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ABSTRACT
The behavior of no-regret learning algorithms is well understood

in two-player min-max (i.e, zero-sum) games. In this paper, we in-
vestigate the behavior of no-regret learning in min-max games with
dependent strategy sets, where the strategy of the� rst player con-
strains the behavior of the second. Such games are best understood
as sequential, i.e., min-max Stackelberg, games.We consider two set-
tings, one in which only the� rst player chooses their actions using
a no-regret algorithm while the second player best responds, and
one in which both players use no-regret algorithms. For the former
case, we show that no-regret dynamics converge to a Stackelberg
equilibrium. For the latter case, we introduce a new type of regret,
which we call Lagrangian regret, and show that if both players mini-
mize their Lagrangian regrets, then play converges to a Stackelberg
equilibrium. We then observe that online mirror descent (OMD)
dynamics in these two settings correspond respectively to a known
nested (i.e., sequential) gradient descent-ascent (GDA) algorithm
and a new simultaneous GDA-like algorithm, thereby establishing
convergence of these algorithms to Stackelberg equilibrium. Finally,
we analyze the robustness of OMD dynamics to perturbations by in-
vestigating online min-max Stackelberg games. We prove that OMD
dynamics are robust for a large class of online min-max games with
independent strategy sets. In the dependent case, we demonstrate
the robustness of OMD dynamics experimentally by simulating
them in online Fisher markets, a canonical example of a min-max
Stackelberg game with dependent strategy sets.

CCS CONCEPTS
• Mathematics of computing ! Convex optimization; • Ap-
plied computing! Economics; •Computingmethodologies
!Multi-agent systems.

KEYWORDS
Equilibrium Computation; Learning in Games; Market Dynamics
ACM Reference Format:
Denizalp Goktas, Jiayi Zhao, and Amy Greenwald. 2022. Robust No-Regret
Learning in Min-Max Stackelberg Games. In Proc. of the 21st International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2022),
Online, May 9–13, 2022, IFAAMAS, 15 pages.

1 INTRODUCTION
Min-max optimization problems (i.e., zero-sum games) have been

attracting a great deal of attention recently because of their appli-
cability to problems in fairness in machine learning [10, 19, 40, 57],
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generative adversarial imitation learning [8, 29], reinforcement
learning [11], generative adversarial learning [55], adversarial
learning [60], and statistical learning, e.g., learning parameters of
exponential families [10]. These problems are often modelled as
min-max games, i.e., constrained min-max optimization prob-
lems of the form: minx2- max~2. 5 (x,~), where 5 : - ⇥ . ! R
is continuous, and - ⇢ R= and . ⇢ R< are non-empty and com-
pact. In convex-concave min-max games, where 5 is convex
in x and concave in ~, von Neumann and Morgenstern’s semi-
nal minimax theorem holds [48]: i.e., minx2- max~2. 5 (x,~) =
max~2. minx2- 5 (x,~), guaranteeing the existence of a saddle
point, i.e., a point that is simultaneously a minimum of 5 in the
x-direction and a maximum of 5 in the ~-direction. Because of the
minimax theorem, we can interpret the constrained optimization
problem as a simultaneous-move, zero-sum game, where ~⇤ (resp.
x⇤) is a best-response of the outer (resp. inner) player to the other’s
action x⇤ (resp. ~⇤), in which case a saddle point is also called a
minimax point or a Nash equilibrium.

In this paper, we study min-max Stackelberg games [25], i.e.,
constrained min-max optimization problemswith dependent feasible
sets of the form: minx2- max~2. :g(x,~)�0 5 (x,~), where 5 : - ⇥

. ! R is continuous, - ⇢ R= and . ⇢ R< are non-empty and
compact, and g(x,~) = (61(x,~), . . . , 6 (x,~))) with 6: : - ⇥ . !

R. Goktas and Greenwald observe that the minimax theorem does
not hold in these games [25]. As a result, such games are more
appropriately viewed as sequential, i.e., Stackelberg, games for
which the relevant solution concept is the Stackelberg equilibrium,1
where the outer player chooses x̂ 2 - before the inner player
responds with their choice of~(x̂) 2 . s.t. g(x̂,~(x̂)) � 0. The outer
player’s objective, which is referred to as their value function
in the economics literature [41] and which they seek to minimize,
is de�ned as +- (x) = max~2. :g(x,~)�0 5 (x,~). The inner player’s
value function,+. : - ! R, which they seek to maximize, is simply
the objective function of the game, given the outer player’s action
x̂ : i.e., +. (~; x̂) = 5 (x̂,~).

Goktas and Greenwald [25] proposed a polynomial-time�rst-
order method by which to compute Stackelberg equilibria, which
they called nested gradient descent ascent (GDA). This method
can be understood as an algorithm a third party might run to�nd
an equilibrium, or as a game dynamic that the players might em-
ploy if their long-run goal were to reach an equilibrium. Rather
than assume that players are jointly working towards the goal of
reaching an equilibrium, it is often more reasonable to assume that
they play so as to not regret their decisions: i.e., that they employ

1Alternatively, one could view such games as pseudo-games (also known as abstract
economies) [3], in which players move simultaneously under the unreasonable as-
sumption that the moves they make will satisfy the game’s dependency constraints.
Under this view, the relevant solution concept is generalized Nash equilibrium [20, 21].
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a no-regret learning algorithm, which minimizes their loss in
hindsight. It is well known that when both players in a repeated
min-max game are no-regret learners, the players’ strategy pro�le
over time converges to a Nash equilibrium in average iterates: i.e.,
empirical play converges to a Nash equilibrium (e.g., [23]).

In this paper, we investigate no-regret learning dynamics in
repeated min-max Stackelberg games. We assume both an asym-
metric and a symmetric setting. In the asymmetric setting, the outer
player is a no-regret learner while the inner player best responds;
in the symmetric setting, both players are no-regret learners. In the
asymmetric case, we show that if the outer player uses a no-regret
algorithm that achieves Y-asymmetric regret, then the outer player’s
empirical play converges to their Y-Stackelberg equilibrium strategy.
In the symmetric case, we introduce a new type of regret, which we
call Lagrangian regret,2 which assumes access to a solution oracle
for the optimal KKT multipliers of the game’s constraints. We then
show that if both players use no-regret algorithms that achieve
Y-Lagrangian regrets, then the players’ empirical play converges to
an Y-Stackelberg equilibrium.

