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ABSTRACT
We consider the well-studied many-to-one bipartite matching prob-

lem of assigning applicants A to posts P where applicants rank

posts in the order of preference. This setting models many im-

portant real-world allocation problems like assigning students to

courses, applicants to jobs, amongst many others. In such scenarios,

it is natural to ask for an allocation that satisfies guarantees of the

form “match at least 80% of applicants to one of their top three

choices” or “it is unacceptable to leave more than 10% of appli-

cants unassigned”. The well-studied notions of rank-maximality

and fairness fail to capture such requirements due to their property

of optimizing extreme ends of the signature of a matching. We,

therefore, propose a novel optimality criterion, which we call as

the “cumulative better signature”.

We investigate the computational complexity of the new notion

of optimality in the setting where posts have associated fixed quotas.
We prove that under the fixed quota setting, the problem turns out

to be NP-hard under natural restrictions. We provide randomized

algorithms in the fixed quota setting when the number of ranks

is constant. We also study the problem under a cost-based quota
setting and show that min-cost cumulative better matching can be

computed efficiently. Apart from circumventing the hardness, the

cost-based quota setting is motivated by real-world applications like

course allocation or school choice where the capacities or quotas

need not be rigid.
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1 INTRODUCTION
In this paper, we consider the many-to-one bipartite matching prob-

lem where a set of applicants A are assigned to a set of posts P
and applicants rank posts in an order of preference possibly in-

volving ties. We say that 𝑝 and 𝑝 ′ are tied in the preference list

of applicant 𝑎 if the ranks on the edges (𝑎, 𝑝) and (𝑎, 𝑝 ′) are the
same. In a standard setting of the problem, a post 𝑝 has an input

quota 𝑞(𝑝) denoting the maximum number of applicants that can
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be assigned to 𝑝 . An applicant can be assigned to at most one post

and prefers to be matched over remaining unmatched. A matching

𝑀 is a subset of the edges such that every applicant has at most

one edge incident on it, and every post has at most 𝑞(𝑝) many

edges incident on it in𝑀 . The goal in such a setting is to compute

a matching that is optimal with respect to the preferences specified

by the applicants. This setting models any problem that can be

formulated as an allocation problem where some items are to be

allocated to agents that have preferences over them. This setting

is also called as the House Allocation setting in literature [1] and

several optimality criteria such as Pareto optimality [1], popular-

ity [15], rank-maximality [9, 11, 19] and fairness [10] have been

investigated for the one-sided preference list model. In this work,

we are motivated by two practical considerations of the problem –

(i) the measure of optimality and (ii) the assumption of fixed input

quotas present as a part of the input instance.

The standard notions of rank-maximality [11] and fairness [10]

(definitions given below) are not designed to capture requirements

of the form “output a matching (if possible) which matches at least

𝑘 out of 𝑛 applicants to one of the first or second choice posts” or

“the output matching must match at least ℓ out of 𝑛 applicants to

some post”. See Figure 1 for an example instance where the input

requirement could be “match at least 50% of applicants to their top

choice, at least 75% of the applicants to one of their first and second

choice”. The matching𝑀 (see Figure 1) satisfies this requirement

but, as will be seen, is neither rank-maximal nor fair. Furthermore,

if the requirement were to “output a matching that matches at

least 50% applicants to their rank-1 posts and all applicants to

one of their rank-1 or rank-2 posts”, then the instance (with unit

quotas) does not admit any such matching. However, it is easy to

see that if it possible to violate or increase the quota of posts, then

𝑀 ′ = {(𝑎1, 𝑝4), (𝑎2, 𝑝1), (𝑎3, 𝑝1), (𝑎4, 𝑝2), (𝑎5, 𝑝5), (𝑎6, 𝑝3)} satisfies
this requirement. In our work, we address the above by firstly

introducing a new notion of optimality and secondly by allowing

costs to control quotas of the posts. We need some definitions before

we formally define our problems.

Pareto-optimality [1] is the weakest notion that is expected of

any allocation – a matching is Pareto-optimal if no applicant can

improve its allocation without demoting some applicant. Stronger

notions of optimality like rank-maximality and fairness have been

studied. Both these are appealing since rank maximal as well as fair

matchings, apart from being Pareto-optimal, always exist, impose

a total order on the set of admissible matchings in the instance,

and are efficiently computable[10, 11, 19]. Rank-maximality and

fairness can easily be described as an optimization over the sig-
natures. For a matching 𝑀 , the signature 𝜎 (𝑀) is a 𝑟 + 1 tuple

(𝑥1, 𝑥2, . . . , 𝑥𝑟 , 𝑥𝑟+1) where 𝑥𝑖 denotes the number of applicants
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𝑎1 : 𝑝1, 𝑝4 𝑀𝑅 = {(𝑎1, 𝑝1), (𝑎2, 𝑝5), (𝑎3, 𝑝6),
𝑎2 : 𝑝1, 𝑝2, 𝑝5 (𝑎4, 𝑝2), (𝑎5 .𝑝4), (𝑎6, 𝑝3)}
𝑎3 : 𝑝1, 𝑝2, 𝑝6 𝑀𝐹 = {(𝑎1, 𝑝4), (𝑎2, 𝑝1), (𝑎3, 𝑝2),
𝑎4 : 𝑝2, 𝑝3 (𝑎4, 𝑝3), (𝑎5 .𝑝5), (𝑎6, 𝑝6)}
𝑎5 : 𝑝4, 𝑝5 𝑀 = {(𝑎1, 𝑝4), (𝑎2, 𝑝1), (𝑎3, 𝑝6),
𝑎6 : 𝑝3, 𝑝6 (𝑎4, 𝑝2), (𝑎5, 𝑝5), (𝑎6, 𝑝3)}

Figure 1: An instance with six applicants and six posts. Every
post has unit quota. Preference lists of applicants to be read
as: 𝑝1 is rank 1 post of 𝑎1, 𝑝4 is the rank 2 post of 𝑎1 and
so on. 𝑀𝑅 and 𝑀𝐹 are the rank-maximal and fair matching
respectively.𝑀 is an “in between” matching that is neither
rank-maximal matching nor fair matching.

matched to their rank-𝑖 post. The value 𝑥𝑟+1 denotes the number

of applicants left unmatched by the matching𝑀 .

