superadditive [36]. In principle, this mechanism is guaranteed

to be envy-free, truthful, and utilitarian optimal if one allocates

enough money to participants assuming each agent’s valuation

is superadditive; we will formalize this argument in Section 4. In

several applications, however, the resulting outcome of VCG may

be unsatisfactory in the following two respects. First, the social

planner may have a limited amount of money that can be used

to subsidize the participants; for example, employees are usually

paid additional compensation up to some limit. Second, when some

agent has a non-superadditive valuation, VCG fails to satisfy envy-

freeness.
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Our contributions In this paper, we study the allocation mech-

anisms of indivisible items with limited subsidies. Formally, we

work in the setting of Halpern and Shah [28]. There, a set of indi-

visible items together with subsidies are to be distributed among

agents who have quasi-linear preferences. The objective is to bound

the amount of subsidies necessary to accomplish envy-freeness,

assuming that the maximum value of the whole set of items is at

most the number𝑚 of items for each agent.
1
Although Halpern and

Shah [28] and subsequent works [4, 14, 15] are mostly concerned

with fairness criteria, we take the mechanism-design perspective:

in practice, agents may behave strategically rather than truthfully

when reporting their preferences. The goal of this paper is to an-

alyze the amount of subsidies required to accomplish the three

basic desiderata of a mechanism: truthfulness, envy-freeness, and

utilitarian optimality.

If agents are broadly expressive, i.e., the family of agents’ valu-

ations satisfies the so-called convexity condition (see [29, Defini-

tion 1]), Groves mechanisms are known to be the unique family

of mechanisms that satisfy truthfulness and utilitarian optimality

[29]. Hence, our hopes are centered on such mechanisms for a rich

class of valuations. Although VCG fails to satisfy envy-freeness for

monotone submodular valuations [19], Pápai [36] showed that it is

envy-free when agents have superadditive valuations, i.e., when

agents’ preferences do not exhibit substitutability. These results

have immediate implications for our setting. We show that, for su-

peradditive valuations, there is a truthful mechanism that achieves

envy-freeness and utilitarian optimality, with each agent receiving

a subsidy of at most𝑚; furthermore, we show that the amount𝑚 is

necessary even when agents have additive valuations; see Section 4.

In Section 5 of the full version [25], we further observe that, even

if an arbitrarily large amount of money is available for use, no

mechanism can achieve truthfulness, envy-freeness, and utilitarian

optimality simultaneously.

In practice, items may not complement each other, but rather

they can be substitutes. For example, employees want to work in

some time slots, but working all day long is not preferable because

of overwork. To capture such a phenomenon, it is natural to con-

sider the class of submodular valuations. Although the impossibility

result of combinatorial auction immediately applies to these valua-

tions, our question is whether there is any well-structured subclass
of submodular valuations that guarantees a desired mechanism.

A subclass of monotone submodular valuations that arises in a

number of applications is that of matroidal valuations, i.e., submod-

ular functions with dichotomous marginals. This class of valuations

provides a versatile framework that can describe various fair di-

vision problems with substitute preferences [11, 35]. A notable

example of matroidal valuations is when agents’ valuations are

governed by uniform matroids, i.e., valuations are binary additive

up to some capacity. Taking an example of a Food Bank problem [2],

recipients of the service may either like each item or not and may

not increase their utilities after receiving a certain amount of foods.

Similarly, when allocating courses to students, students are typi-

cally able to enjoy a limited number of courses. A more general

1
Halpern and Shah [28] dealt with additive valuations and assumed that the maximum

marginal value of each single item is at most 1; our works deals with valuations that

are not necessarily additive, and assumes a more general condition 𝑣𝑖 (𝑀) ≤𝑚 for

each agent 𝑖 .

scenario can be further expressed by the matroidal valuations asso-

ciated with laminar matroids [20]. When employees are allocated

to tasks of various types, they may either approve or disapprove

of each task depending on their abilities and can perform certain

combinations of tasks under hierarchical constraints; e.g., each em-

ployee can be assigned at most two tasks in the morning, three

tasks in the afternoon, and four tasks in a day.

Matroidal valuations can also capture other situations when the

binary marginal gain follows a more complicated discipline. For

instance, consider when a social planner desires to allocate public

housing to people in a way that is fair across different social/ethnic

groups; One way to achieve group fairness is to model groups as

agents and set each group’s valuation to be the optimal value of

assignments of items to group members [10]. This situation corre-

sponds to the case when agents have binary assignment valuations,

a subclass of matroidal valuations. See [11] for further applications

of matroidal valuations.

The class of matroidal valuations turns out to be fruitful in the

standard setting of fair division without subsidy [6, 8, 9, 11, 27];

particularly, they do admit an allocation rule that is truthful, approx-

imately fair, and efficient. Babaioff et al. [6] very recently designed

such a mechanism, called the prioritized egalitarian (PE) mecha-

nism. With ties broken according to a prefixed ordering over the

agents, the mechanism returns a clean Lorenz dominating allocation,
i.e., an allocation whose valuation vector (weakly) Lorenz domi-

nates those under the other allocations and whose bundles include

no redundant items that can be removed without decreasing the

agents’ valuations.

Now, returning to our setting, is it possible to design a desired

mechanism with a limited amount of subsidy? We observe that a

mere extension of the previously knownmechanism [6, 27] does not

achieve these properties; informally, by distributing the commonly

desirable good (namely, money), some agents, who do not desire

any item, may be incentivized to pretend to envy others in order to

get subsidized (see Example 3.2). Nevertheless, in Section 3, we are

able to design a polynomial-time implementable mechanism, the

so-called subsidized egalitarian (SE) mechanism, satisfying truthful-

ness, envy-freeness, and utilitarian optimality with total amount

of subsidy at most 𝑛 − 1. Note that this total amount cannot be

improved as the worst-case guarantee; e.g., consider one item and 𝑛

agents; if all agents desire the single item, subsidy 1must be given to

every agent but the one who gets the item to achieve envy-freeness.

Our mechanism resembles the classic VCG in the sense that it

punishes agents who may potentially decrease others’ valuations,

while the classic VCG mechanism itself is not directly applicable

when we require a limited amount of subsidy (see Example ?? of
Section 4). At a high-level, themechanism hypothetically distributes

1 dollar to each agent and implements the auction over the set of

clean Lorenz dominating allocations (cLD). By contrast with the

PE mechanism, the actual allocation can be taken arbitrarily2 from
these allocations; then, each agent who benefits from the allocation

pays 1 dollar back to the mechanism designer. A further, perhaps

surprising, remark is that, in the output of the SE mechanism, the

final utility of each agent does not change according to the choice

2
Note that an appropriate tie-breaking is necessary in the context of fair division

without subsidy; see Example 4 of Babaioff et al. [5], which shows that truthfulness is

not ensured if a mechanism chooses an arbitrary clean Lorenz dominating.
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of an allocation. More strikingly, we show in Theorem 3.7 that

the final utility guaranteed by the mechanism is invariant under

permutations of agent names.

In Section 3.4, we further discuss our setting without the free-

disposal assumption, i.e., each item has to be allocated to some

agent. Examples include assigning papers to reviewers and allocat-

ing shifts to medical workers. Unfortunately, we observe that, even

when agents have binary additive valuations, no truthful and envy-

free mechanism allocates all items and returns a Lorenz dominating

allocation with each agent being subsidized by at most 1. However,

dropping the truthfulness requirement, we show that there is a

polynomial-time algorithm that accomplishes envy-freeness and

utilitarian optimality while each agent is subsidized at most 1 and

all items are allocated to some agent for matroidal valuations. Of

independent interest, we also prove in the full version [25, Appen-

dix A.1] that the resulting allocation of the algorithm satisfies an

approximate fairness notion, called envy-freeness up to any good

(EFX). Due to the space restrictions, we defer the omitted proofs to

the full version [25].

