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ABSTRACT
We study strategic network formation games in which agents at-

tempt to form (costly) links in order to maximize their network

centrality. Our model derives from Jackson andWolinsky’s symmet-
ric connection model, but allows for heterogeneity in agent utilities

by replacing decay centrality (implicit in the J-W model) by a va-

riety of classical centrality measures, as well as game-theoretic

measures of centrality. We are primarily interested in characteriz-

ing the asymptotically pairwise stable networks, i.e. those networks

that are pairwise stable for all sufficiently small, positive edge costs.

We uncover a rich typology of stability:

- we give an axiomatic approach to network centrality that allows

us to predict the stable network for a rich set of combination of

centrality utility functions, yielding stable networks with features

reminiscent of structural properties such as "core periphery" and

"rich club" networks.

- We show that a simple variation on themodel renders it universal,

i.e. every network may be a stable network.

- We also show that often we can infer a significant amount about

agent utilities from the structure of stable networks.
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1 INTRODUCTION
Centrality in social networks is a topic that has seen an overwhelm-

ing amount of recent work at the intersection of Social Network

Analysis [55], Physics of Complex Systems [45], Economics [36],

Theoretical Computer Science and Artificial Intelligence [22]. Many

of the existing models of network formation are stochastic. In real-

ity, networks form and evolve as a consequence of agent incentives.
Among these incentives centrality maximization is certainly a per-

vasive one. To give just one too familiar example: the increasing

competitive nature of the scientific enterprise, coupled perhaps

with an ever more common
1
reliance on quantitative measures

2

1
and, in our opinion, unfortunate

2
of "centrality" in the citation network (!), such as the H-index

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent

Systems (www.ifaamas.org). All rights reserved.

and rankings of individuals and publishing venues as proxies for

research quality, has often resulted in a significant explosion in the

number of submissions to venues perceived as "top ones" (e.g., A.I.

conferences such as NeurIPS, IJCAI or AAAI). The decisive factor

seems to be, of course, authors’ perception that publication in top

venues is a way to increase their papers’ impact, which ultimately

increases their own ”centrality", that they want maximized.

Less clear are the strategic consequences of agents’ propensity for
competing for central positions. By this we mean understanding

the manner in which agents’ preferences for central network posi-

tions influence the actual unraveling of network structure. Until

recently, models of strategic network formation (e.g. [4, 37]) were

unable to reproduce the rich typology of emerging networks uncov-

ered by social network analysis (witnessed e.g. by concepts such

as core-periphery structure [10], the rich-club effect [58], or small-
world networks [56]). Very interesting recent work [7] showed that

strategic network formation models can reproduce the basic char-

acteristics of social networks, low diameter, a power-law degree

distribution and high clustering in its equilibrium networks. The

model of Biló et al. assumes that the cost of an agent 𝑢 is a sum

of (a). The sum of costs of all adjacent edges 𝑢𝑣 , assumed to be an

arbitrary convex function of the distance between 𝑢 and 𝑣 , should

the edge𝑢𝑣 not be present, and (b). The sum of distances to all other

agents. Interesting as this result is, it assumes that agents’ utilities

have a quite specific nature, fairly similar for all agents: what
all agents attempt to minimize is a (generalized form) of sum of dis-

tances to all other networks. Real agents may have objectives that

are not distance based (e.g. intermediate communication between

various parts of the network). Furthermore, different agents may
have different, unrelated, centrality objectives.

The goal of this paper is to contribute to understanding network

formation from a game-theoretic perspective that assumes that

agents are willing to modify network structure (at a small cost per

extra link) in order to improve their centrality. We start from the

realization that the most well-known model of strategic network

formation, the symmetric connection model [36, 37] can be seen as

maximizing agents’ decay centrality [17, 53], subject to constant

edge cost. Our model accomodates heterogeneity in centrality ob-

jectives: we show via an axiomatic approach to network centrality

[9], that salient features of centrality measures can influence the

structure of emerging networks in predictible ways.

A key design choice for models of network formation is their

handling of tie strength: It is well-known that weak ties play an im-

portant role in social dynamics, being extremely useful for informa-

tion dissemination [29]. Our model restricts agents tie manipulation

attempts to weak ties only, whose cost of establishing/maintainance

can realistically be assumed to be a tiny positive constant. An
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explanation for such a restriction is not merely modeling conve-

nience, but the existing tension between breaking strong links and

centrality maximization: in real life strong links could be either

exogeneously imposed (e.g. agents interacting as being part of the

same organization, e.g. being coworkers) or have such a high intrin-

sic cost of breaking (e.g. family ties) that this renders the objective

of centrality maximization unrealistic.

A second key design choice concerns the limits of centrality
maximization: So far we have assumed that agents want to increase

their centrality indefinitely, subject to maintaining reasonable costs

for their direct contacts. In real life increasing centrality may be

subject to diminishing returns: the marginal benefit from increased

centrality diminishes (or even plateaus) beyond a certain point.

A simple way of incorporating this observation into the model

is assuming (see Definition 5 below) that each agent is endowed

with a target centrality threshold 𝜃𝑖 (possibly infinite) beyond which
centrality increases bring no utility to the agent.

The main questions that motivate us are:

Q1. Given a set of agents with a heterogeneous set of centrality

objectives, can one predict the stable networks ?

Q2. Can we obtain richer classes of stable networks than in the

classic symmetric connections model ? Are observed features

of real-world graphs (e.g. rich-club, core-periphery) compat-

ible with explanations based on centrality maximization ?

Q3. Can we infer (at least something about) agents’ centrality

objectives from the (set of) stable networks ?

Given the extreme potential heterogeneity of agent objectives, it

may seem that no substantive positive answer could be given to

the three questions above. A first contribution of our paper is
to show that this is not the case, by providing well-behaved

examples where the answers to the three previous questions are

affirmative. Remarkably, stable networks in our models display

(stylized versions of) some features such as core-periphery and

rich club effect. A second contribution of our paper is the iden-

tification of a fundamental limit of prediction in centrality
maximization models, in the form of a plausible variation in the

model specification that renders it universal, in the sense that every
network can arise as an equilibrium. The property we highlight

is natural, assuming that agents’ utility is subject to a threshold

beyond which no extra gain in centrality increases their utility.

The following is an outline of our main results: we first show

(Theorem 3) that for mixtures of agents satisfying one of four mono-

tonicity axioms stable networks may contain an unique complex

component consisting of a "core" (clique) and a "periphery" of nodes

only connected to core nodes. On the other hand (Corollary 2), for

degree homophilic measures stable networks display a rich club
effect: they consist of a sequence of cliques of rapidly decreas-

ing sizes, together with isolated nodes. For betweenness centrality

games we show (Theorem 7) that connected stable networks have

small diameter and are characterized by an interesting property re-

lated to neighborhood domination in graphs.We provide some futher

analytical results and conjectures (based on simulations) for some

less well-behaved centralities. Finally, we show that adding thresh-

olds to the model makes it universal (Theorem 4). Some of these

cases are complemented by results (Corollary 1 and Theorem 9) on

learning agent types from the (set of) stable networks.