Rank-maximality: For two matchings𝑀 and𝑀 ′
with signatures

𝜎 (𝑀) = (𝑥1, 𝑥2, . . . , 𝑥𝑟 , 𝑥𝑟+1) and 𝜎 (𝑀 ′) = (𝑦1, 𝑦2, . . . , 𝑦𝑟 , 𝑦𝑟+1), we
say𝑀 >R 𝑀 ′

, that is,𝑀 is better than𝑀 ′
w.r.t. rank-maximality

if there exists an ℓ such that 1 ≤ ℓ ≤ 𝑟 such that 𝑥ℓ > 𝑦ℓ and for

1 ≤ 𝑗 ≤ ℓ − 1, we have 𝑥 𝑗 = 𝑦 𝑗 . A matching𝑀 is rank-maximal if

𝑀 has the maximum signature under the ordering >R .
Fairness: For two matchings 𝑀 and 𝑀 ′

with signatures 𝜎 (𝑀) =
(𝑥1, 𝑥2, . . . , 𝑥𝑟 , 𝑥𝑟+1) and 𝜎 (𝑀 ′) = (𝑦1, 𝑦2, . . . , 𝑦𝑟 , 𝑦𝑟+1), we say that

𝑀 >F 𝑀 ′
, that is, 𝑀 is better than 𝑀 ′

w.r.t. to fairness if there

exists an ℓ , 1 < ℓ ≤ 𝑟 + 1 such that 𝑥ℓ < 𝑦ℓ and for ℓ + 1 ≤ 𝑗 ≤ 𝑟 + 1,

we have 𝑥 𝑗 = 𝑦 𝑗 . A matching 𝑀 is fair if 𝑀 has the maximum

signature under the ordering >F .
Both rank-maximality and fairness impose a total order on the

set of matchings admissible in the instance. Thus, all rank-maximal

matchings have the same signature and the same holds for all fair

matchings. Rank-maximal or fair matching optimize the head or

tail end, respectively of the signature and hence one may perform

poorly on the other criteria. Consider the matchings 𝑀𝑅 and 𝑀𝐹

as shown in Figure 1 which are rank-maximal and fair matchings

in the instance with 𝜎 (𝑀𝑅) = (4, 0, 2, 0) and 𝜎 (𝑀𝐹 ) = (1, 5, 0, 0).
As mentioned earlier, if the requirement is to match at least 50%

of the applicants (3 out of 6) to their top choice and at least 75%

of applicants to one of their first and second choice, neither 𝑀𝑅

nor 𝑀𝐹 satisfy the requirement. Note that the instance admits a

matching 𝑀 where 𝜎 (𝑀) = (3, 2, 1, 0) which satisfies the above

requirement. The matching 𝑀 lies “in between” 𝑀𝑅 and 𝑀𝐹 and

although𝑀 is neither optimal w.r.t. to rank-maximality nor fairness,

it is appealing since it ismore rank-maximal than𝑀𝐹 and fairer than

𝑀𝑅 . This motivates our new definition of comparing two signatures

called cumulative better signature.
Cumulative better signature: Let 𝜌 = (𝑥1, . . . , 𝑥𝑟+1) and 𝜌 ′ =
(𝑦1, . . . , 𝑦𝑟+1) denote two signatures. We say 𝜌 ≥C 𝜌 ′ (𝜌 is cumu-

lative better signature than or equal to 𝜌 ′) if

ℓ∑︁
𝑗=1

𝑥 𝑗 ≥
ℓ∑︁
𝑗=1

𝑦 𝑗 for all 1 ≤ ℓ ≤ 𝑟 + 1.

It is clear that a pair of signatures may be incomparable with re-

spect to ≥C , for instance (1, 2, 0) and (2, 0, 1) are incomparable with

respect to ≥C . However, if for two matchings𝑀 and𝑀 ′
we have

𝜎 (𝑀) ≥C 𝜎 (𝑀 ′), it implies that 𝑀 is better than or equal to 𝑀 ′

with respect to both rank-maximality and fairness.

Now we redefine our goal in the standard setting. We are given

an instance of the bipartite matching problem with one sided pref-

erences and an input signature 𝜌 . The goal is to decide whether the

instance admits a matching 𝑀 which is cumulative better than 𝜌

and if so output the matching. In the instance in Figure 1 for the in-

put signature (2, 3, 1, 0), we observe that𝑀 satisfies the criteria that

𝜎 (𝑀) = (3, 2, 1, 0) ≥C (2, 3, 1, 0). We remark that 𝜎 (𝑀) ̸≥C 𝜎 (𝑀𝑅)
and 𝜎 (𝑀) ̸≥C 𝜎 (𝑀𝐹 ).