Next, we restrict our attention to a speci�c no-regret dynamic,
namely online mirror descent (OMD) [45]. Doing so yields two
algorithms, max-oracle mirror descent (max-oracle MD) and nested
mirror descent ascent (nested MDA) in the asymmetric setting, and
a new simultaneous GDA-like algorithm [44] in the symmetric set-
ting, which we call Lagrangian mirror descent ascent (LMDA). The
�rst two algorithms converge to Y-Stackelberg equilibrium in$(1/Y2)
and $(1/Y3) iterations, respectively, and the third, in $(1/Y2), when a
Lagrangian solution oracle exists. As max-oracle gradient [25, 33]
and nested GDA [25] are special cases of max-oracle MD and nested
MDA, respectively, our convergence bounds complement Goktas
and Greenwald’s best iterate convergence results, now proving
average iterate convergence for both algorithms. Furthermore, our
result on LMDA’s convergence rate suggests the computational su-
periority of LMDA over nested GDA, when a Lagrangian solution
oracle exists. We also note that even when such an oracle does not
exist, the Lagrangian solution can be treated as a hyperparameter
of the algorithm allowing for a signi�cant speed up in computation.

Finally, we analyze the robustness of OMD dynamics by investi-
gating onlinemin-max Stackelberg games, i.e., min-max Stackelberg
games with arbitrary objective and constraint functions from one
time step to the next. We prove that OMD dynamics are robust, in
that even when the game changes, OMD dynamics track the chang-
ing equilibria closely, in a large class of online min-max games
with independent strategy sets. In the dependent strategy set case,
we demonstrate the robustness of OMD dynamics experimentally
by simulating online Fisher markets, a canonical example of an
(online) min-max Stackelberg game (with dependent strategy sets)
[25]. Even when the Fisher market changes every time step, our
OMD dynamics track the changing equilibria closely. These results
are somewhat surprising, because optimization problems can be
highly sensitive to perturbations of their inputs [5].

Our� ndings can be summarized as follows:
• In repeated min-max Stackelberg games, when the outer
player is a no-regret learner and the inner-player best-responds,

2We note that similar notions of Lagrangian regret have been used in other online
learning settings (e.g., [4]), but to our knowledge, ours is the� rst game-theoretic
analysis of Lagrangian regret minimization.

the average of the outer player’s strategies converges to their
Stackelberg equilibrium strategy.

• We introduce a new type of regret we call Lagrangian regret
and show that in repeated min-max Stackelberg games when
both players minimize Lagrangian regret, the average of the
players’ strategies converge to a Stackelberg equilibrium.

• We provide convergence guarantees for max-oracle MD and
nested MDA to an Y-Stackelberg equilibrium in $(1/Y2) and
$(1/Y3) in average iterates, respectively.

• We introduce a simultaneous GDA-like algorithm, which we
call LMDA, and prove that its average iterates converge to
an Y-Stackelberg equilibrium in $(1/Y2) iterations.

• We prove that max-oracle MD and LMDA are robust to per-
turbations in a large class of online min-max games (with
independent strategy sets).

• We run experiments with Fisher markets which suggest that
max-oracle MD and LMDA are robust to perturbations in
these online min-max Stackelberg games.

Related Work. Stackelberg games [67] have found important
applications in the domain of security (e.g., [49, 59]) and environ-
mental protection (e.g., [22]). These applications have thus far been
modelled as Stackelberg games with independent strategy sets. Yet,
the increased expressiveness of Stackelberg games with dependent
strategy sets may make them a better model of the real world,
as they provide the leader with more power to achieve a better
outcome by constraining the follower’s choices.

The study of algorithms that compute competitive equilibria in
Fisher markets was initiated by Devanur et al. [16], who provided a
polynomial-time method for solving these markets assuming linear
utilities. More recently, Cheung et al. [9] studied two price adjust-
ment processes, tâtonnement and proportional response dynamics,
in dynamic Fisher markets and showed that these price adjustment
processes track the equilibrium of Fisher markets closely even when
the market is subject to change.

The computation and learning of Nash and generalized Nash
equilibrium in min-max games (with independent strategy sets)
has been attracting a great deal of attention recently, because of
the relevance of these problems to machine learning [1, 13–15, 17],
speci�cally generative adversarial learning [27].

2 MATHEMATICAL PRELIMINARIES
Notation. We use Roman uppercase letters to denote sets (e.g.,- ),

bold uppercase letters to denote matrices (e.g., ^ ), bold lowercase
letters to denote vectors (e.g., p), and Roman lowercase letters to
denote scalar quantities, (e.g., 2). We denote the 8th row vector of
a matrix (e.g., ^ ) by the corresponding bold lowercase letter with
subscript 8 (e.g., x8 ). Similarly, we denote the 9th entry of a vector
(e.g., p or x8 ) by the corresponding Roman lowercase letter with
subscript 9 (e.g., ? 9 or G8 9 ). We denote the vector of ones of size
= by 1= . We denote the set of integers {1, . . . , =} by [=], the set of
natural numbers by N, the set of positive natural numbers by N+
the set of real numbers by R, the set of non-negative real numbers
by R+, and the set of strictly positive real numbers by R++. We
denote the orthogonal projection operator onto a convex set ⇠ by
Π⇠ , i.e., Π⇠ (x) = argmin~2⇠ kx �~k2. Given a sequence of iterates
{z(C )})C=1 ⇢ / , we denote the average iterate z̄() ) = 1

)
P)
C=1 z

(C ).
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Game De�nitions. Amin-max Stackelberg game, (- ,. , 5 , g),
is a two-player, zero-sum game, where one player, who we call the
outer player (resp. the inner player), is trying to minimize their
loss (resp. maximize their gain), de�ned by a continuous objective
function 5 : - ⇥ . ! R, by choosing a strategy from their non-
empty and compact strategy set - ⇢ R= , and (resp. . ⇢ R<)
s.t. g(x,~) � 0 where g(x,~) = (61(x,~), . . . , 6 (x,~))) with 6: :
- ⇥ . ! R continuous. A strategy pro�le (x,~) 2 - ⇥ . is said to
be feasible i� for all : 2 [ ], 6: (x,~) � 0. The function 5 maps
a pair of strategies taken by the players (x,~) 2 - ⇥ . to a real
value (i.e., a payo�), which represents the loss (resp. the gain) of
the outer player (resp. the inner player). A min-max game is said
to be convex-concave if the objective function 5 is convex-concave
and - and . are convex sets.

The relevant solution concept for Stackelberg games is the Stack-
elberg equilibrium (SE): A strategy pro�le (x⇤,~⇤) 2 - ⇥ . s.t.
g (x⇤,~⇤) � 0 is an (n,X )-SE if max~2. :g (x⇤,~)�0 5 (x

⇤,~) � X 

5 (x⇤,~⇤)  minx2- max~2. :g(x,~)�0 5 (x,~) + n . Intuitively, a
(Y,X )-SE is a point at which the outer player’s (resp. inner player’s)
payo� is no more than Y (resp. X) away from its optimum. A (0, 0)-SE
is guaranteed to exist in min-max Stackelberg games [25]. Note
that when g(x,~) � 0, for all (x,~) 2 - ⇥ . , the game reduces to a
min-max game (with independent strategy sets).