2 PRELIMINARIES
We assume familiarity with basics of graph theory, coalitional game

theory (see Chalkiadakis et al. [14]), strategic network formation

(e.g. Jackson [36]) and centrality measures in social networks [19,

40]. In particular, given network 𝑔 and vertex 𝑖 of 𝑔, we will denote

by 𝑑𝑒𝑔(𝑖) the degree of 𝑖 in 𝑔, by 𝑁 (𝑖) the set of neighbors of 𝑖 in 𝑔,
and by

�𝑁 (𝑖) the set�𝑁 (𝑖) = {𝑖} ∪𝑁 (𝑖) .We also denote by 𝑔 + 𝑖 𝑗 the
network obtained by adding missing edge 𝑖 𝑗 , by 𝑑 (𝑖, 𝑗) the distance
between 𝑖 and 𝑗 , and by 𝐶𝑜𝑛𝑛(𝑖) the connected component of 𝑖

in 𝑔. We will write 𝑔1 + 𝑔2 for the disjoint union of two networks

𝑔1, 𝑔2. An edge is called a bridge edge if its removal disconnects the

graph. The neighborhood domination relation is a classical concept

in graph theory (e.g. Definition 1.16 in Brandstädt et al. [12]), first

formulated (under the name vicinal preorder) in Foldes and Hammer

[25] and formalized as follows:

Definition 1. Given vertices 𝑥,𝑦 in graph 𝑔, we say that 𝑦 domi-

nates 𝑥 (and write 𝑥 ≤ 𝑦) iff 𝑁 (𝑥) ⊆ 𝑁 (𝑦) ∪ {𝑦}.

Given a set of vertices 𝑉 , denote by G𝑉 the set of graphs on

vertex set 𝑉 . A centrality measure is a function 𝐶 : 𝑉 × G𝑉 → R.
We will force notation and write 𝐶𝑣 [𝑔] instead of 𝐶 (𝑣, 𝑔). We also

review the following special cases:

Definition 2. Given node 𝑖 in network 𝑔, define:

- The degree centrality of 𝑖 is 𝐶𝑑𝑒𝑔 [𝑖] = 1

𝑛−1𝑑𝑒𝑔(𝑖) .
- The closeness centrality of 𝑖 is 𝐶𝑐𝑙𝑜𝑠𝑒 [𝑖] = 1∑

𝑗∈𝐶𝑜𝑛𝑛 (𝑖 )
𝑑 (𝑖, 𝑗) .

- The eccentricity centrality of 𝑖 is defined[3 ] as 𝐶𝑒𝑐𝑐 [𝑖] =

𝑚𝑖𝑛((𝑛 − 1)/𝑑 (𝑖, 𝑗) : 𝑗 ∈ 𝐶𝑜𝑛𝑛(𝑔)) .
- The random walk closeness centrality of 𝑖 is defined [57] as
𝐶𝑐𝑙𝑜𝑠𝑒 [𝑖] = 1∑

𝑗∈𝐶𝑜𝑛𝑛 (𝑖 )
ℎ𝑡 [ 𝑗,𝑖 ] , where ℎ𝑡 [ 𝑗, 𝑖] is the expected time

for a random walk started at 𝑗 to first hit 𝑖 .
- The decay centrality of 𝑖 is defined as 𝐶𝑑𝑒𝑐 [𝑖] =

∑
𝑗 ∈𝑔

𝛽𝑑 (𝑖, 𝑗) ,

where 𝛽 is a fixed parameter, 0 < 𝛽 < 1.

- The harmonic centrality of 𝑖 is 𝐶ℎ𝑎𝑟𝑚 [𝑖] = ∑
𝑗 ∈𝑔

1

𝑑 [𝑖, 𝑗 ] .

- The betwenness centrality of 𝑖 is𝐶𝑏𝑒𝑡𝑤𝑒𝑒𝑛 [𝑖] =
∑

𝑦≠𝑖≠𝑧

𝜎𝑦,𝑧 (𝑖)
𝜎𝑦𝑧

,

that is the sum of percentages of shortest paths between arbi-
trary vertices 𝑦, 𝑧 that pass through 𝑖 .

- The random walk (a.k.a. current flow) betwenness centrality

of 𝑖 is defined [46] as 𝐶𝑅𝑊𝐵 [𝑖] =
∑

𝑗≠𝑖≠𝑘

𝑟 𝑗,𝑘 , where 𝑟 𝑗,𝑘 is

the probability that a random walk starting at node 𝑗 with
absorbing node 𝑘 passes through node 𝑖 .

- The eigenvector centrality of 𝑖 is defined as 𝐶𝑒𝑖𝑔 [𝑖] = 𝑤 [𝑖],
where𝑤 is the eigenvector corresponding to the largest eigen-
value of the adj. matrix of 𝑔.

- The Katz centrality is defined as𝐶𝐾𝑎𝑡𝑧 [𝑖] =
∞∑
𝑘=1

𝑛∑
𝑗=1

𝛼𝑘 (𝐴𝑘 ) 𝑗𝑖 .

where 𝛼 is a parameter, 0 < 𝛼 < 1.

- Pagerank. See e.g. [8] for formal definitions and some proper-
ties.

3
in many papers eccentricity is defined as𝑚𝑎𝑥 (𝑑 (𝑖, 𝑗) : 𝑗 ∈ 𝐶𝑜𝑛𝑛 (𝑔)) . Defining
eccentricity centrality like we do has been done before, and has the advantage that

bigger values correspond to "more central nodes" .
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We also need centralities defined using coalitional games (see

also [35]):

Definition 3. The Michalak et al. centrality of 𝑖 [42] is defined
as the Shapley value of node 𝑖 in the coalitional game (𝑁, 𝑣), where
𝑣 (𝑆) = |𝑆 ∪ 𝑁 (𝑆) |. It has the formula 𝐶𝐺𝑇 [𝑖] =

∑
𝑗 ∈�𝑁 (𝑖)

1

𝑑𝑒𝑔 ( 𝑗)+1 .

We will also use a variant (to our knowledge first considered

here) based on the Banzhaf, rather than the Shapley value:

Definition 4. The Banzhaf-Michalak centrality of 𝑖 is defined
as the Banzhaf value of node 𝑖 in the coalitional game (𝑁, 𝑣), where
𝑣 (𝑆) = |𝑆∪𝑁 (𝑆) |. An easy computation shows that it has the formula
𝐶𝐵𝐺𝑇 [𝑖] =

∑
𝑗 ∈�𝑁 (𝑖)

1

2
𝑑𝑒𝑔 ( 𝑗 ) .

Definition 5. Given centrality measure 𝐶 = (𝐶𝑖 ) and threshold
𝜃 = (𝜃𝑖 ) ∈ (R ∪ {+∞})𝑛 , the 𝜃 -truncation of 𝐶 is the centrality 𝐶𝜃
defined by

𝐶𝑖,𝜃 [𝑔] =
{
𝐶𝑖 [𝑔], if 𝐶𝑖 [𝑔] < 𝜃𝑖
𝜃, otherwise.

Note that for 𝜃 = ∞ (or just a large integer) we get the original
utility. So truncations really extend our previous framework. An agent
threshold 𝜃𝑖 is called individually feasible if 𝜃𝑖 = 0 or 𝜃𝑖 > 0 and
there exists some network ℎ on the set of vertices { 𝑗 ∈ 𝑁 : 𝜃 𝑗 > 0}
such that 𝐶𝑖 [ℎ] = 𝜃𝑖 . A network 𝑤 is called feasible iff 𝐶𝑖 [𝑤] ≤ 𝜃𝑖
for all agents 𝑖 .

3 MODEL AND AXIOMATIC SETTING
Our framework, which extends the Jackson-Wolinsky symmetric

connection model, is specified as follows:

Definition 6. The symmetric connection model with general-

ized centralities (𝐶𝑖 ), thresholds 𝜃𝑖 and edge cost 𝑐 is defined as
follows: the utility of player 𝑖 on network 𝑔 is

𝑢𝑖 (𝑔) = 𝐶𝑖,𝜃𝑖 (𝑔) − 𝑐 · 𝑑𝑒𝑔(𝑖). (1)

where 𝐶𝑖,𝜃𝑖 is the 𝜃𝑖 -truncation of centrality 𝐶𝑖 . We will occasionally
avoid mentioning the family of centralities (𝐶𝑖 ) and thresholds 𝜃𝑖
when they are clear from the context.