In most literature, matching with one-sided preferences is stud-

ied with fixed input quotas as described above. However, in practical

applications, the quotas are determined by considerations like re-

source availability, classroom sizes, and the availability of teachers.

Furthermore, these quotas may not be fixed and rigid as assumed in

most of the works. Recent works on the stable allocation [7, 14, 20]

addresses the issues with rigid quotas and modifies or extends the

capacity of using flexible quotas.

In a similar spirit, we study a cost-based quota setting for our

problem, which allows us to capture the fact that quotas may not be

rigid but controlled by a cost associated with a post. We denote this

as the cost-based quota setting as opposed to the standard-setting,

which we denote as the fixed quota setting. In the cost-based setting,
the input is a bipartite graph 𝐺 , preferences associated with every

applicant and a cost 𝑐 (𝑝) associated with every post 𝑝 , instead of

the quota 𝑞(𝑝). The cost 𝑐 (𝑝) denotes the cost of matching a single

applicant to the post 𝑝 . Given the input costs, the cost of a matching

𝑀 is defined as 𝑐 (𝑀) = ∑
𝑝∈P 𝑐 (𝑝) · |𝑀 (𝑝) |, where 𝑀 (𝑝) denotes

the set of applicants matched to the post 𝑝 . Our goal is to output a

matching of minimum cost w.r.t the optimality criteria specified.

We investigate the new notion of optimality in both the fixed

quota setting and the cost-based setting. We are now ready to

formally define our problems.We assume that the input is a bipartite

graph 𝐺 = (A ∪ P, 𝐸) where A denotes the set of applicants,

P denotes the set of posts, and an edge (𝑎, 𝑝) ∈ 𝐸 denotes that

applicant 𝑎 can be matched or assigned to the post 𝑝 . Applicants

rank posts in order of preference with ties allowed in preference

lists. When quotas are a part of the input, we are in the fixed quota

setting whereas when costs are a part of the input we are in the

cost-based (quota) setting.

Fixed quota setting: A first problem that we investigate in this

setting is : given an instance 𝐺 of the one-sided preference list

problem in the fixed quota setting, and a signature 𝜌 , decide whether

𝐺 admits a matching𝑀 such that 𝜎 (𝑀) = 𝜌 . We call this the exact

signature in the fixed quota setting EXACT-SIGN-Q problem. We

show that this problem is NP-hard under severe restrictions. Next,

we investigate whether there exists a matching that is cumulative

better than a given input signature 𝜌 . We call this the cumulative

better signature in the fixed quota setting CUM-SIGN-Q problem.

We show that the CUM-SIGN-Q problem also turns to be NP-hard.

We remark that this is in contrast to analogous questions that can

be asked for rank-maximality or fairness. That is, given an instance

𝐺 and a signature 𝜌 , it is possible to answer in polynomial time
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whether 𝐺 admits a matching 𝑀 whose signature is more rank-

maximal than 𝜌 . This follows from the fact that a rank-maximal

matching can be computed efficiently [11, 19]. The same holds true

for fair matchings. We complement the hardness results for EXACT-
SIGN-Q and CUM-SIGN-Q by presenting randomized polynomial-

time algorithms for the case when the number of ranks is a constant.

Important real-world applications of matching problems such as

the National Residency Matching Program [12] and the Scottish

Foundation Allocation Scheme [21] have bounds on the length of

agent preference lists.

Cost-based setting: Next, we investigate the complexity of the

above questions in the cost-based setting. Given an instance 𝐺

of the one-sided preference list problem in the cost-based setting,

and a signature 𝜌 , does 𝐺 admit a matching 𝑀 such that 𝜎 (𝑀) =
𝜌? We call this the EXACT-SIGN-C problem and show that the

problem admits a polynomial-time algorithm using a reduction

to the network flow problem. A natural question is to compute a

matching that achieves the signature 𝜌 at the minimum cost. We

denote this problem as the exact signature at minimum cost in the

cost-based setting, abbreviated as EXACT-SIGN-MIN-C.
Our next problem captures the fact that we are interested in a

matching of minimum cost which has signature at least as good as

the given signature. Given an instance 𝐺 of the one-sided bipartite

matching problem in the cost-based setting, and an input signature

𝜌 , output a matching 𝑀 (if one exists), such that signature of 𝑀

is cumulative better than 𝜌 and 𝑀 has minimum cost amongst

all matchings satisfying the property. We denote this problem as

the cumulative better signature at minimum cost in the cost-based

quotas setting, abbreviated asCUM-SIGN-MIN-C. In contrast to the
fixed quota setting, the problem of achieving a matching with exact

signature and cumulative better signature are efficiently solvable

in the cost-based setting via suitable flow networks.

1.1 Our Results
Now we state our theoretical results formally.

Theorem 1.1. The EXACT-SIGN-Q problem is NP-hard even when
preferences of all applicants are strict and 𝑞(𝑝) = 1 for every post
𝑝 ∈ 𝑃 . The EXACT-SIGN-Q problem admits a randomized polynomial
time algorithm when the number of ranks is 𝑂 (1).

Theorem 1.2. The CUM-SIGN-Q problem is NP-hard even when
preferences of all applicants are strict and 𝑞(𝑝) = 1 for every post
𝑝 ∈ 𝑃 . The CUM-SIGN-Q problem admits a randomized polynomial
time algorithm when the number of ranks is 𝑂 (1).

Proposition 1.3. The EXACT-SIGN-C problem admits a polyno-
mial time algorithm via a single min-cost flow computation.

Theorem 1.4. The EXACT-SIGN-MIN-C and the CUM-SIGN-
MIN-C problem both admit polynomial time algorithms via a single
min-cost flow computation.