Related work The idea of compensating an indivisible resource

allocation with money has been prevalent in classical economics

literature [3, 30–32, 38–40]. Most classical literature, however, has

not considered a situation in which the number of items to be

allocated exceeds the number of agents, in contrast to the rich

body of recent literature on the multi-demand fair division problem.

Halpern and Shah [28] recently extended the model to the multi-

demand setting wherein multiple items can be allocated to one

agent. Brustle et al. [14] proved that for additive valuations in which

the value of each item is at most 1, giving at most 1 to each agent is

sufficient to eliminate envies; they also showed that, for monotone

valuations, an envy-free allocation with subsidy 2(𝑛 − 1) for each
agent exists, assuming that the maximum marginal contribution of

each item is 1 for each agent. Note that our work is the first to show

that for valuations that are not necessarily additive, envy-freeness

and completeness can be accomplished by giving each agent at

most 1 subsidy.

Due to its practical importance, a setting where agents have few

marginal utility values for the goods has attracted a great deal of

attention in various contexts of fair division problems [1, 6–9, 11–

13, 24, 27]. One fundamental class of such valuations is the class

of binary additive valuations where each agent either approves

an item or not [12, 27]. The class of matroidal valuations properly

includes that of binary additive valuations and has been studied in

several recent works of fair division [6, 8, 9, 11].

2 MODEL
We model fair division with a subsidy as follows. For 𝑘 ∈ N, we
denote [𝑘] = {1, . . . , 𝑘}. Let 𝑁 = [𝑛] be the set of given 𝑛 agents

and let 𝑀 = [𝑚] be the set of given 𝑚 indivisible goods. Each

agent 𝑖 has a valuation function 𝑣𝑖 : 2
𝑀 → R+ with 𝑣𝑖 (∅) = 0,

where R+ is the set of non-negative reals. For notational simplicity,

we write 𝑣𝑖 (𝑒) instead of 𝑣𝑖 ({𝑒}) for all 𝑒 ∈ 𝑀 . In this paper, we

assume that valuation functions are monotone: 𝑣𝑖 (𝑋 ) ≤ 𝑣𝑖 (𝑌 ) for
any 𝑋 ⊆ 𝑌 ⊆ 𝑀 . Further, we assume a value-giving oracle for each

𝑣𝑖 , i.e., each 𝑣𝑖 (𝑋 ) for 𝑋 ⊆ [𝑚] can be computed in polynomial

time. We focus upon the following classes of valuation functions:

General: We assume that the maximum valuation is bounded, i.e.,

𝑣𝑖 (𝑀) ≤ 𝑚 holds for all 𝑖 ∈ 𝑁 ;

Superadditive: A subclass of general valuations, where 𝑣𝑖 (𝑋 ) +
𝑣𝑖 (𝑌 ) ≤ 𝑣𝑖 (𝑋 ∪𝑌 ) holds for any 𝑖 ∈ 𝑁 , 𝑋,𝑌 ⊂ 𝑀 s.t. 𝑋 ∩𝑌 = ∅;

Additive: A subclass of the superadditive valuations, where 𝑣𝑖 (𝑋 ) =∑
𝑒∈𝑋 𝑣𝑖 (𝑒) holds for any 𝑋 ⊆ 𝑀 , 𝑖 ∈ 𝑁 ;

Binary additive: A subclass of the additive valuations, where

𝑣𝑖 (𝑒) ∈ {0, 1} for any 𝑒 ∈ 𝑀 and 𝑖 ∈ 𝑁 ; we say that agent

𝑖 wants item 𝑒 if 𝑣𝑖 (𝑒) = 1;

Matroidal: A superclass of the binary additive valuations, where

(i) the marginal contribution 𝑣𝑖 (𝑋 ∪ {𝑒}) − 𝑣𝑖 (𝑋 ) is either 0 or
1 for all 𝑋 ⊊ 𝑀 and 𝑒 ∈ 𝑀 \ 𝑋 , and (ii) 𝑣𝑖 is submodular, i.e.,

𝑣𝑖 (𝑋 ) + 𝑣𝑖 (𝑌 ) ≥ 𝑣𝑖 (𝑋 ∪ 𝑌 ) + 𝑣𝑖 (𝑋 ∩ 𝑌 ) holds for all 𝑋,𝑌 ⊆ 𝑀 .

We remark that a matroidal valuation function is a rank function

of a matroid, i.e., a function 𝑟 : 2𝐸 → Z+ such that, for all 𝑋,𝑌 ⊆ 𝐸,

(i) 𝑋 ⊆ 𝑌 ⇒ 𝑟 (𝑋 ) ≤ 𝑟 (𝑌 ) ≤ |𝑌 |, and (ii) 𝑟 (𝑋 ) + 𝑟 (𝑌 ) ≥ 𝑟 (𝑋 ∪𝑌 ) +
𝑟 (𝑋 ∩ 𝑌 ). In [6, 11], this class of valuation functions is referred to

as submodular valuations with dichotomous marginals or matroid

rank valuations. For a matroidal valuation 𝑣𝑖 , each set 𝑋 ⊆ 𝑀 such

that 𝑣𝑖 (𝑋 ) = |𝑋 | is called an independent set.

Allocations An allocation of goods is an ordered subpartition of

𝑀 into 𝑛 bundles. We denote an allocation by 𝐴 = (𝐴1, . . . , 𝐴𝑛)
such that 𝐴𝑖 ⊆ 𝑀 for all 𝑖 ∈ 𝑁 and 𝐴𝑖 ∩ 𝐴 𝑗 = ∅ for any 𝑖 ≠ 𝑗 .

In allocation 𝐴, agent 𝑖 receives a bundle 𝐴𝑖 of goods. We will

deal with two types of allocation: (1) a complete allocation (that is,

every good must be allocated to some agent), and (2) an incomplete

allocation (that is, we can leave some goods unallocated). For an

(incomplete) allocation𝐴, we use𝐴0 to denote the set of unallocated

items𝑀 \⋃𝑖∈𝑁 𝐴𝑖 .

We introduce notions of efficiency that we use in this paper.

The utilitarian social welfare of an allocation 𝐴 is

∑
𝑖∈𝑁 𝑣𝑖 (𝐴𝑖 ), and

𝐴 is a utilitarian optimal allocation if it maximizes the utilitarian

social welfare among all allocations. A refinement of utilitarian

optimality is Lorenz dominance: given allocations 𝐴 and 𝐵, we

say that 𝐴 Lorenz dominates 𝐵 if, for every 𝑘 ∈ [𝑛], the sum of

the smallest 𝑘 values in (𝑣1 (𝐴1), . . . , 𝑣𝑛 (𝐴𝑛)) is at least as large as
that of (𝑣1 (𝐵1), . . . , 𝑣𝑛 (𝐵𝑛)), i.e., if 𝑣𝑖1 (𝐴𝑖1 ) ≤ · · · ≤ 𝑣𝑖𝑛 (𝐴𝑖𝑛 ) and
𝑣 𝑗1 (𝐵 𝑗1 ) ≤ · · · ≤ 𝑣 𝑗𝑛 (𝐵 𝑗𝑛 ) (where {𝑖1, . . . , 𝑖𝑛} = { 𝑗1, . . . , 𝑗𝑛} = [𝑛]),
then

∑𝑘
ℓ=1 𝑣𝑖ℓ (𝐴𝑖ℓ ) ≥

∑𝑘
ℓ=1 𝑣 𝑗ℓ (𝐵 𝑗ℓ ) holds for each 𝑘 . A Lorenz dom-

inating allocation is an allocation that Lorenz dominates every other

allocation. The following proposition holds from the definition of

Lorenz dominance with 𝑘 = 𝑛.

