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ABSTRACT
Influence maximization (IM) has now been a widely studied topic,

but only in recent years have studies considered overexposure.

Overexposure is usually measured as the negative cost associated

with reaching unintended recipients during an information cascade.

A polynomial-time algorithm is known for cascades with overex-

posure when we can seed as many nodes as we want. This paper

focuses on overexposure for the budgeted case of seeding, which

has received little to no attention. We show that the problem is

NP-hard even for restricted cases. For various special cases, we

devise provable approximation algorithms, dynamic programming

solutions, linear programming solutions, and heuristics. For the

general case, we provide a linear programming solution and sev-

eral fast and effective heuristics, mostly of the greedy flavor. We

perform an extensive experimental study using synthetic and real-

world networks. We investigate how network properties and model

parameters impact our algorithms. It brings out interesting findings

like why a low-quality product needs a smarter algorithm, and why

certain algorithms do well on some networks but not others.
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1 INTRODUCTION
We have seen this many times: A new product comes to Ama-

zon and starts off with a very high rating. As time goes, its rating

slides downhill. The same happens for many restaurant ratings on

Yelp and numerous other products and services on various plat-

forms [1–3]. In the realm of marketing, this is commonly attributed

to overexposure, which refers to casting the net of advertisement

so widely that it catches unintended recipients who do not view

the product favorably. Yes, we do want to maximize the spread

of our product or service over a social network, but at the same

time, we do not want our message to go to overly critical people

who would punish us through negative reviews. This gives rise
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to an intriguing computational question within the general area

of cascades or diffusion in social networks. How do we maximize
spread and at the same time minimize reaching unintended recipients,
especially under budget constraints?

This question falls within the well-studied topic of influence
maximization (IM), which is broadly defined as finding a small

subset of users that can maximize the spread of information in a

social network [4–6, 9, 13, 16, 17]. IM has been applied to viral

marketing, where a cascade of influence is triggered by initially

targeting a few seed nodes with the intention of maximizing the

spread of influence.

Abebe, Adamic, and Kleinberg (henceforth AAK) recently for-

malized the overexposure problem [1]. Grounded in marketing

research, their model takes into consideration the potential draw-

back of reaching overly critical nodes that can be detrimental to the

progress of cascades. In the AAK model, these critical nodes play

a role that is non-conducive to cascades, leading to the following

binary classification of the nodes. Each node can be an accepting
node (conducive to cascades) or a rejecting node (non-conducive).
An accepting node propagates the information to all of its neigh-

bors, whereas a rejecting node does not propagate it to anyone.

Naturally, the objective is to find a set of seed nodes that maximizes

the difference between the number of accepting and rejecting nodes

ultimately reached by the cascade. AAK gave a polynomial-time

algorithm for the case of unbounded seeding. In this paper, we

study the problem of budgeted seeding.

There are several other studies on overexposure, but all have very

different modeling approaches than AAK [1]. Iyer and Adamic [14,

15] show that overambitious seeding can be counterproductive for

social media platforms like Facebook. In theirmodel, at each discrete

time step, a node’s probability of using Facebook (for example) may

go up or down by a certain amount depending on the number of

friends active on Facebook. When this probability hits 0, the node

is permanently removed. They show that overambitious seeding

without any consideration for social support is not conducive to

sustaining a high level of usage. Whereas AAK explicitly models

the negative payoff for reaching rejecting nodes, Iyer and Adamic

[14]’s model does not have any notion of rejecting nodes; the focus

is rather on increasing the level of user engagement on a social

media platform. In this paper, we build upon the AAK model.

A recent study by Cui et al. [8] compares different seeding strate-

gies in the presence of negative word-of-mouth. They show that

seeding nodes with high propensities of adoption is more effective

than seeding high-degree nodes. Not surprisingly, both of these

seeding strategies are better than seeding randomly. Although we

consider seeding in this paper, we do not define any propensity

measure for adoption. Furthermore, in line with AAK, we model
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the negative payoff for reaching rejecting nodes, whereas Cui et al.

[8] measure only the number of accepting nodes. At a disciplinary

level, our take here is more computational, whereas theirs is more

focused on management and marketing research.

Another very recent work by Loukides et al. [18] combines over-

exposure with IM. Their work is particularly interesting because

of a very different perspective on overexposure. They define over-

exposure as the impact to users as a result of receiving certain

product information. This impact is negative if they receive the in-

formation from too many of their friends. Otherwise, the impact is

positive, given that they like the product. Our view on overexposure

is fundamentally different. In addition, their goal is to maximize the

spread of the product, whereas ours considers the negative effect

of reaching rejecting nodes.

Deviating from the IM literature, a recent graph-theoretic work

studied the problem of dual domination [7]. Given a set of nodes

𝑆 , a subset 𝐷 ⊆ 𝑆 is called a dominating set if each node in 𝐷

is either in 𝑆 or has a neighbor in 𝑆 . Given a number 𝑘 and a

network with nodes partitioned into accepting and rejecting nodes,

the dual domination problem asks to find a dominating set that

dominates as many accepting nodes as possible while dominating

at most 𝑘 rejecting nodes. Clearly, a dominating set does not model

information propagation beyond just one hop, but it is an interesting

theoretical concept.