We remark that the algorithms for the cost-based setting in

Proposition 1.3 and Theorem 1.4 use flow networks in which edges

have capacities (upper-bounds) as well as demands (lower-bounds).

Flow networks have been used earlier to compute pareto-optimal

matchings [4, 5] and popular and rank-maximal matchings [18] in

the one-sided preference list setting.

Experimental evaluation: We complement our theoretical re-

sults by an experimental evaluation of the new notion of optimality

for the fixed quota setting as well as the cost-based setting. We

conduct our experiments on the available real-world data sets as

well as synthetically generated data sets.

• Fixed quota setting: For each instance, we select an in-

put signature 𝜌 such that the instance admits a matching

with signature which is cumulatively better than 𝜌 . The

rank-maximal matching as well as the fair matching in the

instance both fail to satisfy the input requirement 𝜌 . This

illustrates that even when an instance admits a matching

with the desired signature, rank-maximality or fairness need

not satisfy the requirement.

• Cost-based setting: We begin with an instance of the fixed

quota setting and select signature 𝜌 such that the instance

does not admit a matching which is cumulatively better than

𝜌 in the fixed quota setting. We convert the input instance

to a cost based setting instance by choosing three natural

cost functions. Each of the cost functions assigns a cost to

a post based on input quota and other parameters. For the

cost-based setting for any signature 𝜌 , there always exists

a matching which is cumulatively better than 𝜌 . We use

our algorithm in Theorem 1.4 to compute a matching with

minimum cost. We measure for every post the violation in

its fixed quota with respect to our output min-cost match-

ing. We report the maximum violation across all posts and

the total violation. Our experiments suggest a possibility of

transforming an instance of the fixed quota setting to an

instance of the cost-based setting by an appropriate choice

of cost function.

1.2 Related Works
The closest to our work in the flexible quota model is the recent

work by [14] in which they study the stable matching setting where

there is a cost 𝑐 associated with matching an agent to a program.

Recently, Gajulapalli et al. in [7] studied a two-roundmechanism for

the school choice problem in the two-sided setting. Here a stable

matching is computed in the first round using the initial fixed

quotas for every school. In the second round, some schools are

allowed to increase their quota, or new students may participate

in the allocation process, and a stable assignment, which is an

extension of the stable matching in the first round, is computed.

In a similar model by Rios et al. [20] in the context of the Chilean

college admission process with only one-sided ties are allowed,

flexible quotas are used as a tie-breaker.

Our exact signature problem is related to the rainbow matching

and exact matching problems. In rainbow matching and related

problems [3, 6, 13], the input is an edge-coloured graph, which need

not be properly coloured. In some variants, the objective is to find a

matching with the maximum number of colours. The Exact Match-

ing problem [17] is also related to our problem, and we utilize this

connection to design our randomized algorithms. The exact match-

ing problem considers a graph whose edges are coloured red or blue

and asks to find a perfect matching with exactly 𝑘 red edges. It can

be seen that both the exact matching problem as well as some rain-

bow matching problems on bipartite graphs ask for matchings with
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a particular signature when we have a bijection between ranks and

colours. For example, asking for a matching with all of the colours

is equivalent to asking for a matching with signature (1, 1, . . . , 1)
if we have a bijection between colours and ranks. Similarly, the

latter problem asks for a matching with signature (𝑘, 𝑛 − 𝑘), where
𝑛 is the number of vertices. The algorithm from [17] for the exact

matching problem readily generalizes to solve EXACT-SIGN-Q. We

modify this algorithm to solve the CUM-SIGN-Q problem. To the

best of our knowledge, the isolation lemma from [17] has not been

used before in the context of matchings with preferences.

2 ALGORITHMIC RESULTS IN THE
COST-BASED SETTING

Our main technique in the cost-based setting is to reduce the prob-

lem to the max-flow problem[2] in a network having costs as well

as demands (lower-bounds) on the edges. To begin with, we as-

sume that the input instance admits a matching with signature

𝜌 . We then show the flow network construction for the warm-up

problem EXACT-SIGN-MIN-C and build upon that to solve the

problem CUM-SIGN-MIN-C. Our reduction can be considered an

extension of the standard bipartite matching problem to the flow

network reduction. In this standard reduction, we have one node

in the network for every vertex in the input graph 𝐺 , and there

are edges connecting source to applicant nodes, applicant nodes

to post nodes and post nodes to the sink. In our flow network, we

introduce rank nodes to capture the rank of every (𝑎, 𝑝) edge in 𝐺 .

Instead of the direct connection, now the post nodes are connected

to the sink via rank nodes. We guarantee the capture of the ranks

by duplicating the post nodes 𝑟 times where 𝑟 is the largest possible

rank in 𝐺 . Now let the input signature 𝜌 be (𝑥1, 𝑥2, . . . , 𝑥𝑟 , 𝑥𝑟+1).
We use demands on certain special edges (bold edges in Figure 2) to

decide whether 𝐺 has a matching with exact signature 𝜌 . The idea

is to set the demand on these special edges as its capacity such that

it is possible to recover a matching from the flow network with 𝑥𝑖
edges of rank-𝑖 . Now we describe our flow network construction

formally.