An edge flip of a pair of nodes 𝑖, 𝑗 of a network 𝑔 is the addition
of 𝑖 𝑗 to 𝑔, if 𝑖 𝑗 ∉ 𝑔, or its removal from 𝑔, if 𝑖 𝑗 ∈ 𝑔. The outcome of
an edge flip is the resulting network ℎ.

Definition 7. An edge flip is a weakly improving move for

player 𝑖 if 𝑢𝑖 (ℎ) ≥ 𝑢𝑖 (𝑔), and a strongly improving move if 𝑢𝑖 (ℎ) >
𝑢𝑖 (𝑔). An edge flip is an improving move iff:

- it is an edge addition that is strongly improving for at least
one endpoint and at least weakly improving for both, or

- is an edge deletion, strongly improving for some endpoint.

The main model of the emerging network structure employed

in the area of strategic network formation, defined in Jackson and

Wolinsky [37] is:

Definition 8. Network 𝑔 is called pairwise stable if no edge flip
is an improving move.

In this paper we use a version of pairwise stability that is appro-

priate to our setting that assumes weak ties only, in which the edge

cost is a tiny (but positive) value 𝜖 > 0. Therefore, the following

variant of pairwise stability will be our main notion of interest:

Definition 9. Consider the symmetric connectionmodel with gen-
eralized centralities. Network 𝑔 is called asymptotically pairwise
stable (APSN) if there exists 𝜖0 > 0 such that for every 0 < 𝜖 < 𝜖0, 𝑔
is pairwise stable in the model instantiation with edge cost 𝜖 .

Since APSN is a version of pairwise stability, results on APSN re-

late to existing literature. For instance the original Jackson-Wolinsky

result can be interpreted as stating that for decay centrality games

the unique family of APSN consists of complete graphs 𝐾𝑛 .

3.1 Axioms for network centralities
The first axiom is a simple one and has been discussed before in the

literature [9]. It formalizes the intuition that adding edges always

improves the centrality of adjacent nodes:

Axiom 1. A centrality measure𝐶 is increasing if whenever 𝑖 𝑗 ∉ 𝑔,
𝐶 [𝑖, 𝑔 + 𝑖 𝑗] > 𝐶 [𝑖, 𝑔] .

If 𝐶 is a centrality measure satisfying some axiom then 𝐶 ′ =

1/(1 +𝐶) (or even 𝐶 ′ = 1/𝐶, when 𝐶 is strictly positive) satisfies

a correspondingly modified "dual" axiom. For instance, here’s the

dual of Axiom 1:

Axiom 1
′
. A centrality measure𝐶 is decreasing if whenever 𝑖 𝑗 ∉ 𝑔,

𝐶 [𝑖, 𝑔 + 𝑖 𝑗] < 𝐶 [𝑖, 𝑔] .

Our next axiom represents a different type of monotonicity: the

benefit of extra links only incurs for agents already in the same

connected component. It is a more precise version of an axiom due

to Boldi et al. [8]:

Axiom 2. A centrality measure𝐶 is locally increasing if it satisfies
the following conditions: If 𝑖 𝑗 ∉ 𝑔 and 𝑖, 𝑗 are in the same connected
component then 𝐶 [𝑖, 𝑔 + 𝑖 𝑗] > 𝐶 [𝑖, 𝑔]. If 𝑖 𝑗 ∉ 𝑔 and 𝑖, 𝑗 are not in the
same connected component in 𝑔 then 𝐶 [𝑖, 𝑔 + 𝑖 𝑗] ≤ 𝐶 [𝑖, 𝑔].

In the dual scenario agent only benefit when forming bridges

between previously disconnected components:

Axiom 2
′
. A centrality measure 𝐶 is peripherally decreasing if

it satisfies the following conditions: If 𝑖 𝑗 ∉ 𝑔 and 𝑖, 𝑗 are in the same
connected component then 𝐶 [𝑖, 𝑔 + 𝑖 𝑗] ≤ 𝐶 [𝑖, 𝑔]. If 𝑖 𝑗 ∉ 𝑔 and 𝑖, 𝑗 are
not in the same connected component in 𝑔 then 𝐶 [𝑖, 𝑔 + 𝑖 𝑗] > 𝐶 [𝑖, 𝑔].

The setting of Axiom 2 is not vacuous, as we have:

Theorem 1. Closeness centrality and random walk closeness cen-
trality satisfy Axiom 2.

The next axiom has a different flavor, and encode a scenario

when agents benefit by connecting only when they were "of the

same/different types". In our particular setting homophily is as-

sessed with respect to agents’ degree.

Axiom 3. A centrality measure 𝐶 is degree homophilic if the
following is true: there exists a strictly increasing function 𝑓 such that
for any network 𝑔 and edge 𝑖 𝑗 ∉ 𝑔, adding edge 𝑖 𝑗 to 𝑔 is an improving
move for 𝑖 iff 𝑑𝑒𝑔(𝑖) ≤ 𝑓 (𝑑𝑒𝑔( 𝑗)).
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Centrality Axm. Reference

Degree 1,4,5 trivial

Harmonic 1 Boldi and Vigna [9]

Katz 1

Decay 1

Pagerank 1 Chien et al. [16]

Boldi et al. [8]

Closeness 2 Theorem 1

r.w. Closeness 2 Theorem 1

Michalak et al. 3 Theorem 2

Figure 1: Axioms for centrality measures.

An example of measure satisfying Axiom 3 is:

Theorem 2. Michalak et al. centrality satisfies Axiom 3 with
𝑓 (𝑛) = (𝑛 + 1) (𝑛 + 2) − 3.

The following axiom introduces a weak version of a fairness axiom

that has been considered in previous literature ([43, 47]):

Axiom 4. Centrality measure𝐶 is called weakly fair if the follow-
ing are true: whenever 𝑔 is a network, 𝑆 ⊆ 𝑉 (𝑔), 𝑖, 𝑗 ∈ 𝑆 such that
𝑖 𝑗 ∉ 𝐸 (𝑔) and 𝐶𝑖 [𝑔 + 𝑖 𝑗] −𝐶𝑖 [𝑔] =𝑚𝑎𝑥{𝐶𝑘 [𝑔 + 𝑘𝑙] −𝐶𝑘 [𝑔] : 𝑘, 𝑙 ∈
𝑆, 𝑘𝑙 ∉ 𝐸 (𝑔)}, we have𝐶 𝑗 [𝑔+𝑖 𝑗] ≥ 𝐶 𝑗 [𝑔+𝑟 𝑗] for all 𝑟 ∈ 𝑆, 𝑟 𝑗 ∉ 𝐸 (𝑔).
In other words edges that are (global) maximizers of the increase in
network centrality are (local) maximizers of the increase in network
centrality for both endpoints.

Axiom 5. Increasing centrality measure 𝐶 is called ordered if the
following are true: whenever 𝑔, ℎ are networks on the same set of
vertices such that 𝐸 (𝑔) ⊆ 𝐸 (ℎ) and 𝑖, 𝑗, 𝑘 are vertices of 𝑔 (and h)
such that 𝑖 𝑗, 𝑖𝑘 ∉ 𝐸 (ℎ), we have: if 𝐶𝑖 [𝑔 + 𝑖 𝑗] ≥ 𝐶𝑖 [𝑔 + 𝑖𝑘] then
𝐶𝑖 [ℎ + 𝑖 𝑗] ≥ 𝐶𝑖 [ℎ + 𝑖𝑘] In other words the relative effect of edges is
closed under the addition of (unrelated) edges.