Our work is also very different from several other lines of work

within IM, including competitive contagion [12, 13] and IM under

positive and negative connections [17].

Before we embark on technical details, we should note here

that sometimes the Groupon effect (i.e., the decline of rating after
a Groupon deal) [2, 3] is mentioned as a motivation for studying

overexposure. However, a formal study shows that the Groupon

effect is rather complicated due to multiple factors, with a statistical

root cause analysis pointing to quality issues [3].

Our Contributions. We study the budgeted case of cascades

with overexposure that has been largely left open by AAK [1]. We

present a graphical model for this problem that we call “cluster

graphs.” We show that the problem is NP-hard even for very re-

stricted cases, namely, unweighted cluster graphs, for whichwe give

a 2-approximation. We then consider three classes of the problem:

(1) tree-structured cluster graphs, (2) cluster graphs with cycles,

and (3) the general case. For tree-structured cluster graphs, we

give a polynomial-time algorithm for stars, a polynomial-time dy-

namic programming algorithm for bounded degree, and a Knapsack-

inspired heuristic. For weighted cluster graphs with cycles, we give

an integer linear program (ILP) solution. For the general case, we

devise an ILP using a different graph model. We also provide several

greedy heuristics for the general case. We perform extensive exper-

iments on synthetic as well as real-world networks. We investigate

how the network properties and model parameters impact the per-

formance of our algorithms. It brings out interesting findings like

why a low-quality product needs a smarter algorithm, and why

certain algorithms do well on some networks but not on others.

2 MODELING OVEREXPOSURE
We follow the AAK model [1]. Let 𝐺 = (𝑉 , 𝐸) be a network where

each node 𝑖 has a criticality parameter 𝜃𝑖 that denotes how sensitive

they are about the quality of a product. The quality of a product or

the product appeal is a model parameter, denoted by 𝜙 . If 𝜙 ≥ 𝜃𝑖 ,

then node 𝑖 accepts the product and advertises it to neighbors. If

𝜙 < 𝜃𝑖 , then 𝑖 rejects it and does not advertise it to neighbors.

In the overexposure problem, the overall objective for themarketer

is to select a set of seed nodes so as to maximize the objective of

reaching as many accepting nodes as possible while reaching as few

rejecting nodes as possible. In the budgeted overexposure problem,

the marketer has a budget of 𝑘 . The goal is to select a set 𝑆 of at

most 𝑘 seed nodes to maximize the payoff, 𝜋 (𝑆) = |𝐴| − |𝐵 |, where
𝐴 and 𝐵 are respectively the sets of accepting and rejecting nodes

reached at the end of the cascade. Note that in the usual IM task,

we are only interested in maximizing |𝐴|.
In terms of the behavioral aspect of this model, a cascade starts

with the seed nodes as the initially reached nodes. Whenever we

reach a node, we check whether the node is accepting or rejecting

(which depends on the node’s criticality parameter and the product

appeal). As we mentioned two paragraphs ago, an accepting node

advertises the product to its neighbors and a rejecting node does

not. As a result, after arriving at any accepting node, we can reach

all of its neighbors, irrespective of how critical the neighbors are.

In contrast, when we reach a rejecting node, there is no outlet from

there. Once the cascade comes to a completion, we count howmany

accepting and rejecting nodes we have reached. Subtracting the

latter from the former gives us the payoff corresponding to the seed

set we had selected at the beginning. Given a number 𝑘 , we want to
select at most 𝑘 seed nodes to maximize the payoff.

Example. Fig. 1 gives an illustration of our model. Assume 𝑘 = 1.

If we select any one of the green nodes on the left as our seed, the

payoff is 2 − 3 = −1, whereas if we select any one from the right,

it is 3 − 2 = 1. Therefore, selecting one node from the three green

nodes on the right is optimal. Note that it is immaterial which one

of these three nodes we select.

Modeling Justification. While the rejecting nodes do not propa-

gate information to their neighbors in a local sense, they do inflict

a cost in a global sense (e.g., by writing a bad review that everyone

can see, not just the neighbors of the rejecting node). The overex-

posure problem tries to minimize this cost by explicitly accounting

for the cost of reaching rejecting nodes in the payoff measure.

Hardness Insight. Further consideration of the overexposure prob-
lem shows that it is different from taking out the rejecting nodes and

doing influence maximization on the remaining network. Simple

examples exist (omitted for space) to illustrate this point. Moreover,

one distinctive property of the problem is non-monotonicity. That

is, the optimal payoff can oscillate between “high” and “low” as we

select more seed nodes. Essentially, non-monotonicity is one major

reason why the problem is computationally hard.

3 ALGORITHMS AND HARDNESS RESULTS
Before considering the general case, we first devise a variety of

algorithms for several special cases. The following hardness result

motivates our consideration of special cases.