2.1 Algorithm for EXACT-SIGN-MIN-C
We design a min-cost flow network 𝐻 = (𝑉𝐻 , 𝐸𝐻 ) with the follow-

ing vertex and edge description. We call the vertices of𝑉𝐻 as nodes

throughout the paper. The network 𝐻 has the set of nodes

𝑉𝐻 = {𝑠, 𝑡, 𝑑} ∪𝑉𝐴 ∪𝑉𝑃 ∪𝑉𝑅 where,

𝑉𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}

𝑉𝑃 = {𝑝 ( 𝑗)
𝑖

| 1 ≤ 𝑖 ≤ |P| , 1 ≤ 𝑗 ≤ 𝑟 }

𝑉𝑅 = {𝑟 (1) , 𝑟 (2) , . . . , 𝑟 (𝑟+1) }.
Assuming |A| = 𝑛, we have 𝑛 applicant nodes in 𝑉𝐴 , one per each

applicant in A, 𝑟 + 1 rank nodes in 𝑉𝑅 , and for every post 𝑝𝑖 in

P, we make a copy of it for each rank, and hence we have |P | 𝑟
post nodes in 𝑉𝑃 . In addition to these nodes, we have a source 𝑠 ,

sink 𝑡 , and a dummy node 𝑑 that lets us capture the number of

unmatched applicants. For a rank- 𝑗 , we denote the rank node as

𝑟 ( 𝑗) , and for a post 𝑝𝑖 ∈ P, the corresponding post node as 𝑝
( 𝑗)
𝑖

.

See Figure 2 for an illustration. Every edge 𝑒 in the network has

a cost 𝑐 (𝑒), a demand 𝑞− (𝑒) , and a capacity 𝑞+ (𝑒), represented by

𝑠

𝑑 𝑟 (𝑟+1) 𝑡

𝑟 (1)

𝑟 (2)

𝑟 (𝑟 )

.

.

.

𝑝
(1)
1

𝑝
(1)
2

𝑝
(1)
|P |

.

.

.

𝑝
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1

𝑝
(2)
2

𝑝
(2)
|P |

.

.

.

.

.

.

𝑝
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[0, 0, 1]

[0,0,𝑛] [0,𝑛,𝑛]

Figure 2: The min-cost flow network with demands on edges
(𝐻 ) for EXACT-SIGN-MIN-C. Every edge 𝑒 in 𝐻 has an associ-
ated vector[𝑐 (𝑒), 𝑞− (𝑒), 𝑞+ (𝑒)]. All edges from 𝑠 to applicants,
and applicants to dummy post 𝑑 have vector [0, 0, 1]. All edges
except dashed edges has a cost of 0, and all edges except bold
edges has a demand of 0.

the vector [𝑐 (𝑒), 𝑞− (𝑒), 𝑞+ (𝑒)]. Now we define the edges and their

corresponding vector. The edge set

𝐸𝐻 =𝐸𝑠𝐴 ∪ 𝐸𝐴𝑃 ∪ 𝐸𝐴𝑑 ∪ 𝐸𝑃𝑅 ∪ 𝐸𝑅𝑅

∪ {(𝑑, 𝑟 (𝑟+1) ), (𝑟 (𝑟+1) , 𝑡)}, where

- 𝐸𝑠𝐴 = {(𝑠, 𝑎) | 𝑎 ∈ 𝑉𝐴} are the set of edges from source node

to applicant nodes with vector as [0, 0, 1].
- 𝐸𝐴𝑃 = {(𝑎, 𝑝 ( 𝑗)

𝑖
) | 𝑎 ∈ 𝑉𝐴 , 𝑝

( 𝑗)
𝑖

∈ 𝑉𝑃 , 𝑝𝑖 is rank- 𝑗 post of 𝑎 in

𝐺} are the set of edges from applicant nodes to post nodes

with vector as [𝑐 (𝑝𝑖 ), 0, 1]. Recall that 𝑐 (𝑝𝑖 ) is the cost of

matching one applicant to the post 𝑝𝑖 in 𝐺 .

- 𝐸𝐴𝑑 = {(𝑎, 𝑑) | 𝑎 ∈ 𝑉𝐴} are the set of edges from applicant

nodes to the dummy node 𝑑 with vector as [0, 0, 1].
- 𝐸𝑃𝑅 = {(𝑝 ( 𝑗)

𝑖
, 𝑟 ( 𝑗) ) | 𝑝 ( 𝑗)

𝑖
∈ 𝑉𝑃 , 𝑟

( 𝑗) ∈ 𝑉𝑅 \ 𝑟 (𝑟+1) }, are the
set of edges from post nodes to the rank nodes with vector

as [0, 0, 𝑛 ( 𝑗)
𝑖

], where 𝑛 ( 𝑗)
𝑖

is the number of applicants who

treat 𝑝𝑖 as rank- 𝑗 post in 𝐺 .

- 𝐸𝑅𝑅 = {(𝑟 ( 𝑗) , 𝑟 ( 𝑗+1) ) | 𝑟 ( 𝑗) , 𝑟 ( 𝑗+1) ∈ 𝑉𝑅}, are the edges con-
necting node 𝑟 ( 𝑗) to the node 𝑟 ( 𝑗+1) with corresponding

vector as [0,∑𝑗

ℓ=1
𝑥ℓ ,

∑𝑗

ℓ=1
𝑥ℓ ].