In amin-max Stackelberg game, the outer player’s best-response
set BR- ⇢ - , de�ned as BR- = argminx2- +- (x), is indepen-
dent of the inner player’s strategy, while the inner player’s best-
response correspondence BR. : - ◆ . , de�ned as BR. (x) =
argmax~2. :g(x,~)�0+. (~; x), depends on the outer player’s strat-
egy. A (0, 0)-Stackelberg equilibrium (x⇤,~⇤) 2 - ⇥. is then a tuple
of strategies such that (x⇤,~⇤) 2 BR- ⇥ BR. (x⇤).

An online min-max Stackelberg game,
n⇣
- ,. , 5 (C ),g(C )

⌘o
, is

a sequence of min-max Stackelberg games played for) time periods.
We de�ne the players’ value functions at time C in a online min-
max Stackelberg game in terms of 5 (C ) and g(C ). Note that when
g(C )(x,~) � 0 for all x 2 - ,~ 2 . and all time periods C 2 [) ], the
game reduces to a online min-max game (with independent strategy
sets). Moreover, if for all C,C 0 2 [) ], 5 (C ) = 5 (C

0), and g(C ) = g(C
0), then

the game reduces to a repeated min-max Stackelberg game,
which we denote simply by (- ,. , 5 , g).

Assumptions. All the theoretical results on min-max Stackelberg
games in this paper rely on the following assumption(s):

A���������2.1. 1. (Slater’s condition [61, 62]) 8x 2 - , 9b~ 2 .
s.t. 6: (x,b~) > 0, for all : = 1, . . . ,  ; 2. 5 , 61, . . . , 6 are continuous
and convex-concave; and 3. rx 5 ,rx61, . . . ,rx6 are well-de�ned
for all (x,~) 2 - ⇥. and continuous in (x,~); 4. - and . are convex.

We note that these assumptions are in line with previous work
geared towards solving min-max Stackelberg games [25]. Part 1 of
Assumption 2.1, Slater’s condition, is a standard constraint quali�-
cation condition [6], which is needed to derive the optimality con-
ditions for the inner player’s maximization problem; without it the
problem becomes analytically intractable. Part 2 of Assumption 2.1
ensures that the value function of the outer player is continuous and
convex ([25], Proposition A1), so that the problem a�ords an e�-
cient solution. Part 3 of Assumption 2.1 can be replaced by a weaker,
subgradient boundedness assumption; however, for simplicity, we

assume this stronger condition. Finally, Part 4 of Assumption 2.1
guarantees that projections are polynomial-time operations.

Under Assumption 2.1, the following property holds of the outer
player’s value function.

P���������� 2.2 ([25], P����������A.1). Consider a min-max
Stackelberg game (- ,. , 5 , g) and suppose that Assumption 2.1 holds,
then the outer player’s value function+(x) = max~2. :g(x,~)�0 5 (x,~)
is continuous and convex.

Additional De�nitions. Given two normed spaces (- , k·k) and
(. , k·k), the function 5 : - ! . is !5 -Lipschitz-continuous i�
8x1, x2 2 - , k 5 (x1) � 5 (x2)k  !5 kx1 � x2k. If the gradient of 5 ,
r 5 , is !r 5 -Lipschitz-continuous, we refer to 5 as !r 5 -Lipschitz-
smooth. A function 5 : � ! R is `-strongly convex if 5 (x1) �
5 (x2) + hrx 5 (x2), x1 � x2i + /̀2 kx1 � x1k2, and `-strongly con-
cave if �5 is `-strongly convex.

Online Convex Optimization. An online convex optimization
problem (OCP) is a decision problem in a dynamic environment
which comprises a� nite time horizon ) , a compact, convex feasi-
ble set - , and a sequence of convex di�erentiable loss functions
{✓ (C )})C=1, where ✓

(C ) : - ! R for all C 2 [) ]. A solution to an OCP
is a sequence {x(C )})C=1 with each x(C ) 2 - . A preferred solution is
one that minimizes average regret, given by Regret) (

�
xC

 
, x) =P)

C=1
1
) ✓

(C )(x(C )) � P)
C=1

1
) ✓

(C )(x), for all x 2 - . Overloading nota-
tion, we also write Regret) (

�
xC

 
) = maxx2- Regret) (

�
xC

 
, x). An

algorithm A that takes as input a sequence of loss functions and
outputs decisions such that Regret) (A({✓ (C )}) ! 0 as ) ! 1 is
called a no-regret algorithm.

For any di�erentiable convex function ' : - ! R, the Breg-
man divergence between two vectors w, u 2 - is de�ned as fol-
lows: X' (w | |u) = '(w) � ('(u) + hr'(u), (w � u)i. One� rst-order
no-regret learning algorithm is Online Mirror Descent (OMD),
de�ned as follows for some initial iterate x(0) 2 - , a� xed learn-
ing rate [ > 0, and a strongly convex regularizer ' : x(C+1) =
argminx2-

D
rx ✓ (C )(x(C )), x

E
+ 1

2[ X' (x | |x
(C )). When '(x) = 1

2 kx k22,
OMD reduces toprojected online gradient descent (OGD), given
by the update rule: x(C+1) = Π-

⇣
x(C ) � [rx ✓ (C )(x(C ))

⌘
. The next the-

orem bounds the average regret of OMD [35]:

T������2.3. Suppose that the OMD algorithm generates a se-
quence of iterates {x(C )}when runwith a 1-strongly convex regularizer
'3. Let 2 = maxx2- ,C2[) ] X' (x | |x(C )), and let {✓ (C )} be a sequence of
functions s.t. for all C 2 N+, ✓ (C ) : R= ! R is !-Lipschitz w.r.t. the
dual norm k·k⇤. Then, if [ = 2

!
p
2)

, OMD achieves average regret

bounded as follows: Regret) (
�
xC

 
)  2!

p
2/) .

3 NO-REGRET LEARNING DYNAMICS
In Stackelberg games, the outer player chooses their strategy

assuming the inner player will best respond. When both players’
choices are optimal, the outcome is a Stackelberg equilibrium.

In this section, we study no-regret learning dynamics in repeated
min-max Stackelberg games in two settings: an asymmetric one in

3This assumption is without loss of generality, since any<-strongly-convex regularizer
can be transformed into a 1-strongly-convex regularizer
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which the outer player is a no-regret learner while the inner player
best-responds, and a symmetric one in which both players are
no-regret learners. Our main results are: 1. In the asymmetric set-
ting, if the outer player employs an asymmetric-regret-minimizing
algorithm, play converges to a Stackelberg equilibrium, and 2. in the
symmetric setting, if both players employ a no-Lagrangian-regret
algorithm, play converges to a Stackelberg equilibrium.