Theorem 3.1. [1] For the overexposure problem with a budget 𝑘 ,
it is NP-complete to decide whether there exists a set 𝑆 of at most 𝑘
nodes such that 𝜋 (𝑆) > 0.
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Since it is NP-complete to decide the sign of the optimal payoff

in the budgeted case, we get the following corollary.

Corollary 3.2. [1] It is NP-hard to approximate the budgeted
overexposure problem.
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Figure 1: An example with a product appeal of 0.7. Each node
is labeled with its criticality parameter. The green nodes are
accepting nodes and red are rejecting.

This result is in direct contrast with much of the influence maxi-

mization literature. For example, the greedy hill-climbing search

algorithm has an approximation guarantee for the independent

cascade model [16]. One reason the overexposure problem is hard

to even approximate is that in this problem, the payoff function

does not have the submodularity property. As noted in Section 2,

the payoff can even swing up and down as we select more seed

nodes. This warrants looking into special cases for approximation

algorithms, dynamic programming algorithms, linear programming

solutions, and heuristics. After that, we consider the general case

and provide a linear programming solution and several fast and

effective heuristics, mostly of the greedy flavor.

3.1 Cluster Graph Formulation
The example shown in Fig. 1 illustrates a distinctive network prop-

erty: All the accepting nodes that are reachable from each other

form a cluster of accepting nodes (in short, cluster). The implica-

tion is that whenever we are able to reach just one accepting node

within a cluster, we are able to reach the whole cluster.

We next construct a cluster graph. Each node in a cluster graph

represents a cluster of accepting nodes of the original graph in-

stance. Each edge (𝑢, 𝑣) in a cluster graph represents all of the

rejecting nodes that are adjacent to both an accepting node in the

cluster represented by 𝑢 and an accepting node in the cluster repre-

sented by 𝑣 . The resulting cluster graph has weights for both nodes

and edges. The weight of a node 𝑢 in a cluster graph is the number

of accepting nodes in its corresponding cluster, and the weight of

an edge (𝑢, 𝑣) is the number of rejecting nodes it represents. Note

that our definition of cluster graph is different from AAK’s [1].

Fig. 2 shows an example where the original instance of the over-

exposure problem is very complex, but the resulting cluster graph

is basically a line graph.

To construct the cluster graph, we do an exhaustive BFS traversal

of the graph and identify all the reachable accepting nodes from an

accepting node without passing through any rejecting node. That

is, if we reach a rejecting node, we stop the traversal from that node

43
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3

4

Figure 2: The top network shows the original overexposure
instance, where the green nodes are accepting and red are
rejecting. The bottom one shows the corresponding cluster
graph. Each node of the cluster graph represents a cluster of
accepting nodes and each edge represents a wall of rejecting
nodes separating two clusters of accepting nodes. The nodes
and edges of the cluster graph are weighted accordingly.

and add that node to the list of rejecting nodes connected to the

cluster. Once the BFS finishes, we create the cluster graph using two

pieces of information: (1) all the clusters of accepting nodes we have

identified, and (2) the list of rejecting nodes at the boundary of each

cluster of accepting nodes. In particular, for constructing an edge

in the cluster graph, we compute the rejecting nodes that are at the

shared boundary between two clusters of accepting nodes. A special

case arises when a rejecting node is connected to only one cluster

of accepting nodes. We call such rejecting nodes orphaned. There
is no way of representing orphaned rejecting nodes by an edge in

the cluster graph (which we build as a simple graph without any

self-loop). In this case, we subtract the weight of the cluster-graph

node by the number of such orphaned rejecting node.

The motivation behind constructing the cluster graph is two-

fold. First, seeding a node in the original overexposure instance

is the same as seeding the cluster to which that node belongs. In

either case, we reach the same number of accepting nodes, and

that number is stored as the node weight in the cluster graph.

Henceforth, we will think in terms of seeding the nodes of the

cluster graph.

Second, for any cluster-graph node, if we sum up the weights

of the edges incident on that node, we obtain the total number of

rejecting nodes reached if we seed that node. However, things get

complicated when the same rejecting node is at the boundary of

more than two clusters. This would lead to accounting errors in

terms of double counting the same rejecting node because the edges

of a cluster graph only store the number of rejecting nodes, not

the identities of the rejecting nodes. To address this, we make the

following assumption.

Assumption 3.1. A rejecting node cannot be at the boundary of
more than two clusters of accepting nodes.

With Assumption 3.1, we can restate the payoff function for

the overexposure problem within the context of a cluster graph.

Let 𝑤𝑖 and 𝑤𝑒 be the weights of node 𝑖 and edge 𝑒 in the cluster
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graph, respectively. Following is the payoff for seeding a set 𝑆 of

cluster-graph nodes.

𝜋 (𝑆) =
∑︁
𝑖∈𝑆

𝑤𝑖 −
∑︁

𝑒 :𝑒 has an endpoint in 𝑆

𝑤𝑒 .

3.2 Unweighted Cluster Graphs: Hardness and
Approximation

Despite Assumption 3.1, we next show that the problem remains

NP-hard even for very simplistic instances of cluster graphs, such

as unweighted cluster graphs (i.e.,𝑤𝑖 = 1 and𝑤𝑒 = 1 for all nodes

𝑖 and edges 𝑒).