The edge (𝑑, 𝑟 (𝑟+1) ) connects dummy node to the rank node with

vector as [0, 0, 𝑛], and the edge (𝑟 (𝑟+1) , 𝑡) from rank node 𝑟 (𝑟+1) to
sink 𝑡 has vector [0, 𝑛, 𝑛]. In the network 𝐻 , all edges except the

edges in 𝐸𝐴𝑃 (see dashed edges in Figure 2) have cost 0, and these

edges control the cost of the flow, which corresponds to the cost of

the matching. Observe that in𝐻 , all edges except 𝐸𝑅𝑅∪{(𝑟 (𝑟+1) , 𝑡)}
(see bold edges in Figure 2) have a demand of 0, and these edges

control the signature of the output matching. We remark that a
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natural way to connect posts to sink is by adding a directed edge

from rank node 𝑟 ( 𝑗) to sink 𝑡 with a vector [0, 𝑥 𝑗 , 𝑥 𝑗 ]; however,
we chose the connections as mentioned above since it allows us

to readily adapt the network 𝐻 to solve the cumulative signature

problem. In order to argue the correctness of our reduction, it is

useful to extend the definition of a signature of a matching to the

signature of a flow in the network 𝐻 .

Definition 2.1 (Signature of flow in the network 𝐻 ). The signature
of a flow 𝑓 in the network 𝐻 is an 𝑟 + 1 tuple denoted by 𝜎 (𝑓 ) =
(𝑦1, 𝑦2, . . . , 𝑦𝑟 , 𝑦𝑟+1). We define each component 𝑦 𝑗 of 𝜎 (𝑓 ) as:

𝑦 𝑗 =


𝑓

(
(𝑟 (1) , 𝑟 (2) )

)
, 𝑗 = 1

𝑓

(
(𝑟 ( 𝑗) , 𝑟 ( 𝑗+1) )

)
− 𝑓

(
(𝑟 ( 𝑗−1) , 𝑟 ( 𝑗) )

)
, 2 ≤ 𝑗 ≤ 𝑟

𝑓

(
(𝑟 (𝑟+1) , 𝑡)

)
− 𝑓

(
(𝑟 (𝑟 ) , 𝑟 (𝑟+1) )

)
, 𝑗 = 𝑟 + 1

We defer the detailed proofs to the full version for all the results

presented in this section and give only the key ideas. We claim the

following results about the flow network 𝐻 .

Lemma 2.2. Every feasible flow 𝑓 in𝐻 has the signature 𝜎 (𝑓 ) = 𝜌.

Proof Sketch. Observe that the bold edges in Figure 2 capture

the signature of the flow. Note that the demand on these edges

is exactly equal to their capacity; hence, from Definition 2.1 any

feasible flow 𝑓 in 𝐻 has the signature 𝜎 (𝑓 ) = 𝜌 . □

Lemma 2.3. 𝑀 is a matching in 𝐺 with signature 𝜎 (𝑀) = 𝜌 iff
there is a feasible flow 𝑓 in 𝐻 such that 𝑐 (𝑓 ) = 𝑐 (𝑀)

Proof Sketch. Given a matching 𝑀 in 𝐺 with 𝜎 (𝑀) = 𝜌 , we

construct a feasible flow 𝑓 in𝐻 as follows. If an applicant 𝑎 ∈ 𝑀 (𝑝𝑖 ),
and 𝑝𝑖 is the rank- 𝑗 post of 𝑎, route 1 unit of flow through the path

⟨𝑠, 𝑎, 𝑝 ( 𝑗)
𝑖

, 𝑟 ( 𝑗) , 𝑟 ( 𝑗+1) , . . . , 𝑟 (𝑟+1) , 𝑡⟩. For an unmatched applicant 𝑎,

route 1 unit of flow through the path ⟨𝑠, 𝑎, 𝑑, 𝑟 (𝑟+1) , 𝑡⟩.
For the other direction, we construct the matching𝑀 in𝐺 cor-

responding to a feasible flow 𝑓 in 𝐻 as follows. For an applicant

𝑎, consider the corresponding simple 𝑠 to 𝑡 path carrying 1 unit of

flow. If the path is ⟨𝑠, 𝑎, 𝑝 ( 𝑗)
𝑖

, 𝑟 ( 𝑗) , 𝑟 ( 𝑗+1) , . . . , 𝑟 (𝑟+1) , 𝑡⟩, add (𝑎, 𝑝𝑖 ) in
𝑀 . Observe that 𝑐 (𝑀) = 𝑐 (𝑓 ) in both cases. □

Thus, we can solve EXACT-SIGN-MIN-C using a single min-cost

flow computation with demands on edges – this proves the first part

of Theorem 1.4. The time required to solve EXACT-SIGN-MIN-C
is at most the time needed to solve the min-cost flow network 𝐻

with demands. The running time required to solve min-cost flow

network problem is𝑂 (( |𝐸𝐻 | log |𝑉𝐻 | ) ( |𝐸𝐻 | +|𝑉𝐻 | log |𝑉𝐻 | )) using
the enhanced capacity scaling algorithm [2]. If we omit the costs

in 𝐻 , the question of whether the instance admits a feasible flow

will solve the EXACT-SIGN-C problem using a single min-cost flow

computation with demands on edges – this proves Proposition 1.3.

2.2 Algorithm for CUM-SIGN-MIN-C
In our EXACT-SIGN-MIN-C problem, we were looking for exactly

𝑥𝑖 many applicants to be matched to rank-𝑖 , and to ensure this, we

set the capacity of our bold edges equal to its demand. However,

in CUM-SIGN-MIN-C problem, it is desirable to match more ap-

plicants to a particular rank-𝑖 while maintaining the cumulative

sum of the number of applicants matched up to rank-𝑖 at least as

good as that in the input signature. To maintain the cumulative

better signature property, we keep the demand on the bold edges as

the same but, to allow the possibility of matching more applicants,

we set the capacity on these edges as 𝑛. That is, we do a simple

modification to the network 𝐻 by setting the capacity of all the

edges in 𝐸𝑅𝑅 as 𝑛, and we keep everything else the same. We call

the modified network �̃� and claim the following results, and these

results, in turn, prove the second part of Theorem 1.4.