Example 1. Degree centrality satisfies axioms 1,4 and 5. So do
related variations such as 𝐶𝑖 [𝑔] = 𝑑𝑒𝑔𝑔 (𝑖)2, weighted versions of
the degree, or the following (more interesting) centrality measure:

𝐶∗
𝑣 [𝑔] = 0 if 𝑣 is isolated in 𝑔, 𝐶∗

𝑣 [𝑔] =
𝑑𝑒𝑔𝑔 (𝑣)
|𝐸 (𝑔) | otherwise.

For space reasons, we refer for some of the missing proofs to the

longer version [34]. On the other hand, many of our results (even

theoretical ones) arose from implementing our model in Python

using the networkx package [31] and performing computational

experiments.

4 APSN FOR MONOTONE CENTRALITIES
In this section we consider mixtures of agents satisfying axioms

1, 1′, and 2, 2′. Our first result deals with the case when all agents

thresholds are 𝜃𝑖 = ∞. In this case we can characterize the APSN

as those graphs whose connected components are (perhaps single

node) cliques plus, maybe, one complex component, which is not

a complete graph. This complex component displays an extreme

form of core-periphery structure: it consists of a core, a clique of

nodes of type 1 and 2, and a periphery consisting of nodes of type

2
′
attached to core nodes only:

Theorem 3. The APSN in the centrality model with agents satisfy-
ing one of Axioms 1,1′, 2,2′ are precisely those networks 𝑔 satisfying
the following rules:

- All agents of type 1′ are isolated.
- There is a single connected component that contains all agents
of type 1. Agents of type 1 and 2 in this component form a clique
("the core"). All agents of type 2′ belong to this component, and
are pendant vertices attached to vertices of type 1 of the clique
("the periphery").

- All other connected components are complete graphs (including
isolated nodes) containing agents of type 2 only.

Proof. Consider an APSN. All agents of type 1 must be con-

nected in a clique, since adding an edge is an improving move for

all of them. For agents of type 2 belonging to this component it is

beneficial to connect to all nodes of type 1 (and among themselves),

hence they are also part of the clique core. Agents of type 2
′
want

to stay connected to the component, but only minimally: once they

are connected to a node in the component, adding any extra edge

is not improving for them. Their contacts must be of type 1: if they

were of type 2 they’d benefit from severing the connection.

All other components consist of agents of type 2 only, for which

it is beneficial to fully connect. □

1

2

𝑥
3

4

5

9

8

15

13

14

6

7 10

11

𝑦

12

𝑡𝑦𝑝𝑒 1

𝑡𝑦𝑝𝑒 1′

𝑡𝑦𝑝𝑒 2

𝑡𝑦𝑝𝑒 2′

Figure 2: APSN for mixtures of monotone centralities.

As a corollary of the previous result, we can infer quite a lot

about agent types from the structure of stable networks:

Corollary 1. Consider, in the setting of Theorem 3, an asymptot-
ically pairwise stable network 𝑔. Then:

a). Isolated nodes are either of type 1′ or 2.
b). An agent 𝑦 in clique components of size ≥ 2 may be of type 1

or 2. It is guaranteed to be of type 2 when there exists a complex
component in 𝑔 which doesn’t contain 𝑦, or when some agent
𝑥 in a different component is known to be of type 1 (Fig. 2).

c). In the complex component pendant vertices are of type 2′ (Fig. 2)
and their neighbors are of type 1. All other nodes are of types
1 or 2.

d). One cannot distinguish between centrality measures of the
same type, nor between nodes of different types in the same
listing (a)-(c).

As the next result shows, even for monotone measures, adding

finite thresholds has a profound effect on the structure of APSN,

changing them from complete graphs to all graphs:

Theorem 4. The following are true:
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Start with the empty graph 𝑔 = ∅𝑛 .
while (not done):

let 𝑒 = 𝑖 𝑗 ∉ 𝐸 (𝑔) maximize quantity 𝐶𝑖 [𝑔 + 𝑖 𝑗] −𝐶𝑖 [𝑔].
among those satisfying 𝐶𝑖 [𝑔] < 𝜃𝑖 and 𝐶 𝑗 [𝑔] < 𝜃 𝑗 .
𝑔 = 𝑔 ∪ {𝑒}

return 𝑔.

Figure 3: Greedy algorithm for finding APSN.

a). For every network 𝑔 and centralities (𝐶𝑖 )𝑖∈𝑉 (𝑔) satisfying
axiom 1 there exist thresholds (𝜃𝑖 ) s.t. 𝑔 is an APSN for the
truncated centrality game with thresholds 𝜃𝑖 .

b). If agents’ original centrality measures satisfy axiom 1, then
for all families (𝜃𝑖 ) of thresholds, the APSN for the truncated
centrality games with thresholds 𝜃𝑖 , if they exist, can be char-
acterized as the graphs with "Pareto optimal centralities", i.e.
graphs ℎ satisfying:
- for every 𝑖 𝑗 ∉ 𝐸 (ℎ), 𝐶𝑖 [ℎ] ≥ 𝜃𝑖 or 𝐶 𝑗 [ℎ] ≥ 𝜃 𝑗 , and
- for every edge 𝑖 𝑗 ∈ 𝐸 (ℎ), removing 𝑖 𝑗 from ℎ would yield a
network 𝑙 with 𝐶𝑖 [𝑙] < 𝜃𝑖 and 𝐶 𝑗 [𝑙] < 𝜃 𝑗 .

c). For all 𝜃𝑖 ≥ 0, APSN exist in all truncated centrality games
with centralities (𝐶𝑖 ) satisfying Axioms 1, 4 and 5.

Proof. a. Let 𝜃𝑖 = 𝐶𝑖 [𝑔]. We claim that 𝑔 is an APSN for the

truncated centrality game with centralities𝐶𝑖 and thresholds

𝜃𝑖 . Indeed, consider an edge 𝑖 𝑗 of 𝑔. Nodes 𝑖, 𝑗 don’t want to

drop edge 𝑖 𝑗 , since their current centrality values are 𝜃𝑖 , 𝜃 𝑗
while, by Axiom 1, their centralities would decrease below

these values if they dropped 𝑖 𝑗 . Let now 𝑖, 𝑗 be vertices such

that 𝑖 𝑗 ∉ 𝑔. Since their current centrality values are 𝜃𝑖 , 𝜃 𝑗
(at the threshold), adding edge 𝑖 𝑗 would not increase their

truncated centralities, while incurring the extra (positive)

cost of edge 𝑖 𝑗 . So adding edge 𝑖 𝑗 is not an improving move.

b. First, by essentially repeating the proof at point a., it is easy

to see that graphs with Pareto optimal centralities are APSN.

The opposite direction is equally easy: consider an APSN ℎ

and two vertices 𝑖, 𝑗 . If 𝑖 𝑗 ∉ 𝐸 (ℎ) then adding edge 𝑖 𝑗 must

not be an improving move for at least one of 𝑖, 𝑗 . Since𝐶𝑖 ,𝐶 𝑗
are increasing, the only possibility is that𝐶𝑖 [ℎ] ≥ 𝜃𝑖 (so that
adding edge 𝑖 𝑗 does not increase the truncated centrality of

𝑖 and, in fact, decrease its utility, because of the extra cost

of edge 𝑖 𝑗 ) or, similarly, 𝐶 𝑗 [ℎ] ≥ 𝜃 𝑗 . Consider now the case

when 𝑖 𝑗 ∈ 𝐸 (ℎ). Because centralities are increasing and re-

moving edge 𝑖 𝑗 is not an improving move, removing 𝑖 𝑗 must

strictly decrease truncated centralities for both nodes 𝑖, 𝑗 .