Theorem 3.3. It is NP-hard to find a set 𝑆 of 𝑘 nodes in the cluster
graph to maximize the payoff 𝜋 (𝑆), even when the cluster graph is
unweighted.

To prove the theorem, we first state a well-known property of

any undirected graph. Denote the number of edges with at least one

endpoint in 𝑆 by #𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 (𝑆), the sum of the degrees of the nodes

in 𝑆 by 𝐷𝑒𝑔𝑟𝑒𝑒𝑆𝑢𝑚(𝑆), and the number of edges in the subgraph

induced by 𝑆 by #𝑖𝑛𝑑𝑢𝑐𝑒𝑑 (𝑆). Furthermore, 𝑑𝑒𝑔𝑟𝑒𝑒 (𝑣) denotes the
degree of a node 𝑣 .

Property 3.1. Let 𝑆 be a set of nodes in an undirected graph.

#𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 (𝑆) = 𝐷𝑒𝑔𝑟𝑒𝑒𝑆𝑢𝑚(𝑆) − #𝑖𝑛𝑑𝑢𝑐𝑒𝑑 (𝑆).

Proof. Each edge in the subgraph induced by 𝑆 contributes 2 to

𝐷𝑒𝑔𝑟𝑒𝑒𝑆𝑢𝑚(𝑆). Each edge that is outside of the induced subgraph

but still has one endpoint in 𝑆 contributes 1 to 𝐷𝑒𝑔𝑟𝑒𝑒𝑆𝑢𝑚(𝑆),
and there are #𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 (𝑆) − #𝑖𝑛𝑑𝑢𝑐𝑒𝑑 (𝑆) such edges. Therefore,

𝐷𝑒𝑔𝑟𝑒𝑒𝑆𝑢𝑚(𝑆) = 2×#𝑖𝑛𝑑𝑢𝑐𝑒𝑑 (𝑆)+#𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 (𝑆)−#𝑖𝑛𝑑𝑢𝑐𝑒𝑑 (𝑆). □

Proof. (Thm 3.3) First, observe that in the overexposure prob-

lem on an unweighted cluster graph, the payoff for selecting a set

𝑆 of 𝑘 nodes is 𝜋 (𝑆) = 𝑘 − #𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 (𝑆). Therefore, maximizing the

payoff is equivalent to minimizing #𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 (𝑆). We next show that

it is NP-hard to find a set 𝑆 of 𝑘 nodes to minimize #𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 (𝑆) in
a cluster graph.

The reduction is from the known NP-complete problem of de-

ciding whether there is a 𝑘-clique in an 𝑟 -regular graph. Given any

instance of that problem, we make a cluster graph instance with

the same graph and the same 𝑘 . We show that there is a 𝑘-clique in

the clique instance if and only if there is a set 𝑆 of 𝑘 nodes in the

cluster graph with #𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 (𝑆) ≤ 𝑘𝑟 −
(𝑘
2

)
.

The only if direction follows from Property 3.1. For the reverse

direction (if), suppose that there is a set 𝑆 of 𝑘 nodes in the clus-

ter graph such that #𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 (𝑆) ≤ 𝑘𝑟 −
(𝑘
2

)
, but there is no 𝑘-

clique. When there is no 𝑘-clique, then for any set 𝑇 of 𝑘 nodes,

#𝑖𝑛𝑑𝑢𝑐𝑒𝑑 (𝑇 ) <
(𝑘
2

)
, which implies that #𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 (𝑆) > 𝑘𝑟 −

(𝑘
2

)
(by

Property 3.1). This is a contradiction. □

As argued above, maximizing the payoff by selecting a set 𝑆 of 𝑘

nodes is the same as minimizing #𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 (𝑆). Therefore, we can
treat the problem as minimizing the cost of selecting 𝑆 , defined as

#𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 (𝑆). This leads to a simple approximation algorithm.

Theorem 3.4. There exists a 2-approximation algorithm for mini-
mizing the cost of selecting 𝑘 nodes in an unweighted cluster graph.

Proof. We show that selecting a set 𝑈 = {𝑢1, ..., 𝑢𝑘 } of the 𝑘
lowest degree nodes has a cost at most 2 × OPT, where OPT is

the minimum cost due to selecting a set𝑊 = {𝑤1, ...,𝑤𝑘 }. Using
Property 3.1, 𝐷𝑒𝑔𝑟𝑒𝑒𝑆𝑢𝑚(𝑊 ) = #𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 (𝑊 ) + #𝑖𝑛𝑑𝑢𝑐𝑒𝑑 (𝑊 ) ≤
2 × #𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 (𝑊 ). Assume the elements in 𝑈 and𝑊 are sorted

by degree in non-descending order. The cost of selecting 𝑈 ≤
𝐷𝑒𝑔𝑟𝑒𝑒𝑆𝑢𝑚(𝑈 ) =

∑𝑘
𝑖=1 𝑑𝑒𝑔𝑟𝑒𝑒 (𝑢𝑖 ) ≤ ∑𝑘

𝑖=1 𝑑𝑒𝑔𝑟𝑒𝑒 (𝑤𝑖 ) ≤ 2 ×
#𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 (𝑊 ) = 2 × OPT. □

Related Graph Theory Problems. Dense and sparse subgraph prob-
lems have received a great deal of attention over the last few decades.