3.1 Asymmetric Learning Setting
We� rst consider an asymmetric setting in which the inner player

best responds to the strategy picked by the outer player, while the
outer player employs a no-regret learning algorithm. In min-max
Stackelberg games, the two players are adversaries, so this best-
response assumption corresponds to the worst case. In many real-
world applications, we seek optimal strategies for the outer player,
e.g., in security games we are interested in an optimal strategy
for the defender/outer player, not the attacker/inner player [36].
Assuming a strong inner player allows us to learn more robust
strategies for the outer player.

Given x 2 - , let ~⇤(x) 2 BR. (x), and consider an online min-
max Stackelberg game

n⇣
- ,. , 5 (C ),g(C )

⌘o
. In an asymmetric setting,

the outer player’s regret is the di�erence between the cumula-
tive loss of their sequence of strategies {x(C )} (to which the in-
ner player best responds), and the smallest cumulative loss that
the outer player could have achieved by playing a� xed strat-
egy x 2 - (again, to which the inner player best responds), i.e.,
1
)

P)
C=1 5

(C )(x(C ),~⇤(x(C )))�P)
C=1

1
) 5

(C )(x,~⇤(x)). We call this regret
the asymmetric regret, and express it in terms of the outer player’s
value function +- : AsymRegret)-

⇣n
x(C )

o
, x

⌘
= 1
)

P)
C=1+

(C )
- (x(C )) �P)

C=1
1
) +

(C )
- (x). As above, we overload notation and write

AsymRegret)-
⇣n
x(C )

o⌘
= maxx2- AsymRegret)-

⇣n
x(C )

o
, x

⌘
.

The main theorem4 in this section states the following: assuming
the inner player best responds to the strategies of the outer player,
if the outer player employs a no-regret algorithm, then the outer
player’s average strategy converges to their part of a Stackelberg
equilibrium strategy.

T������3.1. Consider a repeated min-max Stackelberg game
(- ,. , 5 , g), and suppose the outer player plays a sequence of strategies
{x(C )}. If, after ) iterations, the outer player’s asymmetric regret is
bounded by Y, i.e., AsymRegret)-

⇣n
x(C )

o⌘
 n , then

⇣
x̄() ),~⇤(x̄() ))

⌘
is a (Y, 0)-Stackelberg equilibrium, where ~⇤(x̄() )) 2 BR. (x̄() )).

We remark that although the de�nition of asymmetric regret
looks similar to the standard de�nition of regret, its structure is
very di�erent. Proposition 2.2 is required to ensure that the time-
averaged value function P)

C=1+
(C )(x) is convex in x .

3.2 Symmetric Learning Setting
We now turn our attention to a setting in which both players

are no-regret learners. The most straightforward way to de�ne
regret is by considering the outer and inner players’ “vanilla” re-
grets, respectively: Regret)-

⇣
{x(C )}, x

⌘
= 1
)

P)
C=1 5

(C )(x(C ),~(C )) �

4The proofs of all mathematical claims in this section can be found in Appendix B.

1
)

P)
C=1 5

(C )(x,~(C )) and Regret).
⇣
{~(C )},~

⌘
= 1
)

P)
C=1 5

(C )(x(C ),~) �
1
)

P)
C=1 5

(C )(x(C ),~(C )). In convex-concave min-max games (with in-
dependent strategy sets), when both players minimize these regrets,
the players’ average strategies converge to Nash equilibrium. In
min-max Stackelberg games (with dependent strategy sets), how-
ever, convergence to a Stackelberg equilibrium is not guaranteed.

E������3.2. Consider themin-max Stackelberg gameminG 2[�1,1]
max~ 2[�1,1]:01�(G+~) G2 +~ + 1. The Stackelberg equilibrium of this
game is given by G⇤ = 1/2,~⇤ = 1/2.

If both players employ no-regret algorithms that generate strategies
{x(C ),~(C )}C 2N+ , then at time ) 2 N+, there exists Y > 0, s.t.
8>><
>>:

1
)

P)
C=1

h
G (C )

2 + ~(C ) + 1
i
�

1
) minG 2[�1,1]

P)
C=1

h
G2 + ~(C ) + 1

i
 Y

1
) max~ 2[�1,1]

P)
C=1

h
G (C )

2 + ~ + 1
i
�

1
)

P)
C=1

h
G (C )

2 + ~(C ) + 1
i
 Y

Simplifying yields:(
1
)

P)
C=1 G

(C )2
�minG 2[�1,1] G2  Y

max~ 2[�1,1] ~ �
1
)

P)
C=1 ~

(C )
 Y

=

(
1
)

P)
C=1 G

(C )2
 Y

1 � Y  1
)

P)
C=1 ~

(C )

In other words, the average iterates converge to G = 0, ~ = 1, which is
not the Stackelberg equilibrium of this game.

If the inner player minimizes their vanilla regret without regard
to the game’s constraints, then their strategies are not guaranteed to
be feasible, and thus cannot converge to a Stackelberg equilibrium.
To remedy this infeasibility, we introduce a new type of regret
we call Lagrangian regret, and show that assuming access to
a solution oracle for the optimal KKT multipliers of the game’s
constraints, if both players minimize their Lagrangian regret, then
no-regret learning dynamics converge to a Stackelberg equilibrium.

LetLx (~,,) = 5 (x,~)+
P 
:=1 _:6: (x,~) denote the Lagrangian as-

sociated with the outer player’s value function, or equivalently, the
inner player’s maximization problem, given the outer player’s strat-
egy x 2 - . Using this notation, we can re-express the Stackelberg
game asminx2- max~2. :g(x,~)�0 5 (x,~) = minx2- max~2. min,�0
Lx (~,,). If the optimal KKTmultipliers,⇤ 2 R , which are guaran-
teed to exist by Slater’s condition [61], were known, then one could
plug them back into the Lagrangian to obtain a convex-concave
saddle point problem given by minx2- max~2. Lx (~,,⇤). Note
that a saddle point of this problem is guaranteed to exist by the min-
imax theorem [48], since Lx (~,,⇤) is convex in x and concave in~.
The next lemma states that the Stackelberg equilibria of a min-max
Stackelberg game correspond to the saddle points of Lx (~,,⇤).

L����3.3. Any Stackelberg equilibrium (x⇤~⇤) 2 - ⇥ . of any
min-max Stackelberg game (- ,. , 5 , g) corresponds to a saddle point
of Lx (~,,⇤), where ,⇤ 2 argmin,�0 minx2- max~2. Lx (~,,).

This lemma tells us that the function Lx (~,,⇤) represents a new
loss function that enforces the game’s constraints. Based on this
observation, we assume access to a Lagrangian solution oracle that
provides us with ,⇤ 2 argmin,�0 minx2- max~2. Lx (~,,⇤).