This is only possible if the centralities of 𝑖, 𝑗 in the resulting

network 𝑙 satisfy 𝐶𝑖 [𝑙] < 𝜃𝑖 and 𝐶 𝑗 [𝑙] < 𝜃 𝑗 .
c. First of all, a comment about the result at point b.: it does

not establish the existence of APSN, since it is not clear that

the conditions in the characterization are actually feasible.

This is what we show next, under the hypothesis that all

centralities satisfy axioms 1,4,5.

We will prove the existence of APSN as follows. Consider

the algorithm in Figure 3. We claim that its outcome 𝑔 is an

APSN. Indeed, none of the missing edges could be added to 𝑔:

if 𝑎𝑏 ∉ 𝐸 (𝑔) then 𝐶𝑎 [𝑔] ≥ 𝜃𝑎 or 𝐶𝑏 [𝑔] ≥ 𝜃𝑏 at the moment

when edge 𝑎𝑏 was considered for inclusion. Since centralities

only increase during the algorithm, the condition is valid at

the end of the algorithm as well.

On the other hand, consider an edge 𝑎𝑏 ∈ 𝐸 (𝑔) with𝐶𝑎 [𝑔] ≥
𝜃𝑎 . In order to apply point (b), we aim to prove that for every

edge 𝑎𝑑 ∈ 𝐸 (𝑔), 𝐶𝑎 [𝑔 − 𝑎𝑑] < 𝜃𝑎 . Let 𝑎𝑓 be the last edge

adjacent to a added to 𝑔 by the algorithm in Figure 3. By the

algorithm, adding 𝑎𝑓 is the first moment the centrality of

node 𝑎 increases beyond value ≥ 𝜃𝑎 . So 𝐶𝑎 [𝑔 − 𝑎𝑓 ] < 𝜃𝑎 .

We will prove that in fact 𝐶𝑎 [𝑔 − 𝑎𝑑] ≤ 𝐶𝑎 [𝑔 − 𝑎𝑓 ] < 𝜃𝑎 . If
𝑑 = 𝑓 then our claim is true. Otherwise, edge 𝑎𝑑 must have

been added to 𝑔 before edge 𝑎𝑓 . Consider the moment when

adding edge 𝑎𝑑 . Let𝑔0 be the network before the addition. By

Axiom 4, adding edge 𝑎𝑑 maximized the centrality increases

of both nodes 𝑎, 𝑑 . Since 𝑎𝑓 was a candidate for edge addition,

𝐶𝑎 [𝑔0+𝑎𝑓 ] ≤ 𝐶𝑎 [𝑔0+𝑎𝑑]. By the fact that𝐶𝑎 satisfies Axiom
5, 𝐶𝑎 [𝑔1 + 𝑎𝑓 ] ≤ 𝐶𝑎 [𝑔1 + 𝑎𝑑], where 𝑔1 ⊇ 𝑔0 is the graph

𝑔 − {𝑎𝑓 , 𝑎𝑑}. But 𝑔1 + 𝑎𝑓 = 𝑔 − 𝑎𝑑 and 𝑔1 + 𝑎𝑑 = 𝑔 − 𝑎𝑓 .
□

5 DEGREE HOMOPHILY YIELDS RICH-CLUB
APSN

Next we study centrality games for degree-homophilic centrality

measures. The following result shows that APSN in this case have

a "rich club" hierarchical structure:

Theorem 5. Letℎ be an APSN for the centrality game with upward
degree homophilic centralities with function 𝑓 (·) satisfying 𝑓 (0) = −1
and 𝑓 (𝑥) ≥ 𝑥 for every 𝑥 ≥ 1.

Let𝑚 be the maximum degree of a node in ℎ. Let 𝑛∗
1
= 𝑚𝑖𝑛{𝑘 :

𝑓 (𝑘) ≥ 𝑚} and, for 𝑖 ≥ 2, 𝑛∗
𝑖
= 𝑚𝑖𝑛{𝑟 : 𝑓 (𝑟 ) ≥ 𝑛∗

𝑖−1}. Clearly
𝑛∗
1
≥ 𝑛∗

2
≥ . . . (and one can assume w.l.o.g., by removing multiple

copies of the same value, that 𝑛∗
1
> . . . > 𝑛∗𝑟 = 1 for some 𝑟 ≥ 1)

a). If 𝑑𝑒𝑔(𝑖), 𝑑𝑒𝑔( 𝑗) ≥ 𝑛∗
1
then 𝑖 𝑗 ∈ 𝐸 (ℎ).

b). If 𝑑𝑒𝑔(𝑖), 𝑑𝑒𝑔( 𝑗) ∈ [𝑛∗
𝑘
, 𝑛∗
𝑘−1] for some 𝑘 ≥ 2 then 𝑖 𝑗 ∈ 𝐸 (ℎ)

("alike nodes connect to each other")
c). If 𝑘 ≥ 2, 𝑑𝑒𝑔(𝑖) ≤ 𝑛∗

𝑘
, 𝑑𝑒𝑔( 𝑗) > 𝑛∗

𝑘−1 then 𝑖 𝑗 ∉ 𝐸 (ℎ).

Proof. We use the definition of degree homophily:

a). Since 𝑑𝑒𝑔(𝑖) ≥ 𝑛∗
1
and 𝑓 is monotonic, 𝑓 (𝑑𝑒𝑔(𝑖)) ≥ 𝑓 (𝑛∗

1
) ≥

𝑚 ≥ 𝑑𝑒𝑔( 𝑗), and similarly 𝑓 (𝑑𝑒𝑔( 𝑗)) ≥ 𝑑𝑒𝑔(𝑖). If 𝑖, 𝑗 were
not connected, then adding 𝑖 𝑗 would be an improving move

for both of them.

b). Similar to (a): as 𝑑𝑒𝑔(𝑖) ≥ 𝑛∗
𝑘
and 𝑓 is monotonic, 𝑓 (𝑑𝑒𝑔(𝑖))

≥ 𝑓 (𝑛∗
𝑘
) = 𝑛∗

𝑘−1 ≥ 𝑑𝑒𝑔( 𝑗), so 𝑓 (𝑑𝑒𝑔(𝑖)) ≥ 𝑑𝑒𝑔( 𝑗), and
similarly 𝑓 (𝑑𝑒𝑔(𝑖)) ≥ 𝑑𝑒𝑔( 𝑗). If 𝑖, 𝑗 were not connected, then
adding 𝑖 𝑗 would be an improving move.

c). We have 𝑑𝑒𝑔(𝑖) ≤ 𝑛∗
𝑘
so 𝑓 (𝑑𝑒𝑔(𝑖) −1) ≤ 𝑓 (𝑛∗

𝑘
−1) < 𝑛∗

𝑘−1 ≤
𝑑𝑒𝑔( 𝑗) − 1. Hence 𝑑𝑒𝑔( 𝑗) − 1 > 𝑓 (𝑑𝑒𝑔(𝑖) − 1), so removing

edge 𝑖 𝑗 is an improving move for 𝑗 , since in the graph ℎ =

𝑔 − 𝑖 𝑗 adding edge 𝑖 𝑗 is not an improving move for 𝑗 .

□

Corollary 2. Let 𝑎1 > 𝑎2 > . . . > 𝑎𝑝 > 𝑎𝑝+1 = 1 be a sequence
of integers such that 𝑎𝑖 − 1 > 𝑓 (𝑎𝑖+1 − 1) for all 𝑖 = 1, . . . , 𝑝 . Then
all graphs of type 𝐾𝑎1 + 𝐾𝑎2 + . . . + 𝐾𝑎𝑝 + 𝑟𝐾0 ("stratified clique
graphs") are APSN for upward degree homophilic centrality games
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with function 𝑓 and conversely, all APSN are unions of cliques with
this structure.