These problems are closely related to overexposure on unweighted

cluster graphs. Goldschmidt and Hochbaum [11] investigate the

problem of finding a maximum set of nodes such that the number

of incident edges is at most 𝑘 . They give a 3-approximation for

this problem in the weighted case. This approximation algorithm

has been improved to 2-approximation by Gandhi et al. [10], who

also study another related problem that asks to find the minimum

number of edges such that at least 𝑘 vertices are touched by these

edges. See [20] and references therein for other related problems.

3.3 Weighted Cluster Graphs: Trees
We start with weighted stars as a special case.

Polynomial-Time Algorithm for Stars.

Theorem 3.5. There exists a polynomial-time algorithm for solv-
ing the budgeted overexposure problem for weighted cluster graphs
that are stars.

Proof. Let 𝑣 be the hub node of the star. In the optimal solution,

we can either select 𝑣 or not select 𝑣 .

For the case of selecting 𝑣 , all the edges of the star graph must

also be selected. That is, all rejecting nodes at the boundary between

the hub and any spoke is reached. We then select 𝑘 − 1 highest

weight nodes among the spokes of the star and calculate the final

payoff. For the case of not selecting 𝑣 , we greedily select at most 𝑘

spokes. For each spoke we calculate its node weight and subtract

its edge weight from it. We select the most profitable spokes up to

𝑘 spokes (in order to avoid negative payoff). □

We next go beyond stars and consider weighted cluster graphs

that are tree-structured. We present an optimal dynamic program-

ming (DP) algorithm and a Knapsack-inspired heuristic for this

case. We first present the DP algorithm.

DPAlgorithm for Trees. We describe the idea of the DP algorithm

without the very lengthy pseudocode. Consider a subtree rooted at

𝑣 . Suppose we can allocate at most 𝑡 seeds at this subtree. At node

𝑣 , there are two alternatives: (1) select 𝑣 , or (2) do not select 𝑣 . We

explore both alternatives as follows.

When we select 𝑣 , we can allocate at most 𝑡 − 1 seeds to the

next-level subtrees (i.e., subtrees rooted at the children of 𝑣). We

explore all possible ways of allocating a total of 𝑡 − 1 seeds among

these subtrees and get the payoff for each possibility recursively.

For the second alternative of not selecting 𝑣 , we can allocate at most

𝑡 seeds to the subtrees rooted at the children of 𝑣 . Again, we explore

all possible seeding and get the payoff for each possibility. At node

𝑣 , we calculate the best payoff for each of the two alternatives while
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making sure that no edge is double counted.
1
For each alternative

(select 𝑣 or not), we record a witness vector for the optimal payoff

that consists of the following information for each child of 𝑣 : (1) Are

we selecting that child of 𝑣? (2) How many seeds are allocated to

the subtree rooted at that child? Due to the recursive nature of this

phase of computation, information flows upstream: from the leaves

to the root. We implement memoization to avoid recomputation.

At the root node, for 𝑡 = 0, ..., 𝑘 , we compare the payoffs for the

two alternatives of selecting the root or not selecting it when we

seed 𝑡 nodes in the whole tree. We select the best seeding level

𝑡 ≤ 𝑘 and output whether or not we select the root. We also look

up the corresponding witness vector and follow the information in

the witness vector. We repeat this to output an optimal solution for

the tree case.

The computational bottleneck of this DP algorithm is due to

exploring all possible ways of allocating a certain number of seeds

to the next-level subtrees as described two paragraphs ago. This

is a well-known combinatorial problem known as the stars and
bars problem. For 𝑘 seeds and Δ being the maximum number of

children of any node, there are

(𝑘+Δ−1
Δ−1

)
or 𝑂

(
𝑒 (𝑛+𝑘−1

𝑘−1

)Δ−1
ways

of distributing 𝑘 seeds among Δ subtrees. Therefore, we have the

following result.

Theorem 3.6. The DP algorithm for solving budgeted overexposure
problem runs in polynomial time for tree-structured cluster graphs of
bounded degree.

Knapsack-Inspired Heuristic. We devise a fast heuristic based

on the well-known dynamic programming (DP) solution to the

Knapsack problem. In this heuristic, we first perform a topological

sorting of the nodes of the tree so that any descendent would come

before ancestors. We then select at most 𝑘 nodes to “maximize”

the payoff in the usual Knapsack DP fashion: For each node in the

ordering and for each seeding level ≤ 𝑘 , we compute the “optimal”

solution up to that node. At the last node, we compare the payoffs

for all seeding levels and choose the best one. We then trace back

to compute the solution.