Next, we de�ne a new type of regret which we call Lagrangian
regret. Given a sequence of strategies

n
x(C ),~(C )

o
played by the

outer and inner players in an online min-max Stackelberg gamen⇣
- ,. , 5 (C ),g(C )

⌘o
, we de�ne their Lagrangian regret, respectively,
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as LagrRegret)-
⇣n
x(C )

o
, x

⌘
= 1
)

P)
C=1 L

(C )
G (C )

(~(C ),,⇤)� 1
)

P)
C=1 L

(C )
x (~(C ),,⇤)

and LagrRegret).
⇣n
~(C )

o
,~

⌘
= 1
)

P)
C=1 L

(C )
x (C ) (~,,

⇤)� 1
)

P)
C=1 L

(C )
x (C ) (~

(C ),,⇤).

We further de�ne LagrRegret)-
⇣n
x(C )

o⌘
and LagrRegret).

⇣n
~(C )

o⌘
as expected.

The saddle point residual of a point (x⇤,~⇤) 2 - ⇥ . w.r.t. a
convex-concave function⌘ : -⇥. ! R is given bymax~2. ⌘(x⇤,~)�
minx2- ⌘(x,~⇤).When the saddle point residual of (x,~) w.r.t.Lx (~,,⇤)
is 0, the saddle point is a (0, 0)-Stackelberg equilibrium.

The main theorem of this section now follows: if both players
play so as to minimize their Lagrangian regret, then their average
strategies converge to a Stackelberg equilibrium. The bound is given
in terms of the saddle point residual of the iterates generated.

T������3.4. Consider a repeated min-max Stackelberg game
(- ,. , 5 , g), and suppose the outer and the players generate sequences
of strategies {(x(C ),~(C ))} using a no-Lagrangian-regret algorithm. If
after ) iterations, the Lagrangian regret of both players is bounded
by Y, i.e., LagrRegret)-

⇣n
x(C )

o⌘
 Y and LagrRegret).

⇣n
~(C )

o⌘
 n ,

then the following convergence bound holds on the saddle point resid-
ual of (x̄() ), ~̄() )) w.r.t. the Lagrangian: 0  max~2. Lx̄ () ) (~,,⇤) �
minx2- Lx (~̄() ),,⇤)  2Y.

Having provided convergence to Stackelberg equilibrium of gen-
eral no-regret learning dynamics in repeated min-max Stackelberg
games, we now proceed to investigate the convergence and ro-
bustness properties of a speci�c example of a no-regret learning
dynamic, namely online mirror descent (OMD).

4 ONLINE MIRROR DESCENT
In this section, we apply the results we have derived for gen-

eral no-regret learning dynamics to Online Mirror Descent (OMD)
speci�cally [46, 58]. We then study the robustness properties of
OMD in min-max Stackelberg games.

4.1 Convergence Analysis
When the outer player is an OMD learner minimizing its asym-

metric regret and the inner player best responds, we obtain the
max-oracle mirror descent (MD) algorithm (Algorithm 1), a special
case of whichwas� rst proposed by Jin et al. [33] formin-max games
(with independent strategy sets) under the name of max-oracle GD.
Goktas and Greenwald [25] extended their algorithm frommin-max
games (with independent strategy sets) to min-max Stackelberg
games and proved its convergence in best iterates. Max-oracle MD
(Algorithm 1) is a further generalization of both algorithms.

The following corollary of Theorem 3.1, which concerns conver-
gence of the more general max-oracle MD algorithm in average
iterates, complements Goktas and Greenwald’s result on the conver-
gence of max-oracle GD (Algorithm 3, Appendix C) in best iterates:
if the outer player employs a strategy that achieves Y-asymmetric
regret, then the max-oracle MD algorithm is guaranteed to con-
verge to the outer player’s (Y, 0)-Stackelberg equilibrium strategy in
average iterates after $(1/Y2) iterations, assuming the inner player
best responds.

We note that since +- is convex, by Proposition 2.2, +- is sub-
di�erentiable. Moreover, for all bx 2 - , b~ 2 BR. (bx), rx 5 (bx,b~) +

Algorithm 1Max-Oracle Mirror Descent (MD)

Inputs: - ,. , 5 , g,( ,) , x(0),' Output: x⇤,~⇤

1: for C = 1, . . . , ) do
2: Find ~⇤(x(C�1)) 2 BR. (x(C�1))
3: Set ~(C�1) = ~⇤(x(C�1))
4: Set ,(C�1) = ,⇤(x(C�1),~(C�1))
5: Set x(C ) = argminx2-

D
rxLx(C�1)

⇣
~(C�1),,(C�1)

⌘
, x

E
+ 1

2[C
X' (x | |x(C�1))

6: end for
7: Set x̄() ) = 1

)
P)
C=1 x

(C )

8: Set ~⇤(x̄() )) 2 BR. (x̄() ))
9: return (x̄() ),~⇤(x̄() )))

P 
:=1 _

⇤

:6: (bx,b~) is an arbitrary subgradient of the value function
at bx by Goktas and Greenwald’s subdi�erential envelope theorem
[25]. We add that similar to Goktas and Greenwald, we assume
that the optimal KKT multipliers ,⇤(x(C ),b~(x(C ))) associated with a
solution b~(x(C ))) can be computed in constant time.

C��������4.1. Let 2 = maxx2- kx k and let !5 = max(bx,b~)2-⇥.
krx 5 (bx,b~)k. If Algorithm 1 is run on a repeated min-max Stackelberg
game (- ,. , 5 , g), with [C =

2
!5

p
2)

, for all iteration C 2 [) ] and any

x(0) 2 - , then (x̄() ),~⇤(x̄() ))) is a (2!5
p
2/
p
) , 0)-Stackelberg equilib-

rium. Furthermore, for any Y 2 (0, 1), there exists # (Y) 2 $(1/Y2) s.t.
for all ) � # (Y), there exists an iteration ) ⇤

 ) s.t. (x̄() ),~⇤(x̄() )))
is an (Y, 0)-Stackelberg equilibrium.

Note that we can relax Theorem 3.1 to instead work with an ap-
proximate best response of the inner player, i.e., given the strategy
of the outer player bx , instead of playing an exact best-response, the
inner player could compute ab~ s.t. 5 (bx,b~) � max~2. :g(bx,~)�0 5 (bx)�
Y. Moreover, the inner player could run gradient (or mirror) ascent
on 5 (bx,~) to�nd b~, instead of assuming a best-response oracle
in Algorithm 1. We can combine the fact that gradient ascent on
Lipschitz smooth functions converges in $(1/Y) iterations [46] with
our novel convergence rate for max-oracle MD to conclude that
the average iterates computed by nested GDA [25] converge to an
(Y,Y )-Stackelberg equilibrium in $(1/Y3) iterations. If additionally,
5 is strongly convex in ~, then the iteration complexity can be
reduced to $(1/Y2 log(1/Y)).