Proof. We need the following simple

Lemma 1. Let 𝑔 be a network and 𝑖 𝑗 ∈ 𝐸 (𝑔). Then removing edge
𝑖 𝑗 from 𝑔 is an improving move iff 𝑑𝑒𝑔( 𝑗) − 1 > 𝑓 (𝑑𝑒𝑔(𝑖) − 1) or
𝑑𝑒𝑔(𝑖) − 1 > 𝑓 (𝑑𝑒𝑔( 𝑗) − 1).

Proof. Removing edge 𝑖 𝑗 is an improving move iff for at least

one of the two nodes 𝑖, 𝑗 its betweenness centrality stays the same

when removing the edge. In this case adding edge 𝑖 𝑗 to ℎ = 𝑔 − 𝑖 𝑗 is
not an improving move and vice-versa: if adding edge 𝑖 𝑗 to ℎ is not

an improving then one of 𝑖, 𝑗 has the same betweenness centrality

in 𝑔 as in ℎ, hence removing edge 𝑖 𝑗 is an improving move in 𝑔.

By definition, adding edge 𝑖 𝑗 to ℎ is not improving iff 𝑑𝑒𝑔ℎ (𝑖) >
𝑓 (𝑑𝑒𝑔ℎ ( 𝑗)) or 𝑑𝑒𝑔ℎ ( 𝑗) > 𝑓 (𝑑𝑒𝑔ℎ (𝑖)). □

Consider now a sequence 𝑎1 > 𝑎2 > . . . > 𝑎𝑝 > 𝑎𝑝+1 = 1 be a

sequence of integers such that 𝑎𝑖−1 > 𝑓 (𝑎𝑖+1−1) for all 𝑖 = 1, . . . , 𝑝 .

We first need to prove that all graphs of type𝐾𝑎1+𝐾𝑎2+. . .+𝐾𝑎𝑝 +𝑙𝐾0,
𝑙 ≥ 0, are APSN.

This is easy, by applying points a),b),c) of the theorem: let, indeed,

𝑦, 𝑧 be nodes in the same clique 𝐾𝑎𝑟 , 1 ≤ 𝑟 ≤ 𝑝 . We need to show

that removing edge 𝑦𝑧 is not an improving move. Since they are in

the same clique, the degrees of 𝑦, 𝑧 are both equal to 𝑎𝑟 − 1. Since

𝑎𝑟 − 1 ≤ 𝑓 (𝑎𝑟 − 1) (because 𝑎𝑟 ≥ 2 and 𝑓 (𝑥) ≥ 𝑥 for 𝑥 ≥ 1), the

desired conclusion follows by Lemma 1.

Let now 𝑦, 𝑧 be nodes in different cliques, 𝑦 ∈ 𝐾𝑎𝑟 , 𝑧 ∈ 𝐾𝑎𝑠 ,

𝑎𝑟 > 𝑎𝑠 . We have 𝑑𝑒𝑔(𝑦) = 𝑎𝑟 − 1 > 𝑓 (𝑎𝑠 − 1) = 𝑓 (𝑑𝑒𝑔(𝑧)). By the

definition, adding edge 𝑦𝑧 is not an improving move.

Since 0 > 𝑓 (0) = −1 connecting any isolated node to any other

node is not an improving move. So 𝑔 is an APSN.

Conversely, let 𝑔 be an APSN. By applying points a) and b) of the

Theorem, we get that𝑔 has edges between every two vertices whose

degrees are in the same interval [𝑛∗
𝑖
, 𝑛∗
𝑖−1], where by convention

𝑛∗
0
=𝑚.

To infer the fact that 𝑔 has the structure claimed in the corollary

we need to prove that no other edges are present. Point c) of the

theorem excludes edges between node whose degrees are not in
the same interval.

The only potential trouble is that there might be a node 𝑥 of

degree 𝑛∗
𝑖
who is connected with nodes whose degrees are in both

intervals [𝑛∗
𝑖+1, 𝑛

∗
𝑖
] and [𝑛∗

𝑖
, 𝑛∗
𝑖−1], thus "joining two cliques". We

will show that something like this doesn’t happen by induction on

𝑖 .

Case 𝑖 = 1: Let 𝑧 be a node of maximum degree𝑚. Let 𝐴 be the

set of nodes with degree in the range [𝑛∗
1
, 𝑛∗

0
]. Then all the nodes

in 𝐴 are connected to each other. 𝑧 is not connected to any node

outside 𝐴. If there were some other node𝑤 in 𝐴 that is connected

to a node outside 𝐴 then 𝑤 would have degree higher than𝑚, a

contradiction. Hence nodes in 𝐴 form a connected component that

is a clique.

The induction step: Assume we have obtained 𝑙 − 1 connected

components that are cliques of size 𝑎1 > 𝑎2 > . . . > 𝑎𝑙−1 satisfying
the condition 𝑎𝑖 − 1 > 𝑓 (𝑎𝑖+1 − 1) for 𝑖 = 1, . . . , 𝑙 − 2. Applying the

reasoning in the induction case 𝑖 = 1 to the remaining graph we ob-

tain a connected component of size 𝑎𝑙 that is a clique. Furthermore

𝑎𝑙−1 − 1 > 𝑓 (𝑎𝑙 − 1), since nodes in the 𝑙 ’th clique component are

not connected to those in the 𝑙 − 1’st component.

It is possible that the tail of the resulting sequence 𝑎1, . . . , 𝑎𝑠
is composed of components of size 1, that is isolated nodes. The

required condition is satisfied, since 1 − 1 > 𝑓 (1 − 1) = 𝑓 (0) =

−1. □

In the previous theorem the condition 𝑓 (𝑥) ≥ 𝑥 is necessary: as

the next result shows, without it the structure of APSN is much

simpler:

Theorem 6. Consider a centrality game with upward degree ho-
mophilic centralities with common function 𝑓 (𝑥) = 𝑥 − 1. Then no
edge addition can be an improving move.

Assume that, additionally, for every agents 𝑖, 𝑗 such that 𝑖 𝑗 ∉ 𝑔
and 𝑑𝑒𝑔(𝑖) ≤ 𝑑𝑒𝑔( 𝑗) we have 𝐶𝑖 [𝑔 + 𝑖 𝑗] ≤ 𝐶𝑖 [𝑔]. Then the unique
APSN for the centrality game is the empty network ∅𝑛 .

Proof. Adding a missing edge 𝑖 𝑗 can never be an improving

move: to be so, one would need, simultaneously that 𝑑𝑒𝑔(𝑖) ≤
𝑑𝑒𝑔( 𝑗) − 1 and 𝑑𝑒𝑔( 𝑗) ≤ 𝑑𝑒𝑔(𝑖) − 1, which is impossible.

For similar reasons, removing an existing edge 𝑖 𝑗 is always im-

proving for one of the endpoints. Indeed, assume thatℎ is a network

containing edge 𝑖 𝑗 and, w.l.o.g. 𝑑𝑒𝑔(𝑖) ≤ 𝑑𝑒𝑔( 𝑗). Let𝑔 = ℎ−𝑖 𝑗 . Then
𝑢𝑖 (𝑔) − 𝑢𝑖 (ℎ) = 𝐶𝑖 [𝑔] − 𝐶𝑖 [ℎ] + 𝑐 > 0. So removing edge 𝑖 𝑗 is an

improving move for 𝑖 . □

Observation 1. The Banzhaf-Michalak centrality satisfies the
conditions of Theorem 6. Indeed, assume 𝑖 𝑗 ∉ 𝑔 and 𝑑𝑒𝑔(𝑖) ≤ 𝑑𝑒𝑔( 𝑗).
Then𝐶𝑖 [𝑔 + 𝑖 𝑗] −𝐶𝑖 [𝑔] = 1

2
𝑑𝑒𝑔 (𝑖 )+1 + 1

2
𝑑𝑒𝑔 ( 𝑗 )+1 − 1

2
𝑑𝑒𝑔 (𝑖 ) = 1

2
𝑑𝑒𝑔 ( 𝑗 )+1 −

1

2
𝑑𝑒𝑔 (𝑖 )+1 ≤ 0.