Although this heuristic is fast with a running time of 𝑂 (𝑘𝑛),
we have examples showing that it does not compute the optimal

solution. The main reason is that due to the ordering of the nodes,

information coming from an earlier subtreemay “clog” or “constrict”

the seeding in another subtree.

3.4 Weighted Cluster Graphs with Cycles
We present an integer linear program (ILP) solution for weighted

cluster graphs with cycles. We have the following setup: 𝑛 is the

number of nodes in the cluster graph,𝑚 is the number of edges in

the graph, and 𝑘 is the maximum number of seed nodes. In the ILP,

𝑥𝑖 = 1 if we select node 𝑖 , and 𝑥𝑖 = 0 otherwise. The ILP makes sure

that 𝑦𝑒 = 1 whenever one of the endpoints of the edge 𝑒 is selected.

We denote the set of edges incident on a node 𝑖 as 𝐼 (𝑖). Finally,𝑤𝑖

and𝑤𝑒 denote the weights of node 𝑖 and edge 𝑒 , respectively. We

have the following ILP.

1
For example, for the case of selecting 𝑣, we also select all edges connecting 𝑣 to 𝑣’s

children. In that case, if a child 𝑢 of 𝑣 is also selected as part of the optimal solution,

we subtract the weight of (𝑣,𝑢) from the payoff at 𝑣 so that it is not double counted.

ILP for Cluster Graphs With Cycles.

Max

∑𝑛
𝑖=1 𝑥𝑖𝑤𝑖 −

∑𝑚
𝑒=1 𝑦𝑒𝑤𝑒

s. t. ∑𝑛
𝑖=1 𝑥𝑖 ≤ 𝑘

𝑥𝑖 ≤ 𝑦𝑒 , ∀𝑖 and ∀𝑒 ∈ 𝐼 (𝑖)
𝑥𝑖 ∈ {0, 1}, ∀𝑖
𝑦𝑒 ≥ 0, ∀𝑒

3.5 General Overexposure Instances
We now turn to the most general problem instances, which are

provably hard. To address general instances, we inevitably have to

move away from the cluster graph formulation because we want

to relax Assumption 3.1. Due to the value of a compact representa-

tion, we formulate a bipartite graph corresponding to the original

instance. We take each cluster of accepting nodes and add it as a

single node, called cluster node, to the bipartite graph. We also add

each rejecting node as a node to the bipartite graph. We then add

directed edges from each rejecting node to all the cluster nodes

for which the rejecting node is at the boundary of the cluster in

the original instance. Put simply, rejecting nodes are now given

their own node in the bipartite graph, whereas previously in the

cluster graph, they were incorporated in the edges. Fig. 3 illustrates

the translation of the original instance to a bipartite graph. It can

be verified that the bipartite graph formulation preserves all the

necessary information for computing an optimal solution.

1

2

34

5

6

7
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9

5

7

123

6

89

Figure 3: Bipartite graph (bottom) derived from original in-
stance (top). Accepting nodes are green, rejecting nodes red.
The rejecting node 4 is orphaned and is internalized using
the same procedure described in Section 3.1.

We next present an ILP-based optimal solution for general in-

stances. The ILP works on the bipartite graph 𝐺 = (𝑉𝑅,𝑉𝐶 , 𝐸),
where 𝑉𝑅 is the set of all 𝑚 rejecting nodes, 𝑉𝐶 is the set of all

𝑛 cluster nodes, and 𝐸 is the set of directed edges. In this ILP, 𝑦𝑟
represents whether a rejecting node 𝑟 is counted due to selecting

an adjacent cluster node.

Main Track AAMAS 2022, May 9–13, 2022, Online

646



ILP for General Instances.
Max

∑𝑛
𝑖=1 𝑥𝑖𝑤𝑖 −

∑𝑚
𝑟=1 𝑦𝑟

s. t. ∑𝑛
𝑖=1 𝑥𝑖 ≤ 𝑘

𝑥𝑖 ≤ 𝑦𝑟 , ∀ (𝑟, 𝑖) ∈ 𝐸

𝑥𝑖 ∈ {0, 1}, ∀𝑖 ∈ 𝑉𝐶
𝑦𝑟 ≥ 0, ∀𝑟 ∈ 𝑉𝑅

We next present a series of greedy heuristics for the general

instances. Although these are described for the bipartite graph

setting, we have implemented these for cluster graphs as well.

Strawman Greedy. This strawman heuristic simply selects the 𝑘

highest-weight clusters nodes. It does not take into consideration

the rejecting nodes connected to these clusters.

Edge-Aware Greedy. This heuristic adds cluster nodes to the seed
set one at a time, optimizing the payoff at each iteration in isolation.

Essentially, the first iteration picks a single cluster-node 𝑖 with the

highest payoff, where the payoff of 𝑖 is 𝑤𝑖− number of rejecting

nodes adjacent to 𝑖 . Then, that node is removed from the graph

along with all of its incoming edges and its adjacent rejecting nodes

(to avoid double counting). The algorithm continues this way for 𝑘

iterations, returning a set of greedily picked seed nodes. It runs in

𝑂 (𝑘𝑛Δ) time, where Δ is the maximum indegree of a cluster node.