Proposition 2.1. Every Lorenz dominating allocation is utilitar-
ian optimal.

Lorenz dominance is also an egalitarian fairness notion in the

sense that the least happy agent becomes happier to the greatest

extent possible. Another allocation that often achieves the sweet

spot of efficiency and fairness is a maximum Nash welfare (MNW)

[16]. We say that 𝐴 is a maximum Nash welfare (MNW) allocation
if it maximizes the number of agents receiving positive utility and,

subject to that, maximizes the product of the positive utilities, i.e.,∏
𝑖∈𝑁 : 𝑣𝑖 (𝐴𝑖 )>0 𝑣𝑖 (𝐴𝑖 ). It is known that for matroidal valuations,

the set of Lorenz dominating allocations coincides with the set of

MNW allocations (more generally, that minimizing a symmetric

strictly convex function) [6, 11, 23]. Note that a Lorenz dominating
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allocation always exists for matroidal valuation functions, whereas

it may not exist in general.

To find efficient allocations, it is often necessary to avoid redun-

dancy in allocations. An allocation𝐴 is called clean if 𝑣𝑖 (𝐴𝑖 \ {𝑒}) <
𝑣𝑖 (𝐴𝑖 ) for any 𝑖 ∈ 𝑁 and 𝑒 ∈ 𝐴𝑖 . Note that any allocation can

be transformed into a clean one without changing valuations by

removing items of zero marginal gain from respective agents. For

matroidal valuations, 𝐴 is clean if and only if 𝑣𝑖 (𝐴𝑖 ) = |𝐴𝑖 | for each
𝑖 ∈ [𝑛] (see also [11]). Thus, for matroidal valuations, an allocation

𝐴 is clean Lorenz dominating if and only if for every clean alloca-

tion 𝐵, the total size of the smallest 𝑘 bundles in 𝐴 is at least as

large as that of 𝐵 for each 𝑘 ∈ [𝑛]; we will use this in Section 3.

Fairness with a subsidy Our goal is to achieve an envy-free allo-

cation of indivisible goods using a limited amount of subsidy, which
is an additional divisible good. We denote by 𝑝 = (𝑝1, . . . , 𝑝𝑛) ∈ R𝑛+
a subsidy vector, whose 𝑖th entry 𝑝𝑖 is the amount of subsidy re-

ceived by agent 𝑖 . For allocation 𝐴 and a subsidy vector 𝑝 , we call

(𝐴, 𝑝) an allocation with a subsidy; we assume that each agent has

a standard quasi-linear utility, i.e., the utility of agent 𝑖 , who obtains

a bundle𝑋 and subsidy 𝑝𝑖 , is equal to: 𝑣𝑖 (𝑋 ) +𝑝𝑖 . The envy-freeness
for an allocation with a subsidy is defined as follows:

Definition 2.2. An allocation with a subsidy (𝐴, 𝑝) is envy-free if
𝑣𝑖 (𝐴𝑖 ) + 𝑝𝑖 ≥ 𝑣𝑖 (𝐴 𝑗 ) + 𝑝 𝑗 for all agents 𝑖, 𝑗 ∈ 𝑁 .

An allocation 𝐴 is called envy-freeable if there exists a subsidy
vector 𝑝 such that (𝐴, 𝑝) is envy-free. Halpern and Shah [28] prove

that an allocation is envy-freeable if and only if there is no permuta-

tion of bundles that results in a higher social welfare. Note that this

condition only guarantees the optimality with fixed bundle sets,

and hence envy-freeability is weaker than utilitarian optimality.

The characterization can be stated in terms of the nonexistence of

positive-weight cycles in envy graphs (see Theorem 3.15).

Mechanisms In each subsequent section, we assume that a valua-

tion function of each agent is taken from some specified function

class 𝑉 . For example, in Section 3, we let 𝑉 be the set of all ma-

troidal functions on𝑀 . A valuation profile, or just a profile, is a tuple
(𝑣1, . . . , 𝑣𝑛) ∈ 𝑉𝑁

of the valuation functions of the all agents in 𝑁 .

For resource allocation with a subsidy, a mechanism is a mapping

from valuation profiles to outcomes, i.e., allocations with a subsidy.

A mechanism first asks each agent to report a valuation function

and then outputs an allocation with subsidy on the basis of the

reported valuations. We notice that the reported valuations may be

different from the true ones.

Some agents may have incentives to report a false valuation

function to obtain a larger utility. To prevent such manipulation,

truthfulness is a standard requirement for mechanisms. A mech-

anism is truthful if reporting the true valuation function maxi-

mizes the agent’s utility, given the fixed reports of the other agents.

A more precise definition is as follows: for every agent 𝑖 , every

profile (𝑣1, . . . , 𝑣𝑛) ∈ 𝑉𝑁
, and every 𝑣 ′

𝑖
∈ 𝑉 , if we denote by

(𝐴, 𝑝) and (𝐴′, 𝑝 ′) the outputs of the mechanism for the profiles

(𝑣1, . . . , 𝑣𝑖 , . . . , 𝑣𝑛) and (𝑣1, . . . 𝑣 ′𝑖 , . . . , 𝑣𝑛), respectively, then 𝑣𝑖 (𝐴𝑖 )+
𝑝𝑖 ≥ 𝑣𝑖 (𝐴′𝑖 ) + 𝑝

′
𝑖
.

We say that a mechanism satisfies property P if it outputs an

allocation satisfying P. For example, a mechanism satisfies envy-

freeness if it outputs an envy-free outcome, and similarly for other

properties such as MNW, completeness, and utilitarian optimality.

3 MATROIDAL VALUATIONS
In previously explained applications such as shift scheduling, goods

usually have substitute properties; therefore, we are interested in

the setting with submodular valuation functions. For such a setting,

can we design a mechanism that simultaneously achieves truthful-

ness, efficiency, and fairness with small amount of subsidies?

Generally, the impossibility result of the combinatorial auction

applies to monotone submodular valuations [19]; we are, how-

ever, able to answer this question affirmatively for the class of

matroid rank valuations, i.e., submodular functions with dichoto-

mous marginals. By setting the domain𝑉 of the valuation functions

as matroidal functions, we can show that giving at most 1 subsidy

to each agent suffices to accomplish these goals. Note that such a

mechanism has not been shown to exist even for binary additive

valuations. Our main theorem in this section is stated as follows:

Theorem 3.1. For matroidal valuations, there is a polynomial-
time implementable mechanism that is truthful, utilitarian optimal,
and envy-free with each agent receiving subsidy 0 or 1, and the total
subsidy being at most 𝑛 − 1.

Before presenting our mechanism, let us illustrate the difficulty

that arises by subsidizing agents: The following simple example

shows that we have to give some subsidy to agents who want

nothing even when the agents have binary additive valuations.

Example 3.2. Consider two agents, Alice and Bob, and one item

𝑀 = {𝑒} with each agent either wanting the item or not (i.e., valua-

tion for the item is either 0 or 1). Suppose that there is a mechanism

that is truthful, envy-free, and utilitarian optimal. Consider two

profiles 𝑃1 and 𝑃2. In 𝑃1, both agents want the single item. In this

case, the outcome must be such that one agent receives the item and

the other receives nothing. Without loss of generality, we assume

that Alice receives the item. By envy-freeness, Bob must obtain at

least 1 subsidy. In 𝑃2, Alice reports that she wants the item but Bob

does not; then, the item must be allocated to Alice who wants the

item by utilitarian optimality. Now, it appears that no subsidy is

needed in 𝑃2 because agents do not envy each other. However, it

turns out that we do have to subsidize the agent who wants nothing;
otherwise, Bob benefits by misreporting that he wants the item.