Similarly, we can also consider the symmetric case, in which
both the outer and inner players minimize their Lagrangian regrets,
as OMD learners with access to a Lagrangian solution oracle that
returns ,⇤ 2 argmin,�0 minx2- max~2. Lx (~,,). In this case,
we obtain the Lagrangian mirror descent ascent (LMDA) al-
gorithm (Algorithm 2). The following corollary of Theorem 3.4
states that LMDA converges in average iterates to an Y-Stackelberg
equilibrium in $(1/Y2) iterations.

C��������4.2. Let 1 = maxx2- kx k, 2 = max~2. k~k, and
!L = max(bx,b~)2-⇥.

��rxLbx (b~,,⇤)��. If Algorithm 2 is run on a re-
peated min-max Stackelberg game (- ,. , 5 , g), with [xC = 1

!L
p
2)

and [~C = 2
!L

p
2)

, for all iterations C 2 [) ] and any x(0) 2 - , then
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Algorithm 2 Lagrangian Mirror Descent Ascent (LMDA)

Inputs: ,⇤,- ,. , 5 , g,(x ,(~ ,) , x(0),~(0),' Output: x⇤,~⇤

1: for C = 1, . . . , ) � 1 do
2: Set x(C ) = argminx2-

D
rxLx(C�1)

⇣
~(C�1),,⇤

⌘
, x

E
+ 1

2[C
X' (x | |x(C ))

3: Set ~(C ) = argmax~2.
D
r~L

x(C�1)
⇣
~(C�1),,⇤

⌘
,~

E
�

1
2[C

X' (~ | |~(C�1))

4: end for
5: return {(x(C ),~(C ))})C=1

the following convergence bound holds on the saddle point resid-
ual of (x̄() ), ~̄() )) w.r.t. the Lagrangian: 0  max~2. Lx̄ () ) (~,,⇤) �

minx2- Lx (~̄() ),,⇤) 
2
p
2!L
p
)

max {1,2 }.

We remark that in certain rare cases the Lagrangian can become
degenerate in ~, in that the ~ terms in the Lagrangian might cancel
out when ,⇤ is plugged back into Lagrangian, leading LMDA to not
update the ~ variables, as demonstrated by the following example:

E������4.3. Consider the following min-max Stackelberg game:
minG 2[�1,1] max~ 2[�1,1]:01�(G+~) G2 + ~ + 1. When we plug the op-
timal KKT multiplier _⇤ = 1 into the Lagrangian associated with the
outer player’s value function, we obtainLG (~,_ ) = G2+~+1�(G+~) =
G2 �G + 1, with mL

mG = 2G � 1 and mL
m~ = 0. It follows that the x iterate

converges to 1/2, but the ~ iterate will never be updated, and hence
unless~ is initialized at its Stackelberg equilibrium value, LMDA will
not converge to a Stackelberg equilibrium.

In general, this degeneracy issue occurswhen8x 2 - ,r~ 5 (x,~) =
�
P 
:=1 _

⇤

:r~6: (x,~).We can sidestep the issue by restricting our at-
tention tomin-max Stackelberg gameswith convex-strictly-concave
objective functions, which is su�cient to ensure that the Lagrangian
is not degenerate in~ [6]. However, we observe in our experiments
that even for convex-non-strictly-concave min-max Stackelberg
games, LMDA, speci�cally with regularizer'(x) = kx k22 (i.e., LGDA;
Algorithm 4, Appendix C), converges to Stackelberg equilibrium.

4.2 Robustness Analysis
Our analysis thus far of min-max Stackelberg games has assumed

the same game is played repeatedly. In this section, we expand our
consideration to online min-max Stackelberg games more generally,
allowing the objective function to change from one time step to the
next, as in the OCO framework. Providing dynamics that are robust
to ongoing game changes is crucial, as the real world is rarely static.

Online games bring with them a host of interesting issues. No-
tably, even though the environment might change from one time
step to the next, the game still exhibits a Stackelberg equilibrium
during each stage of the game. However, one cannot reasonably
expect the players to play an equilibrium during each stage, since
even in a repeated game setting, known game dynamics require
multiple iterations before players can reach an approximate equi-
librium. Players cannot immediately best respond, but they can
behave like boundedly rational agents who take a step in the di-
rection of their optimal strategy during each iteration. In general
online games, equilibria also become dynamic objects, which can
never be reached unless the game stops changing.

Corollaries 4.1 and 4.2 tell us that OMD dynamics are e�ective
equilibrium-�nding strategies in repeated min-max Stackelberg

games. However, they do not provide any intuition about the ro-
bustness of OMD dynamics to perturbations in the game. In this
section, we ask whether OMD dynamics can track Stackelberg equi-
libria when the game changes. Ultimately, our theoretical results
only concern online min-max games (with independent strategy
sets), for which Nash, not Stackelberg, equilibrium is the relevant so-
lution concept. Nonetheless, we provide experimental evidence that
suggests that the results we prove may also apply more broadly to
online min-max Stackelberg games (with dependent strategy sets).
We note that our our robustness analysis focuses on projected OGD
dynamics, a special case of OMD dynamics, for ease of analysis.

We� rst consider the asymmetric setting, in which the outer
player is a no-regret learner and the inner player best-responds. In
this setting, we show that when the outer player plays according
to projected OGD dynamics in an arbitrary online min-max game,
the outer player’s strategies closely track their Nash equilibrium
strategies. The following result states that regardless of the initial
strategy of the outer player, projected OGD dynamics are always
within a 23/X radius of the outer player’s Nash equilibrium strategy.

T������4.4. Consider an online min-max game
n
(- ,. , 5 (C ))

o)
C=1

.

Suppose that, for all C 2 [) ], 5 (C ) is `-strongly convex in x and strictly
concave in ~, and 5 (C ) is !r 5 -Lipschitz smooth. Suppose the outer
player generates a sequence of actions {x(C )})C=1 by using projected
OGD on the loss functions {+ (C )

}
)
C=1 with learning rate [ 

2
`+!r 5

,
and further suppose the inner player generates a sequence of best-
responses {~(C )})C=1 to each iterate of the outer player. For all C 2 [) ],

let x(C )⇤ 2 argminx2- + (C )(x), ∆(C ) =
���x(C+1)⇤ � x(C )

⇤
���, and X =

2[`!r 5

!r 5 +` . We then have:
���x() )⇤ � x() )

���  (1 � X))/2
���x(0)⇤ � x(0)

��� +P)
C=1 (1 � X)

)�C
2 ∆(C ). If additionally, for all C 2 [) ], ∆(C )

 3 , then:���x() )⇤ � x() )
���  (1 � X))/2

���x(0)⇤ � x(0)
��� + 23

X .

We can derive a similar robustness result in the symmetric set-
ting, where the outer and inner players are both projected OGD
learners. The following result states that regardless of the initial
strategies of the two players, projected OGD dynamics follow the
Nash equilibrium of the game, always staying within a 43/X radius.