Lemma 2.4. Every feasible flow 𝑓 in �̃� has the signature 𝜎 (𝑓 ) ≥C
𝜌 .

Corollary 2.5. Every feasible flow in �̃� has signature 𝜎 (𝑓 ) ≥C
𝜌 and 𝜎 (𝑓 ) is better than 𝜌 with respect to rank-maximality and
fairness. That is 𝜎 (𝑓 ) ≥R 𝜌 and 𝜎 (𝑓 ) ≥F 𝜌

Given an instance 𝐺 and a signature 𝜌 , our goal is to output a

min-cost matching𝑀 with signature 𝜎 (𝑀) ≥C 𝜌 . Recall that there

can be many matchings with their signature cumulatively better

than 𝜌 , and the network �̃� can output any one of these. However,

we can ask for some additional criteria such as amongst all the

min-cost matchings that have a signature cumulatively better than

𝜌 , output one which is rank-maximal or fair. We defer these details

in the full version of the paper.

3 RANDOMIZED ALGORITHMS IN THE FIXED
QUOTA SETTING

Having considered the cost-based setting, we now return to the

fixed quota setting. Given a graph 𝐺 = (A ∪ P, 𝐸) and an input

signature 𝜌 , we say that any matching𝑀 with 𝜎 (𝑀) = 𝜌 is an ESM
(or Exact Signature Matching) for (𝐺, 𝜌) and any matching𝑀 with

𝜎 (𝑀) = 𝜌 ′ ≥C 𝜌 is a CSM (or Cumulative Signature Matching)

for (𝐺, 𝜌). The problems EXACT-SIGN-Q and CUM-SIGN-Q turn

out to be related, and we solve their decision version using sim-

ilar techniques. As mentioned earlier, we utilize the connection

between our problem and the exact matching problem and design a

randomized algorithm that outputs YES with probability > 1/2 for
YES instances and outputs NO with probability 1 for NO instances.

By applying standard techniques, this algorithm can be repeatedly

used to recover the desired matching with high probability.

3.1 Algorithm for EXACT-SIGN-Q
We can assume without loss of generality that we are in the one-to-

one setting, i.e. that every post has capacity 1. If not, create 𝑞(𝑝)
copies of that post, each of capacity 1 and the same neighbourhood.

Let the applicants rank each of these posts with the same rank.

This adds a polynomial overhead to the instance size since the

number of posts increases by at most a factor of |A|. We may also

assume

∑
1≤𝑖≤𝑟 𝜌𝑖 = |A| = |P |, so that we are effectively testing the

existence of some perfect matching. We remark that this is without

loss of generality since we may add some dummy applicants and

posts to ensure this condition.We defer the details to the full version.

We now describe the randomized algorithm from Theorem 1.1.

Proof of Theorem 1.1(Algorithm). Wefirst assignweights ac-

cording to a process from [17] to get a weight𝑤𝑒 for every edge 𝑒 .

We then come up with a modified version of their isolation lemma.
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The process of adding weights is as follows : for every edge, as-

sign to it a weight randomly chosen from {1, 2, . . . , 2|𝐸 |}. We use

Lemma 3.1 in the same spirit as in [17]. The proof is identical to

theirs, and follows by restricting calculations to ESMs instead of

perfect matchings. See full version of the paper for the proof.

Lemma 3.1 (Isolation Lemma for ESMs).

Pr[𝐺 has a unique minimum weight ESM] ≥ 1

2

.

Now, we construct a modified adjacency matrix 𝐵 for the graph

𝐺 . Define

𝐵𝑢,𝑣 =

{
0 if (𝑢, 𝑣) ∉ 𝐸

2
𝑤(𝑢,𝑣)𝑦𝑖 if (𝑢, 𝑣) ∈ 𝐸 and has rank-𝑖

where 𝑦𝑖 is a new variable that we define. This is enough for

us to solve the exact version. Since we assumed that |A| = |P |, we
have that 𝐵 is a square matrix. Let it have dimension 𝑛 × 𝑛. Now

consider det(𝐵). Let 𝑆𝑛 be the set of all permutations of [𝑛]. Then
we have

det(𝐵) =
∑︁
𝑠∈𝑆𝑛

(−1)sgn(𝑠)
∏

𝑢∈[𝑛]
𝐵𝑢,𝑠 (𝑢) .

It can be seen as a polynomial in the variables 𝑦1, 𝑦2, . . . , 𝑦𝑟 . We

claim that this polynomial has a non-zero coefficient for the mono-

mial 𝜋 =
∏

𝑖 𝑦
𝜌𝑖
𝑖

with probability at least
1

2
if 𝐺 has a matching

with signature 𝜌 . The reverse direction is immediate, since 𝜋 can

appear only if there is a matching with exactly 𝜌𝑖 edges of rank-𝑖

for every 𝑖 .

Now we look at the terms that make up coefficient of 𝜋 . If there

is a unique ESM, then we are done since the coefficient has to be

non-zero. Suppose not, assume that there are ESMs𝑀1, 𝑀2, . . . , 𝑀𝑡 .

Let them be ordered by weight so that 𝑤 (𝑀1) ≤ 𝑤 (𝑀2) ≤ . . ..