Hence, we must allocate and subsidize as follows:

𝑃1: Alice Bob

𝑣𝑖 (𝑒): 1 1

subsidy: 0 1

𝑃2: Alice Bob

𝑣𝑖 (𝑒): 1 0

subsidy: 0 1

Note that, for a Lorenz dominating allocation, we can easily

compute the amount of subsidy required to make it envy-free by

the results of Halpern and Shah [28] (Theorem 3.15 in Section 3.4);

however, as we observed in Example 3.2, the mechanism should

account for an exponential number of profiles if it aims to compute

theminimum amount of additional subsidies to achieve truthfulness.

Rather, the mechanism “generously” distributes subsidies.

Our mechanism, which we refer to as subsidized egalitarian (SE),

proceeds as follows. First, it arbitrarily chooses a clean Lorenz dom-

inating allocation that coincides with a clean MNW and is thus

guaranteed to exist under matroidal valuations [6, 11]; then, it subsi-

dizes agents with the following condition: the valuation of allocated
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bundle is (i) the same as the worst (clean) Lorenz dominating allo-

cation and (ii) not the largest among the agents. The mechanism

thus ensures that the utility of agent 𝑖 is equal to the valuation of

the worst clean Lorenz dominating allocation plus 1 if she is not

the one who receives the largest bundle.

Recall that, for matroidal valuations, allocation 𝐴 is clean if and

only if 𝑣𝑖 (𝐴𝑖 ) = |𝐴𝑖 | for any 𝑖 ∈ 𝑁 . For a profile 𝑃 = (𝑣1, . . . , 𝑣𝑛),
let cLD[𝑃] be the set of clean Lorenz dominating allocations. To

ease notation, we often omit the argument 𝑃 if no confusion will

arise. Formally, our mechanism is summarized as follows.

Subsidized Egalitarian

1. Allocate items according to an arbitrarily chosen 𝐴 ∈ cLD.
2. Give 1 subsidy to each 𝑖 ∈ 𝑁 if (i) |𝐴𝑖 | = min𝐵∈cLD |𝐵𝑖 | and

(ii) |𝐴𝑖 | < max𝑗∈𝑁 |𝐴𝑗 |.

The mechanism returns a utilitarian optimal allocation accord-

ing to the property of Lorenz dominating allocations. Clearly, the

subsidy for each agent is 0 or 1. The total subsidy is at most 𝑛 − 1
since at least one agent (who receives max𝑗 ∈𝑁 |𝐴 𝑗 | items) gets no

subsidy. Remarkably, we observe that the difference between the

valuations of the best and the worst Lorenz dominating allocations

is at most one for every agent (Proposition 3.6) and that the utility

of each agent does not change with the choice of an allocation in

Step 1 (Proposition ??). Hence, the utility of each agent is at least

the valuation of the best clean Lorenz dominating allocation.

Here, we note that the SE mechanism imposes the condition

(ii) |𝐴𝑖 | < max𝑗 ∈𝑁 |𝐴 𝑗 | in Step 2 to avoid giving all agents subsidy

1. In fact, a variant of the SE mechanism in which condition (ii) is

removed fulfills all properties required by Theorem 3.1 except that

the total subsidy is at most 𝑛, instead of 𝑛 − 1. It is also worth

noting that, without subsidy, simply picking an arbitrary allocation

in cLD does not guarantee truthfulness [5, Example 4]; namely, an

appropriate tie-breaking rule is necessary to achieve such property.

Proof outline We will prove that the SE mechanism satisfies the

desired properties in Theorem 3.1 through the following steps. First,

we will provide the structural properties of cLD and prove that the

SE mechanism is polynomial time implementable in Lemma 3.8.

We will further show that the mechanism is envy-free and truthful.

Throughout, we assume that all agents have matroidal valuations.

As a preparation for the proof of Theorem 3.1, we introduce

some notations. For an allocation 𝐴, let sv(𝐴) be a size vector

( |𝐴1 |, . . . , |𝐴𝑛 |) and let sv
↑(𝐴) be a vector obtained from sv(𝐴)

by rearranging its components in increasing order. Recall that a

clean allocation 𝐴 is Lorenz dominating if and only if for each

clean allocation 𝐵, it holds that
∑𝑘
𝑖=1 sv

↑(𝐴)𝑖 ≥
∑𝑘
𝑖=1 sv

↑(𝐵)𝑖 for
each 𝑘 ∈ [𝑛]. Note that sv↑(𝐴) is unique across all 𝐴 ∈ cLD[𝑃]
according to the definition of cLD[𝑃].

For any finite set 𝐸 and any 𝑖 ∈ 𝐸, a characteristic vector 𝜒𝑖 is an
𝐸-dimensional vector whose 𝑖th entry is 1 and whose other entries

are all 0. For two vectors 𝑥,𝑦 ∈ Z𝐸 , we define supp+ (𝑥 −𝑦) B {𝑖 ∈
𝐸 | 𝑥 (𝑖) > 𝑦 (𝑖)} and supp

− (𝑥 − 𝑦) B {𝑖 ∈ 𝐸 | 𝑥 (𝑖) < 𝑦 (𝑖)}. For
a valuation function 𝑣𝑖 and 𝑋 ⊆ 𝑀 , a set function 𝑣𝑖 |𝑋 defined as

𝑣𝑖 |𝑋 (𝑌 ) = 𝑣𝑖 (𝑋 ∩ 𝑌 ) for all 𝑌 ⊆ 𝑀 is called a restriction of 𝑣𝑖 to 𝑋 .

Recall that, for a matroidal valuation function 𝑣𝑖 , a subset𝑋 ⊆ 𝑀

is called independent if 𝑣𝑖 (𝑋 ) = |𝑋 |. The family of independent

sets of any matroidal function is known to satisfy the following

augmentation property: if both 𝑋 and 𝑌 are independent and |𝑋 | <

|𝑌 |, then there exists an item 𝑒 ∈ 𝑌 \ 𝑋 such that 𝑋 ∪ {𝑒} is also
independent. A maximal independent set is called a base; by the

augmentation property, all bases have the same cardinality.

3.1 Structure of non-redundant Lorenz
dominating allocations

We first present the following lemma, shown in the proof of [6,

Lemma 17], concerning an operation that moves an allocation closer

to another allocation in terms of size vectors. Note that this oper-

ation can be interpreted as an augmenting path in the exchange

graph of a matroid intersection (see, e.g., [37] for details). In the

lemma, we treat that the unassigned items are virtually assigned to

agent 0. Recall that, for an allocation 𝐴, we use 𝐴0 to denote the set

of unallocated items. Also, we assume that 𝑣0 is the rank function

of the free matroid, i.e., 𝑣0 (𝑋 ) = |𝑋 | for any 𝑋 ⊆ 𝑀 .

Lemma 3.3. Let 𝐴 and 𝐵 be two clean allocations, and let 𝑖 be
an agent. If |𝐴𝑖 | > |𝐵𝑖 |, there exists a sequence of clean allocations
𝐶0,𝐶1, . . . ,𝐶𝑟 with the following properties:

(i) 𝐶0 = 𝐵, 𝑘0 = 𝑖 ,
(ii) 𝑒𝑡 is an item such that 𝑒𝑡 ∈ 𝐴𝑘𝑡−1 \𝐶𝑡−1

𝑘𝑡−1
and 𝐶𝑡−1

𝑘𝑡−1
∪ {𝑒𝑡 } is

independent for 𝑣𝑘𝑡−1 (𝑡 = 1, . . . , 𝑟 ),
(iii) 𝑘𝑡 ∈ 𝑁 ∪ {0} is the index such that 𝑒𝑡 ∈ 𝐶𝑡−1

𝑘𝑡
(𝑡 = 1, . . . , 𝑟 ),

(iv) 𝐶𝑡 is the allocation that is obtained from 𝐶𝑡−1 by transferring
𝑒𝑡 from 𝑘𝑡 to 𝑘𝑡−1 (𝑡 = 1, . . . , 𝑟 ),

(v) |𝐴𝑘𝑟 | < |𝐵𝑘𝑟 |.
Note that 𝐶𝑡 is a clean allocation obtained by transferring an item
𝑡 times from the allocation 𝐵. In the transferring process, 𝑘𝑡−1 loses
one item (𝑒𝑡−1) in the (𝑡 − 1)st transfer and receives one item (𝑒𝑡 ) in
the 𝑡 th transfer.