Forward-Thinking Greedy. This heuristic uses one-iteration for-

ward thinking by selecting a cluster node that would be advan-

tageous for the next iteration. For example, when the algorithm

evaluates a cluster-node 𝑖 , it considers the combined effect of select-

ing every other cluster-node 𝑗 (not previously selected) along with

𝑖 . At each iteration, it selects the best cluster node in this fashion

and then removes the selected node together with all the rejecting

nodes adjacent to it. It runs in 𝑂 (𝑘𝑛2Δ) time.

4 EXPERIMENTS
We have extensively tested the algorithms designed for the three

classes of our problem: (1) tree-structured weighted cluster graphs,

(2) weighted cluster graphs with cycles, and (3) general instances.

4.1 Data
Our suite of networks includes synthetically generated network in-

stances as well as real-world data from the Stanford Large Network

Dataset (SNAP). Following is a brief snapshot.

(1) Barabasi-Albert networks: These networks incorporate two

important aspects of real-world networks: dynamic growth

and preferential attachment. Although these networks can

model power-law degree distributions, their clustering prop-

erties are not that strong.

(2) Erdos Renyi random graphs: An Erdos-Renyi graph 𝐺 (𝑛, 𝑝)
is a random graph with 𝑛 nodes where each possible pair

of nodes is connected by an edge with probability 𝑝 . These

graphs are known for their small-world properties but fall

short when it comes to either clustering or real-world degree

distribution.

(3) Watts-Strogarz small-world networks: This model produces

networks with small-world properties, exhibiting short aver-

age path lengths and high clustering. The generation process

is usually known as rewiring. Unfortunately, the rewiring
process cannot generate power-law degree distribution.

(4) Facebook network: This dataset consists of “circles” (or “friends

lists”) from Facebook, collected from survey participants us-

ing the Facebook app. The dataset includes node features

(i.e., profiles), circles, and ego networks [19]. This network

consists of 4,039 nodes and 88,234 edges.

For the synthetic networks, we generate 25 instances each for

varying model parameters. We vary the number of nodes among

500, 1000, 2000, and 5000. We test with three different product

appeals: 0.25, 0.5, and 0.75. The criticality parameters of the nodes

are uniformly distributed between 0 and 1.

4.2 Creating Instances for Different Classes
While the synthetic and real-world networks can be easily trans-

formed into bipartite graph instances for the general case of our

problem, devising instances for the cluster graphs (with or without

cycles) need further processing.

For cluster graphs with cycles, we first make sure that Assump-

tion 3.1 is satisfied. If a rejecting node is connected to more than

two clusters of accepting nodes, we remove edges from the original

instance to make sure that it is connected to two clusters only. We

then create a cluster graph instance.

Now, to create instances of cluster graphs without cycles (i.e.,

trees), we first create a cluster graph from the original instance

without any consideration for Assumption 3.1. For this, we compute

a maximum spanning tree for the cluster graph using Kruskal’s

algorithm. This method discards some edges, but tries to preserve

the edges with large weights in order to guarantee a maximum

weight tree. Once we arrive at a cluster graph without any cycle, it

must be the case that Assumption 3.1 is satisfied (otherwise, there

would have been a cycle among the three or more clusters that

share the same rejecting node).

For each original instance of synthetic network, we generate

an instance of a cluster graph with cycles and an instance of clus-

ter graphs without cycles. Therefore, for either case, we have 25

instances for each configuration of model parameters.

4.3 Shorthand Notation
We use the following shorthand notation throughout this section.

BA Barabasi-Albert preferential attachment networks

ER Erdos-Renyi random graphs

FB Facebook network

WS Watts-Strogatz small-world networks

Clus-ILP ILP for cluster graphs with cycles

Edge-Gr Edge-aware greedy algorithm for the general case

Forw-Gr Forward-thinking greedy algorithm for the general case

Gen-ILP ILP for the general case

Knap-Gr Knapsack-inspired heuristic for tree cluster graphs

Straw-Gr Strawman greedy algorithm for the general case

4.4 Payoff Comparison
We first note that all algorithms for the general case can be applied

to the case of cluster graphs with cycles, and all algorithm for

the latter can be applied to tree-structured cluster graphs. Here,
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we mostly compare performances of the algorithms for the tree

cluster graph case so that we can compare the widest array of

algorithms. We have extensively replicated these experiments for

the other classes of our problem and have not found any remarkable

qualitative differences. Regarding implementation, we have used

Python in general and the PuLP library for the ILPs.

Fig. 4 shows a comparison of among the algorithms for different

types of networks. Across the board, the two greedy algorithms—

edge-aware and forward-thinking—closely approximate the optimal

solution obtained by the ILPs. We should note here that we could

not run our DP algorithm for these large instances (5000 nodes in

each synthetic network) because its running time goes off the chart.