T������4.5. Consider an online min-max game
n
(- ,. , 5 (C ))

o)
C=1

.

Suppose that, for all C 2 [) ], 5 (C ) is `x -strongly convex in x and
`~ -strongly concave in ~, and 5 (C ) is !r 5 -Lipschitz smooth. Let
{(x(C ),~(C ))})C=1 be the strategies played by the outer and inner players,
assuming that the outer player uses a projected OGD algorithm on
the losses {5 (C )(·,~(C ))})C=1 with [x = 2

`x+!r 5
and the inner player

uses a projected OGD algorithm on the losses {�5 (C )(x(C ), ·)})C=1 with
[~ = 2

`~+!r 5
. For all C 2 [) ], let x(C )⇤ 2 argminx2- 5 (C )(x,~(C )),

~(C )
⇤

2 argmin~2. 5
(C )(x(C ),~), ∆(C )

x =
���x(C+1)⇤ � x(C )

⇤
���, ∆(C )

~ =���~(C+1)⇤ �~(C )
⇤
���, Xx = 2[`x!r 5

!rx 5 +`x , and X~ = 2[`~!r 5

!r 5 +`~ . We then have:���x() )⇤ � x() )
��� + ���~() )⇤ �~() )

���  (1 � Xx ))/2
���x(0)⇤ � x(0)

��� + (1 �

X~ ))/2
���~(0)⇤ �~(0)

���+P)C=1 (1 � Xx ) )�C
2 ∆(C )x +P)C=1 �

1 � X~
� )�C

2 ∆(C )~ .

If additionally, for all C 2 [) ], ∆(C )
x  3 and ∆(C )

~  3 , and X =
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min{X~ , Xx }, then:
���x() )⇤ � x() )

��� + ���~() )⇤ �~() )
���  2(1 � X))/2⇣���x(0)⇤ � x(0)

��� + ���~(0)⇤ �~(0)
���⌘ + 43

X .

The proofs of the above theorems are relegated to Appendix B.
These theorems establish the robustness of projected OGD dynam-
ics for min-max games in both the asymmetric and symmetric
settings by showing that the dynamics closely track the Nash equi-
libria in a large class of min-max games (with independent strategy
sets). These results also suggest that general OMD dynamics, e.g.,
OMD with entropy as a regularizer, are robust to perturbation. As
we are not able to extend these theoretical robustness guarantees to
min-max Stackelberg games (with dependent strategy sets), we in-
stead ran a series of experiments with online Fisher markets, which
are canonical examples of min-max Stackelberg games [25], to in-
vestigate the empirical robustness guarantees of projected OGD
dynamics for this class of min-max Stackelberg games.

5 ONLINE FISHER MARKETS
The Fisher market model, attributed to Irving Fisher [7], has

received a great deal of attention in the literature, especially by
computer scientists, as it has proven useful in the design of elec-
tronic marketplaces. We now study OMD dynamics in online Fisher
markets, which are instances of min-max Stackelberg games [25].

A Fisher market consists of = buyers and < divisible goods
[7]. Each buyer 8 2 [=] has a budget 18 2 R+ and a utility function
D8 : R<+ ! R. Each good 9 2 [<] has supply B 9 2 R+. A Fisher
market is thus given by a tuple (=,< ,*, b, s), where* = {D1, . . . , D=}
is a set of utility functions, one per buyer; b 2 R=+ is a vector of buyer
budgets; and s 2 R<+ is a vector of good supplies. We abbreviate as
(* , b, s) when = and< are clear from context. An online Fisher

market is a sequence of Fisher markets
n⇣
* (C ), b(C ), s(C )

⌘o)
C=1

.

An allocation ^ = (x1, . . . , x=)) 2 R=⇥<+ is an assignment of
goods to buyers, represented as a matrix s.t. G8 9 � 0 denotes the
amount of good 9 2 [<] allocated to buyer 8 2 [=]. Goods are
assigned prices p = (?1, . . . , ?<)

)
2 R<+ . A tuple (p⇤,^⇤) is said

to be a competitive equilibrium (CE) of Fisher market (* , b, s)
if 1. buyers are utility maximizing, constrained by their budget, i.e.,
88 2 [=], x⇤8 2 argmaxx :x ·p⇤ 18 D8 (x ); and 2. the market clears, i.e.,
89 2 [<], ?⇤9 > 0 ) P

82[=] G
⇤
8 9 = B 9 and ?

⇤
9 = 0 ) P

82[=] G
⇤
8 9  B 9 .

Goktas and Greenwald [25] observe that any CE (p⇤,^⇤) of a
Fisher market (* , b) corresponds to a Stackelberg equilibrium of
the following min-max Stackelberg game:5

min
p2R<+

max
^ 2R=⇥<+ :^pb

X
9 2[<]

B 9? 9 +
X
82[=]

18 log (D8 (x8 )) . (1)

Let L : R<+ ⇥ R=⇥< ! R+ be the Lagrangian of the outer player’s
value function in Equation (1), i.e., Lp (^ ,,) = P

9 2[<] B 9? 9
+P

82[=] 18 log (D8 (x8 )) +
P
82[=] _8 (18 � x8 · p). One can show the

existence of a Lagrangian solution oracle for the Lagrangian of Equa-
tion (1) such that ,⇤ = 1< . We then have: 1. by Goktas and Green-
wald’s envelope theorem, the subdi�erential of the outer player’s
value function is given byrp+(p) = s�

P
82[=] x

⇤
8 (p), where x

⇤
8 (p) 2

argmaxx 2R<+ x ·p18 D8 (x ), 2. the gradient of the Lagrangian w.r.t.

5The� rst term in this program is slightly di�erent than the� rst term in the program
presented by Goktas and Greenwald [25], since supply is assumed to be 1 their work.

the prices, given the Lagrangian solution oracle, is rpLp (^ ,,⇤) =
s �

P
82[=] x8 and rx8Lp (^ ,,⇤)) = 18

D8 (x8 )
rx8D8 (x8 ) � p, where

,⇤ = 1< [26].
We� rst consider OMD dynamics for Fisher markets in the asym-

metric setting, in which the outer player determines their strategy
via projected OGD� rst and the inner player best-responds. This
setup yields a dynamic version of a natural price adjustment pro-
cess known as tâtonnement [68], this variant of which was�rst
studied by Cheung et al. [9] (Algorithm 5, Appendix C).

We also consider OMD dynamics in the symmetric setting, specif-
ically the case in which both the outer and inner players employ
projected OGD simultaneously, which yields myopic best-response
dynamics [43] (Algorithm 6, Appendix C). In words, at each time
step, the (�ctional Walrasian) auctioneer takes a gradient descent
step to minimize its regret, and then all the buyers take a gradient
ascent step to minimize their Lagrangian regret. These GDA dynam-
ics can be seen as myopic best-response dynamics for boundedly
rational sellers and buyers.