6 DOMINATION AND APSN IN BETWENNESS
CENTRALITY GAMES

In this section we completely characterize APSN for betweenness

centrality games. First, simple computations provide examples of

APSN with components that are not complete graphs: networks

𝐶4 + 𝑛𝐾1, 𝑛 ≥ 0. What about the general structure of APSN ? We

will show that the domination relation plays a decisive role in their

characterization. To accomplish this, we first prove:

Lemma 2. The following statements are true:
- Adding any bridge edge 𝑖 𝑗 weakly increases 𝑖’s betweenness
centrality, strictly unless 𝑖 was isolated. Consequently adding a
bridge edge is improving for 𝑖 , unless 𝑖 was isolated. Conversely,
a disconnecting edge removal is improving for 𝑖 iff 𝑖 was a
pendant node.

- Adding any non-bridge edge 𝑖 𝑗 weakly increases 𝑖’s between-
ness centrality.

We now prove the following result, which gives an unexpected

(and fairly elegant) algorithmic characterization of APSN for be-

tweenness games using the domination relation:

Theorem 7. Graphs 𝑔 that are APSN for betweenness centrality
games consist of isolated vertices plus at most one connected compo-
nent𝐶 with at least two vertices which satisfies the following condition:
𝑑𝑒𝑔(𝑙) ≥ 2 for every 𝑙 ∈ 𝐶 , 𝑑𝑖𝑎𝑚(𝐶) = 2 and for every 𝑖 ≠ 𝑗 ∈ 𝐶 ,
𝑖 𝑗 ∈ 𝐸 (𝑔) if and only if sets 𝑁 (𝑖) \ { 𝑗} and 𝑁 ( 𝑗) \ {𝑖} are incom-
parable, i.e. if none of 𝑖, 𝑗 dominates the other.
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Proof. First, it is easy to see that the networks that satisfy the

condition of Theorem 7 are APSN: indeed, by Lemma 2 isolated

vertices have no incentive to connect to anyone else, as their utility

would decrease. Consider, on the other hand two vertices 𝑖, 𝑗 in a

large component 𝐶 .

If 𝑖 𝑗 ∈ 𝐸 (𝑔) then, by the condition of the theorem, there exist

vertices𝑘 ∈ 𝑁 (𝑖)\{ 𝑗} and 𝑙 ∈ 𝑁 ( 𝑗)\{𝑖}. Since𝑑 (𝑘, 𝑗) ≤ 2 it follows

that 𝑘 − 𝑖 − 𝑗 is a shortest path between 𝑖 and 𝑗 that would disappear

if we dropped edge 𝑖 𝑗 , decreasing the betweenness centrality of 𝑖

and ultimately its utility. Similarly, if we dropped edge 𝑖 𝑗 the utility

of 𝑗 would also decrease, hence it is not an improving move.

On the other hand if 𝑖 𝑗 ∉ 𝐸 (𝑔) then 𝑁 (𝑖) \ { 𝑗} and 𝑁 ( 𝑗) \ {𝑖}
are comparable. Assume w.l.o.g. that 𝑁 (𝑖) \ { 𝑗} ⊆ 𝑁 ( 𝑗) \ {𝑖}. Then
every shortest path between two vertices 𝑠, 𝑡 ≠ 𝑖 that goes through

𝑖 stays a shortest path when we add edge 𝑖 𝑗 : This is clear when

𝑠, 𝑡 ≠ 𝑗 , so assume w.l.o.g. 𝑡 = 𝑗 . Then 𝑑 (𝑠, 𝑗) = 1. Adding edge 𝑖 𝑗

creates no new shortest paths, hence it is not an improving move

for 𝑖 .

Let us now prove the converse direction, that APSN satisfy the

conditions in the theorem. A first statement to prove is that any

APSN has at most one component with at least two vertices. Indeed,

if there were more than two such connected components then,

by Lemma 2, joining them by an edge 𝑖 𝑗 would be an improving

move for both 𝑖, 𝑗 . Second, we claim that this nontrivial component

has diameter 2: indeed, it cannot have diameter 1, as complete

graphs are not APSN. Assume there was a (shortest) path of length

3 𝑝−𝑞−𝑟−𝑠 between two vertices 𝑝, 𝑠 . Then 𝑝, 𝑠 would increase their
utility by connecting since, for instance, now there is a shortest

path from 𝑞 to 𝑠 going through 𝑝 . Third, this component has no

pendant vertices: if a node had degree 1, it would have, by Lemma 2,

an incentive to disconnect.

Consider a connected APSN 𝑔 and a pair 𝑖 𝑗 ∉ 𝑔, and assume

w.l.o.g. that adding edge 𝑖 𝑗 decreases the utility of 𝑖 for small 𝜖 > 0,

so that the move is not improving. Hence adding edge 𝑖 𝑗 does not

increase the betweenness of 𝑖 . Paths contributing positively to the

betweenness of 𝑖 before adding 𝑖 𝑗 are between nodes 𝑘1, 𝑘2 ∈
𝑁 (𝑖) that are not connected, so that a shortest path between 𝑘1, 𝑘2
goes through 𝑖 . Then adding edge 𝑖 𝑗 does not change the fraction

corresponding to 𝑘1, 𝑘2 in the betweenness of 𝑖 . Consider now the

shortest paths between 𝑘1 ∈ 𝑁 (𝑖)\{ 𝑗} and 𝑗 . Since the betweenness
of 𝑖 does not increase as a result of adding edge 𝑖 𝑗 , 𝑘1 must be

connected to 𝑗 . Hence 𝑗 dominates 𝑖 .

Consider now an edge 𝑖 𝑗 ∈ 𝑔. Since the removal of edge 𝑖 𝑗 is

not improving for either 𝑖 or 𝑗 , it means that there exists a shortest

path between some vertices 𝑠1 ≠ 𝑖 ≠ 𝑡1 that employs edge 𝑖 𝑗 . As

the diameter of 𝑔 is two, one of 𝑠1, 𝑡1 (say 𝑡1) must be 𝑗 , hence 𝑠 = 𝑠1
is a neighbor of 𝑖 that is not a neighbor of 𝑗 . Similarly, there must

be a vertex 𝑡 = 𝑡2 that is a neighbor of 𝑗 that is not a neighbor of 𝑖 .

Hence none of 𝑖, 𝑗 dominates the other. □

Observation 2. Complete bipartite graphs 𝐾𝑎,𝑏 , 𝑎, 𝑏 ≥ 2 satisfy
the conditions of the theorem, hence they are APSN. One could believe
that these are all connected APSN with at least 2 vertices, but this is
not true: a counterexample, found using computer simulations, is the
graph 𝑔 in Figure 4. 𝑔 is not bipartite as it has, e.g. triangle 459.
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Figure 4: Non-bipartite APSN for betweenness games.

7 OTHER RESULTS/CONJECTURES
In this section we study centrality games for some measures that

appear to satisfy none of Axioms 1,2,3: eccentricity centrality, ran-

dom walk betweenness and eigenvector centrality. First, we show

that eccentricity centrality is very close to obeying Axiom 2:

Lemma 3. Let 𝑔 be a network, 𝑖 a node in 𝑔 and 𝑗 another node
such that 𝑖 𝑗 ∉ 𝑔. The following are true:

- If 𝑗 ∉ 𝐶𝑜𝑛𝑛(𝑖) then 𝐸𝐶 (𝑖, 𝑔 + 𝑖 𝑗) ≤ 𝐸𝐶 (𝑖, 𝑔).
- If 𝑗 ∈ 𝐶𝑜𝑛𝑛(𝑖) then 𝐸𝐶 (𝑖, 𝑔 + 𝑖 𝑗) ≥ 𝐸𝐶 (𝑖, 𝑔). The inequality is
strict iff 𝑗 is on all shortest paths to all vertices 𝑘 farthest in 𝑔
from 𝑖 .