Note that sv(𝐶𝑡 ) = sv(𝐶0) + 𝜒𝑘0 − 𝜒𝑘𝑡 if 𝑘
𝑡 ∈ 𝑁 ; additionally,

if allocation 𝐵 is utilitarian optimal, then 𝑘𝑟 must be in 𝑁 . A key

structure of cLD is the M-convex structure of size vectors. A non-

empty set 𝑆 ⊆ Z𝐸 is said to be M-convex if it satisfies the following

(simultaneous) exchange property:
(B-EXC) For any 𝑥,𝑦 ∈ 𝑆 and 𝑖 ∈ supp+ (𝑥 − 𝑦), there exists some

𝑗 ∈ supp− (𝑥 −𝑦) such that 𝑥 − 𝜒𝑖 + 𝜒 𝑗 ∈ 𝑆 and 𝑦 + 𝜒𝑖 − 𝜒 𝑗 ∈ 𝑆 .
It is known that M-convex sets are also characterized in terms of

the following (seemingly weaker but actually equivalent) exchange

property [33]:

(B-EXC+) For any 𝑥,𝑦 ∈ 𝑆 and 𝑖 ∈ supp+ (𝑥 −𝑦), there exists some

𝑗 ∈ supp− (𝑥 − 𝑦) such that 𝑦 + 𝜒𝑖 − 𝜒 𝑗 ∈ 𝑆 .
An M-convex set 𝑆 is matroidal M-convex if |𝑥𝑒 − 𝑦𝑒 | ≤ 1 for

any 𝑥,𝑦 ∈ 𝑆 and any 𝑒 ∈ 𝐸. In other words, an M-convex set is

matroidal if it is obtained from some matroid on 𝐸 by translating

the characteristic vectors of the bases by the same integral vector.

Lemma 3.3 implies that the set of size vectors of the clean allocations

and the clean utilitarian optimal allocations satisfy (B-EXC+).

Lemma 3.4. The following sets are M-convex:

𝑆1 =
{
( |𝐴0 |, |𝐴1 |, . . . , |𝐴𝑛 |) | 𝐴 is clean allocation

}
and

𝑆2 =
{
( |𝐴1 |, . . . , |𝐴𝑛 |) | 𝐴 is clean utilitarian optimal allocation

}
.

Note that, for each of the above M-convex sets 𝑆𝑖 for 𝑖 = 1, 2, the

following problems are solvable in polynomial time via matroid

intersection [18]:
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(Initialization) computing an element of 𝑆𝑖 , and

(Membership) deciding whether a given size vector is in 𝑆𝑖 .

Also, for a given vector 𝑥 in 𝑆1 or 𝑆2, there is a polynomial time

algorithm that finds an allocation whose size vector is equal to

𝑥 ; indeed, we can find such an allocation by computing a clean

utilitarian optimal allocation for the profile 𝑃 ′ = (𝑣 ′
1
, . . . , 𝑣 ′𝑛) such

that 𝑣 ′
𝑖
(𝑋 ) = min{𝑣𝑖 (𝑋 ), 𝑥𝑖 } for each 𝑖 ∈ 𝑁 and 𝑋 ⊆ 𝑁 .

Frank and Murota [23, Theorem 5.7] proved that the set of in-
creasingly maximal elements3 of an M-convex set is a matroidal

M-convex set. Further, they showed that, in thematroidal M-convex

set, an increasingly maximal element that minimizes a linear func-

tion can be found in polynomial time if (Initialization) and (Mem-

bership) for the M-convex set can be solved in polynomial time.

By combining this with the facts that 𝑆2 is a M-convex set and

an increasingly maximal element corresponds to a clean Lorenz

dominating allocation, we obtain the following lemma.
4

Lemma 3.5. The set of size vectors corresponding to clean Lorenz
dominating allocations 𝑆∗ B {sv(𝐴) | 𝐴 ∈ cLD} is a matroidal
M-convex set. Additionally, for a given weight𝑤 ∈ R𝑁 a minimum-
weight clean Lorenz dominating allocation argmin𝑠∈𝑆∗

∑
𝑖∈𝑁 𝑤𝑖𝑠𝑖

can be found in polynomial time.

Since 𝑆∗ is a matroidal M-convex set, the difference between

values of the best and the worst clean Lorenz dominating allocations

for each agent is at most one.

Proposition 3.6. max𝐵,𝐶∈cLD ( |𝐵𝑖 | − |𝐶𝑖 |) ∈ {0, 1} for any 𝑖 ∈ 𝑁 .

The resulting utilities under the SEmechanism are thus invariant

under permutations of agent names. Formally, we say that a mech-

anism is weakly anonymous if for any permutation 𝜎 : [𝑛] → [𝑛],
𝑣𝑖 (𝐴𝑖 ) + 𝑝𝑖 = 𝑣𝜎 (𝑖) (𝐴′𝜎 (𝑖) ) + 𝑝

′
𝜎 (𝑖) where (𝐴, 𝑝) and (𝐴

′, 𝑝 ′) are the
outcomes of the mechanism when applied to 𝑃 = (𝑣𝑖 )𝑖∈[𝑛] and
𝑃𝜎 = (𝑣𝜎 (𝑖) )𝑖∈[𝑛] respectively. Note that this property is weak in

the sense that the valuations of the allocated bundles may change.

Theorem 3.7. The SE mechanism is weakly anonymous.

Note that min𝐵∈cLD |𝐵𝑖 | can be computed in polynomial time for

each 𝑖 using Lemma 3.5, e.g., by setting the weight𝑤 as𝑤𝑖 = 0 and

𝑤 𝑗 = 1 for all 𝑗 ∈ 𝑁 \ {𝑖}. Hence, the outcome of the SE mechanism

can be computed in polynomial time.

Lemma 3.8. The SE mechanism is polynomial-time implementable.

Furthermore, the M-convex structure of cLD leads to some prop-

erties that are useful to prove the truthfulness of the SE mechanism.

Due to space limitation, we defer the details to Section 3.1 of the

full version [25].

3.2 Envy-freeness of the SE mechanism
Here, we prove that the SE mechanism is envy-free. We remark that

the matroidal M-convex structure of cLD is not sufficient to prove

3
For a given set of vectors, an increasingly maximal element is an element such that

the smallest entry is as large as possible; within this, the next smallest entry is as large

as possible; and so on.

4
For matroidal valuations, a clean Lorenz dominating allocation is equivalent to a

clean utilitarian optimal allocation𝐴 such that the smallest entry of sv
↑ (𝐴) is as large

as possible; within this, the next smallest entry is as large as possible; and so on [5, 11].

This certifies the equivalence between an increasingly maximal element of 𝑆2 and a

clean Lorenz dominating allocation.

it because the structure gives no information about the value of a

bundle received by anyone other than oneself. Instead, we obtain

envy-freeness of the SE mechanism by exploiting Lemma 3.3.

Lemma 3.9. The SE mechanism is envy-free.