Experiments. In order to better understand the robustness prop-
erties of Algorithms 5 and 6 in an online min-max Stackelberg
game that is subject to perturbation across time, we ran a series of
experiments with online Fisher Markets assuming three di�erent
classes of utility functions.6 Each utility structure endows Equa-
tion (1) with di�erent smoothness properties, which allows us to
compare the e�ciency of the algorithms under varying conditions.
Let v8 2 R< be a vector of valuation parameters that describes the
utility function of buyer 8 2 [=]. We consider the following utility
function classes: 1. linear: D8 (x8 ) =

P
9 2[<] E8 9G8 9 ; 2. Cobb-Douglas:

D8 (x8 ) =
Q
9 2[<] G

E8 9
8 9 ; and 3. Leontief: D8 (x8 ) = min9 2[<]

n
G8 9
E8 9

o
.

To simulate an online Fisher market, we� x a range for every
market parameter and draw from that range uniformly at random
during each iteration. Our goal is to understand how closely OMD
dynamics track the CE of the Fisher markets as they vary with time.
We compare the iterates

⇣
p(C ),^ (C )

⌘
computed by the algorithms

and the CE
⇣
p(C )⇤ ,^ (C )⇤

⌘
of the market (* (C ), b(C ), s(C )) at each it-

eration C . The di�erence between these outcomes is measured as���p(C )⇤
� p(C )

���
2
+
���^ (C )⇤

� ^ (C )
���
2
.

In our experiments, we ran Algorithms 5 and 6 on 100 randomly
initialized online Fisher markets. We depict the distance to the
CE at each iteration for a single experiment chosen at random in
Figures 1 and 2. In these� gures, we observe that the OMD dynamics
are closely tracking the CE as they vary with time. A more detailed
description of our experimental setup can be found in Appendix D.

We observe from Figures 1 and 2 that for both Algorithms 5
and 6, we obtain an empirical convergence rate relatively close to
$(1/

p
) ) under Cobb-Douglas utilities, and a slightly slower empir-

ical convergence rate under linear utilities. Recall that $(1/
p
) ) is

the convergence rate guarantee we obtained for both algorithms,
assuming a� xed learning rate in a repeated Fisher market (Corollar-
ies 4.1 and 4.2). Our theoretical results assume� xed learning rates,
but since those results apply to repeated games while our experi-
ments apply to online Fisher markets, we selected variable learning

6Our code can be found at https://github.com/Sadie-Zhao/Dynamic-Minmax-Games.
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Figure 1: In blue, we depict a trajectory of
distances between computed allocation-
price pairs and equilibrium allocation-
price pairs, when Algorithm 5 is run on
randomly initialized online linear, Cobb-
Douglas, and Leontief Fisher markets. In
red, we plot an arbitrary$(1/

p
) ) function.

Figure 2: In blue, we depict a trajectory of
distances between computed allocation-
price pairs and equilibrium allocation-
price pairs, when Algorithm 6 is run on
randomly initialized online linear, Cobb-
Douglas, and Leontief Fisher markets. In
red, we plot an arbitrary$(1/

p
) ) function.

rates. After manual hyper-parameter tuning, for Algorithm 5, we
chose a dynamic learning rate of [C =

1
p
C
, while for Algorithm 6, we

chose learning rates of [xC = 5
p
C
and [~C = 0.01

p
C
, for all C 2 [) ]. For

these optimized learning rates, we obtain empirical convergence
rates close to what the theory predicts.

In Fisher markets with Leontief utilities, the objective function
is not di�erentiable. Correspondingly, online Fisher markets with
Leontief utilities are the hardest markets of the three for our al-
gorithms to solve. Still, we only see a slightly slower than $(1/

p
) )

empirical convergence rate. In these experiments, the convergence
curve generated by Algorithm 6 has a less erratic behavior than the
one generated by Algorithm 5. Due to the non-di�erentiability of
the objective function, the gradient ascent step in Algorithm 6 for
buyers with Leontief utilities is very small, e�ectively dampening
any potentially erratic changes in the iterates.

Our experiments suggest that OMD dynamics (Algorithms 5 and
6) are robust enough to closely track the changing CE in online
Fisher markets. We note that tâtonnement dynamics (Algorithm 5)
seem to be more robust than myopic best response dynamics (Al-
gorithm 6), i.e., the distance to equilibrium allocations is smaller at
each iteration of tâtonnement. This result is not surprising, as tâ-
tonnement computes a utility-maximizing allocation for the buyers
at each time step. Even though Theorems 4.4 and 4.5 only provide
theoretical guarantees on the robustness of OMD dynamics in on-
line min-max games (with independent strategy sets), it seems that
similar theoretical robustness results may be attainable in online
min-max Stackelberg games (with dependent strategy sets).

6 CONCLUSION
We began this paper by considering no-regret learning dynamics

in repeated min-max Stackelberg games in two settings: an asym-
metric setting in which the outer player is a no-regret learner and
the inner player best responds, and a symmetric setting in which
both players are no-regret learners. For both of these settings, we

proved that no-regret learning dynamics converge to a Stackelberg
equilibrium of the game. We then specialized the no-regret algo-
rithm employed by the players to online mirror descent (OMD),
which yielded two new algorithms, max-oracle MD and nested
MDA in the asymmetric setting, and a new simultaneous GDA-like
algorithm [44], which we call Lagrangian MDA, in the symmet-
ric setting. As these algorithms are no-regret learning algorithms,
our earlier theorems imply convergence to Y-Stackelberg equilib-
ria in $(1/Y2) iterations for max-oracle MD and LMDA, and $(1/Y3)
iterations for nested MDA.

Finally, as many real-world applications involve changing en-
vironments, we investigated the robustness of OMD dynamics by
analyzing how closely they track Stackelberg equilibria in arbitrary
online min-max Stackelberg games. We proved that in min-max
games (with independent strategy sets) OMD dynamics closely
track the changing Stackelberg equilibria of a game. As we were
not able to extend these theoretical robustness guarantees to min-
max Stackelberg games (with dependent strategy sets), we instead
ran a series of experiments with online Fisher markets, which are
canonical examples of min-max Stackelberg games. Our experi-
ments suggest that OMD dynamics are robust for min-max Stack-
elberg games so that perhaps the robustness guarantees we have
provided for OMD dynamics in min-max games (with independent
strategy sets) can be extended to min-max Stackelberg games (with
dependent strategy sets).

The theory developed in this paper opens the door to extending
the myriad applications of Stackelberg games in AI to incorporating
dependent strategy sets. Suchmodels promise to bemore expressive,
and as a result could provide decision makers with better solutions
to problems in security, environmental protection, etc.
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