In spite of this result, the structure of APSN for eccentricity

centrality games is quite different from the one for centrality games

with measures satisfying Axiom 2:

Theorem 8. All vertices in connected components of size at least
three of an APSN have degree at least two. On the other hand all
connected, eccentricity-one graphs with min. degree 2 and at least two
nodes with degree at most 𝑛 − 2 are APSN. There exist (Fig. 5) APSN
with eccentricity two.
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Figure 5: APSN for eccentricity centrality games.

We weren’t able to obtain a full characterization of APSN in

this case, or analytical results for random walk betweenness and

eigenvector centrality. However, computer simulations suggest that

the following statements are true. The first one is interesting due

to apparent difference with the case of betweenness:

Conjecture 1. For random walk betweenness centrality the only
APSN are the empty graph ∅𝑛 and the complete 𝐾𝑛 .

As for eigenvector centrality, although it seems not to have any

monotonicity properties, experimental evidence is consistent with

the following conjecture, that seems to situate this measure together

with the monotonic ones:

Conjecture 2. The complete graphs 𝐾𝑛 are the only asymptoti-
cally pairwise stable networks for eigenvector centrality.
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8 LEARNING AGENT THRESHOLDS
In spite of the previous result, we can still talk about learning agent

utility functions. However, the problem that we will deal with is not
that of learning agent centralities (which we will, in fact, assume

known), but agent thresholds. In other words, we want to answer

the following variant of Q3: Can we learn (something about) agents’
thresholds from the structure of stable networks ?

The learning model we will assume is a type of oracle learning [1].
Specifically

4
, oracle queries are pairs (𝑔, 𝑖) consisting of a network

𝑔 and an agent index 𝑖 . Given query (𝑔, 𝑖) the oracle will either reply
with an APSN ℎ such that 𝐶𝑖 [ℎ] > 𝐶𝑖 [𝑔], or with "NONE", in the

case such an APSN ℎ does not exist.

It is important to realize that thresholds may fail to be fully

identifiable simply due to the coarse resolution of centralities: for
instance, any values between two consecutive integers (e.g. 2.3 and

2.7) are completely equivalent as thresholds for degree centrality,

since degrees in graphs are integral, and jumps in centrality (as a

result of an edge flip) have a magnitude at least one. The best we

can hope for in such a scenario is to identify the interval [2,3] as

an interval that contains the threshold. The interval corresponds

to a single edge flip in a network that decreased the centrality of

the given node below the threshold value.

A potential issue with the identification of thresholds is the fact

that (consistent with the model in our Corollary 1) we only get

APSN as oracle answers. If for all APSN 𝑔, 𝐶𝑖 [𝑔] < 𝜃𝑖 then all
estimates provided by the oracle on the value of the threshold are

too low. If this doesn’t happen, we can prove:

Theorem 9. Given an agent 𝑖 , assume that there exists an APSN
ℎ with 𝜃𝑖 ≤ 𝐶𝑖 [ℎ]. Then there exists an algorithm that uses oracle
queries and outputs an APSN𝑔 and edge 𝑖 𝑗 s.t.𝐶𝑖 [𝑔−𝑖 𝑗] ≤ 𝜃𝑖 ≤ 𝐶𝑖 [𝑔].
For linear centralities the algorithm runs in polynomial time.

9 RELATED LITERATURE
The area of network games is quite large, and a comprehensive

survey is impossible. We list here two such overviews: the first

one, most relevant to our interest is [38]. Another one with an

algorithmic bent is [51]. The model that we are concerned with is a

variant of the symmetric connectionmodel [37] (see also [36]). Some

notable subsequent work includes [21, 28, 39]. Many alternative

models have been investigated. A more preeminent one is [4].

Our work owes much to the axiomatic approach to network

centralities. For significant work in this area see [5, 8, 9, 47–49, 54].

More related work exists in the theoretical computer science lit-

erature: for example, Hopcroft and Sheldon [32] discuss an oriented

model in which nodes have control over outgoing edges. There is no

cost for changing their links, and their purpose is to increase their

Pagerank. They show that the Nash equilibria in this game have a

fairly sophisticated structure (see also Chen et al. [15]). Undirected

versions of this game have been studied [3]. Recently Kouroupas

et al. [41] have studied a model in which the utility of a node is

a product of two factors: content quality multiplied by the traffic

level. In this model pure Nash equilibria always exist. On the other

4
perhaps a more natural model would be one that centrality of node 𝑖 in APSN 𝑔,

𝐶𝑖 [𝑔]) can be bigger/smaller than some arbitrary target value. The point is that our

restricted query model is good enough.

hand Avin et al. [2] prove that preferential attachment models can

be seen as Nash equilibria of some network games.

Other related work comes from the sociology literature [13, 33,

44]. For instance, in the Buskens and Van De Rijt model every

node strives to fill "structural holes" (including lack of connnected-

ness) between nodes. This is somewhat analogous to maximizing

betweenness, but the precise model (and the results) are different.

Our model allows heterogeneity in agents’ utilities, correspond-

ing to distinct measures of centrality. Heterogeneous network for-

mation models have been studied before, e.g. Galeotti et al. [26].

Finally, several papers (e.g. [6, 18]) have treated the problem of

improving the centrality of a node by adding or removing links.

Our work is different in several respects: first of all, in our setting

all agents aim to improve their respective centralities. Second, in

our model maintaining a link has a (small) cost.

10 CONCLUSIONS, POSSIBLE EXTENSIONS
We have shown that our models can accommodate a wide range of

agent centrality objectives. Still, we do not see our results as ade-

quate enough yet for the analysis of real-life networks. They have,

instead, more of a proof-of-concept nature, and could conceivably

be made more realistic in many ways. Some variations (we believe)

worth investigating are listed below:

Probabilistic edge addition/removal: In real life an edge may

only form with some probability even though both agents would

benefit from it. Studying such a variation could produce networks

with core structures that are dense but not quite complete.

Strong and weak links, forced links, affiliation models: In

the model we have discussed all the links are weak links. A natural

extension allows for both strong and weak links. This would entail

using two types of costs: fixed, constant costs for the strong links,

small ("𝜖") costs for weak links. A second, orthogonal, distinction

that could be useful is that of forced versus free links. We assumed

implicitly that link formation is completely under the control of

the agent. Often this is not so: there are social ties in real life that

could be regarded as fixed, since severing them entails a significant

cost. Forced links may be a consequence of affiliation: people meet

as the result of joining the same clubs. A possibly relevant model is

the social effort model of [11]. Another one is the social clubs model

of [24]. For centrality in affiliation networks see [23].

Manipulating link strength: agents couldmanipulate link strength,
rather than completely severing them.

Tagged networks: agents have a tag and care about the tags of

their neighbors, like in Schelling’s segregation model.

Spatial agents: Agents interaction may result from placement in

space. A standard reference for spatial connection models is [28].

Multilayer networks: Sometimes (e.g. [20]) link formation may

encompass multiple, correlated, link types. E.g. two coworkers may

end up being friends as well. It would be interesting to formulate

multilayer extensions of the Jackson-Wolinsky model.

Overlapping communities: For centrality in such models see

[27, 30, 50, 52].

Dynamic models: Finally, our concepts of network stability are

steady-state concepts. It would be interesting to study the emerging

networks in dynamic models of network formation with a similar

philosophy.
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