Proof. Let (𝐴, 𝑝) be the pair of clean allocation and subsidy vec-

tor returned by the SE mechanism. To obtain a contradiction, sup-

pose that 𝑖 envies 𝑗 , i.e., 𝑣𝑖 (𝐴𝑖 )+𝑝𝑖 < 𝑣𝑖 (𝐴 𝑗 )+𝑝 𝑗 . We separately con-

sider the following three cases: 𝑣𝑖 (𝐴𝑖 ) > 𝑣𝑖 (𝐴 𝑗 ), 𝑣𝑖 (𝐴𝑖 ) < 𝑣𝑖 (𝐴 𝑗 ),
and 𝑣𝑖 (𝐴𝑖 ) = 𝑣𝑖 (𝐴 𝑗 ).
Case 1. Suppose that 𝑣𝑖 (𝐴𝑖 ) > 𝑣𝑖 (𝐴 𝑗 ). This case is impossible since

𝑣𝑖 (𝐴𝑖 ) + 𝑝𝑖 < 𝑣𝑖 (𝐴 𝑗 ) + 𝑝 𝑗 and 𝑝𝑖 , 𝑝 𝑗 ∈ {0, 1}.
Case 2. Suppose that 𝑣𝑖 (𝐴𝑖 ) < 𝑣𝑖 (𝐴 𝑗 ). As 𝐴 is a clean allocation,

|𝐴𝑖 |must be strictly smaller than |𝐴 𝑗 |. By the matroid augmentation

property, there exists an item 𝑒 ∈ 𝐴 𝑗 such that 𝑣𝑖 (𝐴𝑖 ∪ {𝑒}) =
𝑣𝑖 (𝐴𝑖 ) +1. Let 𝐵 be the allocation that is obtained from𝐴 by moving

item 𝑒 from 𝑗 ’s bundle to 𝑖’s bundle. As |𝐴𝑖 | < |𝐴 𝑗 | and 𝐴 Lorenz

dominates 𝐵, we have that |𝐵𝑖 | = |𝐴𝑖 | +1 = |𝐴 𝑗 | = |𝐵 𝑗 | +1. Hence, 𝐵
is also a clean Lorenz dominating allocation. Thus, max𝐶∈cLD |𝐶𝑖 | =
|𝐴𝑖 | + 1 and min𝐶∈cLD |𝐶 𝑗 | = |𝐴 𝑗 | − 1, which implies 𝑝𝑖 = 1 and

𝑝 𝑗 = 0 by Proposition ??. This contradicts the assumption that 𝑖

envies 𝑗 because 𝑣𝑖 (𝐴𝑖 ) + 𝑝𝑖 = |𝐴𝑖 | + 1 = |𝐴 𝑗 | = 𝑣𝑖 (𝐴 𝑗 ) + 𝑝 𝑗 .
Case 3. Suppose that 𝑣𝑖 (𝐴𝑖 ) = 𝑣𝑖 (𝐴 𝑗 ). Note that |𝐴𝑖 | = 𝑣𝑖 (𝐴𝑖 ) =
𝑣𝑖 (𝐴 𝑗 ) ≤ |𝐴 𝑗 |. As 𝑣𝑖 (𝐴𝑖 )+𝑝𝑖 < 𝑣𝑖 (𝐴 𝑗 )+𝑝 𝑗 , it must be that 𝑝𝑖 = 0 and

𝑝 𝑗 = 1. Then |𝐴 𝑗 | = min𝐴′∈cLD |𝐴′𝑗 | < max𝑘∈𝑁 |𝐴𝑘 | because 𝑗 gets

subsidized. Also, min𝐴′∈cLD |𝐴′𝑖 | = |𝐴𝑖 | − 1 or |𝐴𝑖 | = max𝑘∈𝑁 |𝐴𝑘 |
because 𝑖 gets no subsidy.We observe that min𝐴′∈cLD |𝐴′𝑖 | = |𝐴𝑖 |−1,
because otherwise min𝐴′∈cLD |𝐴′𝑖 | = |𝐴𝑖 | = max𝑘∈𝑁 |𝐴𝑘 | > |𝐴 𝑗 |,
and hence 𝑣𝑖 (𝐴𝑖 ) = |𝐴𝑖 | > |𝐴 𝑗 | ≥ 𝑣𝑖 (𝐴 𝑗 ), which is a contradiction.

As {sv(𝐴′) | 𝐴′ ∈ cLD} is an M-convex set, there is a clean Lorenz

dominating allocation 𝐵 such that sv(𝐵) = sv(𝐴) − 𝜒𝑖 + 𝜒𝑘 for some

𝑘 ∈ 𝑁 . As 𝐴 and 𝐵 are both in cLD and hence sv
↑(𝐴) = sv

↑(𝐵), we
have that |𝐵𝑖 | + 1 = |𝐴𝑖 | = |𝐵𝑘 | = |𝐴𝑘 | + 1. Note that 𝑘 ≠ 𝑗 because

|𝐴𝑖 | ≤ |𝐴 𝑗 | by 𝑣𝑖 (𝐴𝑖 ) = 𝑣𝑖 (𝐴 𝑗 ).
By applying Lemma 3.3 to 𝐵 and 𝐴 (note that the roles are inter-

changed), we obtain a sequence of clean allocations 𝐶0,𝐶1, . . . ,𝐶𝑟

with 𝑘0, 𝑘1, . . . , 𝑘𝑟 and 𝑒1, . . . , 𝑒𝑟 where 𝐶0 = 𝐴, 𝑘0 = 𝑘 , 𝑘𝑟 = 𝑖 , and

sv(𝐶𝑟 ) = sv(𝐶0) + 𝜒𝑘0 − 𝜒𝑘𝑟 = sv(𝐵). If 𝑘𝑡 = 𝑗 for some 𝑡 , then

sv(𝐶𝑡 ) = sv(𝐴) + 𝜒𝑘 − 𝜒 𝑗 and |𝐴𝑘 | +1 = |𝐴𝑖 | ≤ |𝐴 𝑗 |, and hence𝐶𝑡
is

a clean Lorenz dominating allocation with |𝐶𝑡
𝑗
| < |𝐴 𝑗 |. This implies

𝑝 𝑗 = 0, which is a contradiction. Otherwise (i.e., 𝑘𝑡 ≠ 𝑗 for all 𝑡 ),

we have 𝐶𝑟
𝑗
= 𝐴 𝑗 . Then, there exists an element 𝑒 ∈ 𝐶𝑟

𝑗
such that

𝑣𝑖 (𝐶𝑟
𝑖
∪{𝑒}) = |𝐴𝑖 | by 𝑣𝑖 (𝐶𝑟

𝑖
) = |𝐴𝑖 | −1 < |𝐴𝑖 | = 𝑣𝑖 (𝐶𝑟

𝑗
) and the ma-

troid augmentation property. Thus, the allocation that is obtained

from 𝐶𝑟
by transferring 𝑒 from 𝑗 to 𝑖 is a clean Lorenz dominating

allocation. This also implies that 𝑝 𝑗 = 0, a contradiction. □

3.3 Truthfulness of the SE mechanism
Finally, we prove that the SE mechanism is truthful. In a setting

without money, Babaioff et al. [6] proved that a mechanism is truth-

ful if it satisfies strong faithfulness and monotonicity. We introduce

two similar properties that can be applied to a setting with subsidies:

subsidized-monotone and subsidized-faithful.