For smaller instances, however, DP finishes quickly andmatches the

optimal solutions of ILPs, as expected. As a side note, the Clus-ILP

matches Gen-ILP because both are optimal for tree cluster graphs.
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Figure 4: Comparison of payoff values. The plot shows that
the greedy algorithms like the forward-thinking greedy
closely approximate the optimal solution calculated by the
ILPs. Here, the type of instances is tree-structured cluster
graphs. Model parameters: product appeal of 0.5, 5000 nodes
in each synthetic network, 100 seed nodes.

4.5 Running Time Comparison
We have used a computer with Intel Core i7-8750H processor and

16GB of RAM. Fig. 5 compares the running times of different algo-

rithms based on the tree cluster graph case. We see similar behavior

in other classes of problem instances. Not surprisingly, forward

thinking greedy is the slowest, albeit faster than DP, which is not

shown here. The reason is that it uses a look ahead and this look

ahead operation necessitates an additional computation compared

to other greedy algorithms. Interestingly, the ILPs run very fast on

the synthetic network instances.

4.6 Effects of Varying Seed Set Size
As shown in Fig. 6, increasing the seed set size increases the payoff

in general. This behavior does not necessarily ease the theoretical

concern of payoffs fluctuating up and down as we select more seed

nodes. This is because the algorithms select at most 𝑘 seeds and are
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Figure 5: Running time comparison. The plot shows that the
forward-thinking greedy is the slowest. More interestingly,
the ILPs are fast in practice. On synthetic networks, they
closely match the running time of the edge-aware greedy
algorithm. The type of instances is tree-structured cluster
graphs. Model parameters: product appeal of 0.5, 5000 nodes
in each synthetic network, 100 seed nodes.

not required to select exactly 𝑘 seeds. Interestingly, for this reason,

the Knap-Gr stagnates after selecting around 70 seeds.
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Figure 6: The effects of varying seed set size for Watts-
Strogatz instances within the class of tree-structured cluster
graphs. On the top line, Gen-ILP and Clus-ILP completely
overlap and are closely matched by Edge-Gr. Model parame-
ters: product appeal of 0.5, 5000 nodes in total.

4.7 Effects of Network Structures
When greedy and ILP algorithms are run on general instances,

it turns out that the strawman greedy performs quite well on

Barabasi–Albert networks compared to Watts–Strogatz networks,

selecting seeds nearly optimally at a fraction of the runtime. This

is shown in Fig. 7. This is due to the difference between the two
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network structures. The existence of high degree nodes, also known

as “celebrity” nodes, in Barabasi–Albert networks means that these

networks lead to a few very large clusters in addition to many small

clusters. This lends itself quite well to a simple greedy approach.

In contrast, we have observed that Watts–Strogatz networks lead

to many medium and small sized clusters comparatively. This war-

rants more intelligent seed selection.
2
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Figure 7: Comparison of payoffs. The model parameters are
the same as Fig. 4, except that this plot is for the general
instances whereas Fig. 4 is for trees. Straw-Gr works better
for BA than for WS due to cluster size distribution.

4.8 Effects of Product Appeal
As shown in Fig. 8, for low product appeal (0.25)—meaning low qual-

ity product—the strawman greedy algorithm performs the poorest,

followed by edge-aware greedy. When we allow negative payoffs,

both of these algorithms come up with negative payoffs. On the

other spectrum, when the product appeal is high (0.75)—meaning

high quality product—these greedy algorithms perform quite well.

Although Fig. 8 shows the case of Watts-Strogatz networks, we

observe similar behavior for the other types of networks. Not sur-

prisingly, Fig. 9 shows that all else remaining same, lower product

quality demands more computational time, which is due to the

emergence of a high number of rejecting nodes fragmenting the

network into many clusters. These observations lead to an interest-

ing finding:

Low quality products require smarter algorithms to avoid overex-
posure, whereas high quality products can be coupled with extremely
simple and fast greedy algorithms.

5 CONCLUSION
In this paper, we have investigated the problem of budgeted over-

exposure problem. We have shown that the problem is NP-hard

even for a very restricted case. We have presented an assortment of

approximation algorithms, polynomial-time algorithms, heuristics,

2
We should note that the strawman greedy is not that effective for tree cluster graphs.

This is because the graph structure is fundamentally altered for creating the tree cluster

graphs, as described in Section 4.2.
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Figure 8: The effects of varying product appeals on payoff.
This plot is based on Watts-Strogatz instances within the
class of tree-structured cluster graphs. Model parameters:
product appeal of 0.5, 5000 nodes in total.
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Figure 9: The effects of varying product appeals on running
time. This plot is based on Watts-Strogatz instances within
the class of tree-structured cluster graphs. Model parameters:
product appeal of 0.5, 5000 nodes in total.

and linear programming solutions for several classes of the problem.

We have also performed an extensive experimental study based on

synthetic networks like Barabasi-Albert preferential attachment

networks, Erdos-Renyi random graphs, and Watts-Strogatz small-

world networks as well as real-world networks. We have investi-

gated how model parameters and network properties impact the

performance of our algorithms. Extending the AAK model [1] to

more complex models like the linear threshold model and indepen-

dent cascade model is an interesting future direction, particularly

because the problem is provably hard even for very simple models.
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