First, the subsidized-faithfulness requires that, if agent 𝑖 changes

her report from 𝑣𝑖 to 𝑣𝑖 |𝑋 , either (a) 𝑖 receives 𝑋 and her subsidy
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does not decrease or (b) 𝑖 receives a proper subset of 𝑋 and her

subsidy strictly increases. We say that a mechanism is subsidized-
faithful if

𝑣𝑖 (𝑋 ) + 𝑝𝑖 ≤ 𝑣𝑖 (𝐴′𝑖 ) + 𝑝
′
𝑖 (1)

for any valuation function (𝑣1, . . . , 𝑣𝑛), agent 𝑖 ∈ 𝑁 , and sub-

set 𝑋 ⊆ 𝐴𝑖 , where (𝐴, 𝑝) and (𝐴′, 𝑝 ′) are the allocations with

subsidies returned by the mechanism when agents report 𝑃 =

(𝑣1, . . . , 𝑣𝑖 , . . . , 𝑣𝑛) and 𝑃 ′ = (𝑣1, . . . , 𝑣𝑖 |𝑋 , . . . , 𝑣𝑛), respectively. Note
that the strong faithfulness (i.e., 𝐴′

𝑖
= 𝑋 instead of (1)) does not

hold for the SE mechanism because 𝐴 ∈ cLD is chosen arbitrarily.

Next, the subsidized-monotonicity means that the (true) utility

of an agent is monotone with respect to restriction of her report.

Formally, we say that a mechanism is subsidized-monotone if the
utility of an agent is monotone with respect to the restriction, i.e.,

𝑣𝑖 (𝐴𝑖 ) + 𝑝𝑖 ≤ 𝑣𝑖 (𝐴′𝑖 ) + 𝑝
′
𝑖

for any valuation function (𝑣1, . . . , 𝑣𝑛), agent 𝑖 ∈ 𝑁 , and sub-

sets 𝑋 ⊆ 𝑌 ⊆ 𝑀 , where (𝐴, 𝑝) and (𝐴′, 𝑝 ′) are the allocations

with subsidies returned by the mechanism when agents report

𝑃 = (𝑣1, . . . , 𝑣𝑖 |𝑋 , . . . , 𝑣𝑛) and 𝑃 ′ = (𝑣1, . . . , 𝑣𝑖 |𝑌 , . . . , 𝑣𝑛), respec-
tively. The two properties of subsidized-faithfulness and subsidized-

monotonicity ensure the truthfulness of a mechanism.

Lemma 3.10. A mechanism is truthful if it is subsidized-faithful
and subsidized-monotone.

We show that the SE mechanism is subsidized-monotone and

subsidized-faithful by the matroidal M-convex structure of cLD and

the way to distribute subsidies.

Lemma 3.11. The SEmechanism is subsidized-faithful and subsidized-
monotone.

By combining Lemmas 3.10 and 3.11, we obtain the truthfulness

of the SE mechanism.

3.4 Without the free-disposal assumption
In Theorem 3.1, we presented the so-called SE mechanism, which

attains truthfulness, utilitarian optimality, and envy-freeness with

each agent receiving a subsidy of 0 or 1. In the mechanism’s output,

however, the allocation may not be complete (i.e., some items may

be left unallocated). In some situations, this disposal of items is not

ideal. For example, consider a shift scheduling at a call center or

a production factory; all shifts must be allocated to employees in

order not to stop the operation, even if no one may find that time

slot valuable. Another example is the allocation of research papers

to reviewers; every paper must be reviewed by a certain number

of reviewers irrespective of whether the paper is attractive or not.

Unfortunately, the following theorem shows that no mechanism

outputs a complete allocation while attaining all the properties

of the SE mechanism (i.e., truthfulness, Lorenz domination, and

envy-freeness with each agent receiving a subsidy of at most 1).

Theorem 3.12. If a truthful mechanism is envy-free, and returns a
complete Lorenz dominating allocation, it requires a subsidy of Ω(𝑚),
even when there are two agents with binary additive valuations.

For matroidal valuations, we provide an algorithm that returns a

Lorenz dominating allocation and simultaneously attains complete-

ness and envy-freeness with each agent receiving a subsidy of at

most 1 while tolerating a violation of truthfulness.

Theorem 3.13. For matroidal valuations, there is a polynomial-
time algorithm for computing an allocation with a subsidy that is
complete, utilitarian optimal, and envy-free, with each agent receiving
a subsidy of 0 or 1 and the total subsidy being at most 𝑛 − 1.

We construct the allocation required in the theorem by extending

an arbitrary clean Lorenz dominating allocation𝐴 = (𝐴1, 𝐴2, . . . , 𝐴𝑛);
that is, we initialize 𝐴 to be the one computed in Step 1 of the SE

mechanism. By Theorem 3.1,𝐴 then maximizes the utilitarian social

welfare

∑
𝑖∈𝑁 𝑣𝑖 (𝐴𝑖 ) and is envy-freeable with a subsidy of at most

1 for each agent. Therefore, we can obtain a desired allocation if we

can allocate items in𝑀 \⋃𝑖∈𝑁 𝐴𝑖 while preserving the utilitarian

optimality and the bound 1 of the subsidy for each agent. Note

that, for binary additive valuations, this task is trivial because an

item unallocated in 𝐴 has a value of 0 for all agents by the utili-

tarian optimality; hence allocating it to any agent does not cause

envy. However, a similar argument does not apply to matroidal

valuations, as shown by the following example.

Example 3.14. Let 𝑁 = {1, 2, 3} and 𝑀 = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5} and
define the matroidal valuations 𝑣1, 𝑣2, 𝑣3 by 𝑣1 (𝑋 ) = |𝑋 ∩ {𝑒1, 𝑒2}|,
𝑣2 (𝑋 ) = |𝑋∩{𝑒1, 𝑒2, 𝑒3}|, and 𝑣3 (𝑋 ) = |𝑋∩{𝑒1, 𝑒2, 𝑒3}|+min

{
1, |𝑋∩

{𝑒4, 𝑒5}|
}
. Then 𝐴 = (𝐴1, 𝐴2, 𝐴3) =

{
{𝑒1, 𝑒2}, {𝑒3}, {𝑒4}

}
is a clean

Lorenz dominating allocation. It is not difficult to see that we cannot

increase the utility of any agent by allocating 𝑒5, which is currently

unallocated. However, if we allocate 𝑒5 to agent 2, the amount

𝑣3 (𝐴2) − 𝑣3 (𝐴3) of envy agent 3 has towards 2 changes from 0 to 1.

To eliminate envy for the resultant allocation 𝐴′ = (𝐴′
1
, 𝐴′

2
, 𝐴′

3
) ={

{𝑒1, 𝑒2}, {𝑒3, 𝑒5}, {𝑒4}
}
, we need to pay at least one dollar to agent

2 because her envy towards agent 1 is 𝑣2 (𝐴′
1
) − 𝑣2 (𝐴′

2
) = 1. Then

𝑣3 (𝐴′
2
) + 𝑝2 ≥ 3 while 𝑣3 (𝐴′

3
) = 1, and to eliminate the envy of

agent 3 towards agent 2, we must pay at least 2 dollars to agent 3.

We present the subsidized egalitarian with completion (SEC) algo-

rithm, which extends any clean Lorenz dominating allocation to a

complete allocation while preserving the property that each agent

requires at most 1 subsidy.

To describe our algorithm, we introduce the notion of envy

graphs. For an allocation 𝐴, its envy graph 𝐺𝐴 is the complete

weighted directed graph whose node set is the agent set 𝑁 ; for

each 𝑖, 𝑗 ∈ 𝑁 , the arc (𝑖, 𝑗) has weight 𝑤 (𝑖, 𝑗) = 𝑣𝑖 (𝐴 𝑗 ) − 𝑣𝑖 (𝐴𝑖 ),
which represents the amount of envy of 𝑖 towards 𝑗 . This value can

be negative if 𝑖 prefers her bundle to 𝑗 ’s bundle. A walk 𝑄 in 𝐺𝐴

is a sequence of nodes (𝑖1, 𝑖2, . . . , 𝑖𝑘 ), and its weight is defined as

𝑤 (𝑄) = ∑𝑘−1
𝑡=1 𝑤 (𝑖𝑡 , 𝑖𝑡+1). A walk is a path if all nodes are distinct,

and a cycle if 𝑖1, 𝑖2, . . . , 𝑖𝑘−1 are all distinct and 𝑖1 = 𝑖𝑘 . The following

theorem is a combination of Theorems 1 and 2 in [28].

Theorem 3.15 (Halpern and Shah [28]). For any allocation
𝐴 = (𝐴1, . . . , 𝐴𝑛) and any nonnegative real 𝑞 ∈ R+, the following
two conditions are equivalent:

• 𝐴 is envy-freeable with a subsidy of at most 𝑞 for each agent.
• 𝐺𝐴 has neither a positive-weight cycle nor a path with a weight
larger than 𝑞.

When these conditions hold, if we set 𝑝𝑖 as the maximum weight of
any path starting at 𝑖 in 𝐺𝐴 for each 𝑖 ∈ 𝑁 , then (𝐴, 𝑝) is envy-free.
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Note that Theorem 3.15 is shown for general valuations. In the

case of matroidal valuations, which are integer-valued, each arc in

𝐺𝐴 has an integer weight.

Subsidized Egalitarian with Completion

1. Allocate items according to an arbitrarily chosen 𝐴 ∈ cLD.
2. For each unallocated item 𝑒 ∈ 𝑀 \⋃𝑖∈𝑁 𝐴𝑖 , do as follows:

(a) Take an agent 𝑖 arbitrarily.

(b) Let 𝐴𝑖,𝑒 B (𝐴1, . . . , 𝐴𝑖 ∪ {𝑒 }, . . . , 𝐴𝑛) . If 𝐺𝐴𝑖,𝑒 has a positive-

weight path ending at 𝑖 , then take such a path 𝑃𝑖 arbitrarily,

update 𝑖 by the initial agent of 𝑃𝑖 , and repeat (b). Else, go to (c).

(c) Update 𝐴← 𝐴𝑖,𝑒
(i.e., 𝐴𝑖 ← 𝐴𝑖 ∪ {𝑒 }).

3. Give 1 subsidy to each agent 𝑖 ∈ 𝑁 such that the envy graph𝐺𝐴

has a path of weight 1 starting at 𝑖 .

Lemma 3.16. The following conditions hold throughout the SEC
algorithm: (i)𝐴 = (𝐴1, . . . , 𝐴𝑛) is utilitarian optimal, and (ii)𝐺𝐴 has
neither a path of weight more than 1 nor a positive-weight cycle.

By condition (ii) in Lemma 3.16 and Theorem 3.15, the allocation

with a subsidy returned by the SEC algorithm is envy-free, with

each agent receiving a subsidy of 0 or 1. Furthermore, there is at least

one agent 𝑖 ∈ 𝑁 such that 𝐺𝐴 has no path of weight 1 starting at 𝑖

(since otherwise there exists a positive-weight cycle in 𝐺𝐴 , which

contradicts (ii)). Thus, the total subsidy is at most 𝑛 − 1. By the

algorithm and condition (i) in Lemma 3.16, the allocation is complete

and utilitarian optimal. To complete the proof of Theorem 3.13, we

now estimate the time complexity. The following claim guarantees

that the algorithm does not fall into an infinite loop at Step 2 (b).

Lemma 3.17. In Step 2, for each item 𝑒 , any agent is chosen as 𝑖 in
(b) at most once, and hence (b) is repeated at most 𝑛 times.

Note that Step 1 is the same as that of the SE mechanism. Steps

2 and 3 can be computed by the method used by Halpern and Shah

[27], i.e., by applying the Floyd–Warshall algorithm [21, 43]. Thus,

the algorithm runs in polynomial time.

4 SUPERADDITIVE VALUATIONS
In this section, we consider a class of valuations that do not possess

the substitution property, namely, a class of superadditive valua-

tions. We provide a truthful mechanism that achieves envy-freeness

and utilitarian optimality, with each agent receiving a subsidy of at

most𝑚. Although the upper bound of the subsidy seems too large,

we show that this amount of subsidy is essentially required.

Holmström [29] proved that when the set 𝑉 of valuations satis-

fies the convexity condition, the Groves mechanisms are the only

utilitarian optimal and truthful mechanisms. This result is carried

to superadditive valuations, which satisfy convexity. Moreover, for

superadditive valuations, some rules of the Groves mechanisms,

including the VCG mechanism, satisfy envy-freeness [36].

We require that the subsidy for each agent must be non-negative;

to fulfill this goal, we can use the following mechanism:

VCG with an upfront subsidy𝑚

1. Allocate items according to an arbitrarily chosen 𝐴∗ in

argmax𝐴

∑
𝑗∈𝑁 𝑣𝑗 (𝐴𝑗 ) .

2. Give𝑚−
(
max𝐴

∑
𝑗≠𝑖 𝑣𝑗 (𝐴𝑗 )−

∑
𝑗≠𝑖 𝑣𝑗 (𝐴∗𝑗 )

)
subsidy to each 𝑖 ∈ 𝑁 .

Note that the second term of the subsidy (i.e., max𝐴
∑

𝑗≠𝑖 𝑣 𝑗 (𝐴 𝑗 )−∑
𝑗≠𝑖 𝑣 𝑗 (𝐴∗𝑗 )) is equal to the standard VCG payment. Thus, this

mechanism is equivalent to the following mechanism; first, each

agent obtains an upfront subsidy 𝑚 (where 𝑚 ≥ 𝑣𝑖 (𝑀) holds
∀𝑖 ∈ 𝑁 ). Then, items are allocated using the standard VCG, where

each agent pays the VCG payment from the upfront subsidy.

Theorem 4.1. For superadditive valuations, the VCG with an up-
front subsidy𝑚 is truthful, utilitarian optimal, and envy-free, and
each subsidy is in [0,𝑚].

For additive valuations, a utilitarian optimal allocation can be

computed in polynomial time by allocating each item to the agent

who likes the most. Hence, the above mechanism is polynomial-

time implementable for a class of additive valuations. However,

generally, the problem is NP-hard for superadditive valuations (see,

e.g., [34, Proposition 11.5]).

We discuss in Section 4 of the full version [25] that unlike the SE

mechanism, Groves mechanisms cannot achieve a limited amount

of subsidy even when valuations are binary additive. Here, we

define a Groves mechanism to be a generalization of a VCG with an

upfront subsidy𝑚, where we replace the right term of the subsidy

rule in Step 2 with an arbitrary function ℎ that only depends on

valuations of the other agents 𝑗 ≠ 𝑖 .
Now, is there any other mechanism that can reduce the amount

of subsidy while achieving envy-freeness and utilitarian optimality?

The next theorem shows that we need the amount of𝑚 for each

agent to achieve such objectives, even when valuations are additive.

Theorem 4.2. For any 𝜖 > 0, if a mechanism is envy-free and
utilitarian optimal, it requires a subsidy of𝑚(𝑛 − 1) − 𝜖 in total, even
when 𝑛 agents have additive valuations such that the value of each
item is at most 1.

5 CONCLUDING REMARKS
We studied the mechanism design for allocating an indivisible re-

source with limited subsidy. Although our work is concerned with

utilitarian optimality, studying the compatibility of truthfulness and

fairness with other efficiency requirements, such as completeness

and non-wastefulness, is a natural direction. Specifically, the mech-

anism in Section 4 can allocate all items and achieves the bound of

𝑚 for additive valuations; it would be interesting to see whether

the amount of𝑚 is necessary to achieve a truthful, envy-free, and

complete mechanism for additive valuations.
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