Then, we have that the coefficient of 𝜋 is

± 2
𝑤 (𝑀1) ± 2

𝑤 (𝑀2) ± . . . ± 2
𝑤 (𝑀𝑡 )

= 2
𝑤 (𝑀1)

(
±1 ± 2

𝑤 (𝑀2)−𝑤 (𝑀1) ± . . . ± 2
𝑤 (𝑀𝑡 )−𝑤 (𝑀1)

)
.

Note that the signs (±) depend on the parity of the correspond-

ing permutation. By Lemma 3.1, we have that there is a unique

minimum weight matching with probability at least
1

2
. Then with

the same probability, we have that the term inside the parentheses

must be an odd integer, since it is an odd integer (±1) added to a

sequence of even integers (2
𝑤 (𝑀𝑖 )−𝑤 (𝑀1)

is even since the term in

the exponent is a non-zero positive integer). Thus, the coefficient

is non-zero with probability at least
1

2
. □

3.2 Algorithm for CUM-SIGN-Q
We can again assume without loss of generality that we are testing

for a perfect matching. We now describe the randomized algorithm

from Theorem 1.2. The main difficulty in generalizing the algorithm

for EXACT-SIGN-Q is that an input signature 𝜌 to CUM-SIGN-Q
does not give us any handle on the signature of the output matching.

For example, an input 𝜌 = (1, 1) gives us two possible matchings

that would satisfy the constraints. One with signature 𝜌 itself and

one with signature (2, 0). We can possibly iterate over all possible

signatures 𝜌 ′ such that 𝜌 ′ ≥C 𝜌 and apply the algorithm from

Theorem 1.1. This requires possibly 𝑛𝑟 calls to the previous algo-

rithm. We design an alternate algorithm that avoids this brute-force

method but does not improve the complexity owing to overhead due

to arithmetic on large numbers.We do so by letting a rank-𝑖 edge act

as a rank- 𝑗 for all 𝑗 ≥ 𝑖 . This solves the previous problem because

now the matching with signature (2, 0) also ‘acts’ as a matching of

signature (1, 1). We achieve this by setting the adjacency matrix

have the term

∑
𝑗≤𝑖≤𝑟 𝑦𝑖 instead of just 𝑦 𝑗 for a rank- 𝑗 edge. The

problem here is that these terms give rise to additional binomial

coefficients which require a new analysis of the algorithm. As an

illustrative example, consider a matching with signature (2, 0). This
would contribute (𝑦1 + 𝑦2)2 = 𝑦2

1
+ 2𝑦1𝑦2 + 𝑦2

2
to the determinant.

Observe that the coefficient of the 𝑦1𝑦2 term is different than that

of the 𝑦2
1
term.

Proof of Theorem 1.2(Algorithm). This time, we need a dif-

ferent allocation of weights to edges. For rank-𝑖 edges, we give

its weight randomly from {𝑘𝑖 + 1, 𝑘𝑖 + 2, . . . , 𝑘𝑖 + 2|𝐸 |} for 𝑘𝑖 =

2𝑟 · |𝐸 | (|𝐸 | + 1) · 𝑛2(𝑟−𝑖)+1. We first come up with a similar isolation

lemma as before, and we define some additional notation. Suppose

that two matchings 𝑀1, 𝑀2 are both CSMs with 𝜎 (𝑀1) = 𝜌1, and

𝜎 (𝑀2) = 𝜌2. Observe that we can easily compare 𝜌1, 𝜌2 with re-

spect to rank-maximality. We call a matching 𝑀 to be a BestCSM
if it is rank-maximal among all CSMs.

Lemma 3.2 (Isolation Lemma for BestCSMs).

Pr[𝐺 has a unique min weight BestCSM] ≥ 1

2

.

The proof of the lemma is similar to that of Lemma 3.1. Now, we

define the matrix 𝐵 as

𝐵𝑢,𝑣 =


0 if (𝑢, 𝑣) ∉ 𝐸

2
𝑤(𝑢,𝑣)

(∑
𝑗≤𝑖≤𝑟 𝑦𝑖

)
if (𝑢, 𝑣) ∈ 𝐸 with rank- 𝑗

The idea here is that a rank- 𝑗 edge can contribute𝑦𝑖 for any 𝑖 ≥ 𝑗 to

a monomial. The problem is that there will be additional binomial

coefficients that contribute to the coefficient of some monomials.

We avoid this by looking at BestCSMs in a certain way. Like before,

our claim is that det(𝐵) has a non-zero coefficient for the monomial

𝜋 =
∏

𝑖 𝑦
𝜌𝑖
𝑖

with probability at least
1

2
if 𝐺 has CSM.

Look at the coefficient of 𝜋 . If there is a unique CSM, then we are

done because the coefficient will be non-zero. If not, then look at

the BestCSMs. Since they all have the same signature, the binomial

coefficient associated with them, say 𝛼 , will be the same. Now,

look at the coefficient of 𝜋 in det(𝐵), we have that it is consists of
contributions by BestCSMs, which we call 𝛽1 and contributions

by other CSMs, which we call 𝛽2. We will look at these separately.

Consider 𝛽1. Let𝑀1, 𝑀2, . . . be theBestCSMs arranged in increasing

order of weight. Since we argued that they will have the same

signature, their contribution will be of the form

𝛼 · 2𝑤 (𝑀1)
(
±1 ± 2

𝑤 (𝑀2)−𝑤 (𝑀1) ± 2
𝑤 (𝑀3)−𝑤 (𝑀1) . . .

)
.

With probability at least
1

2
, there is a unique minimum weight

BestCSM, so all terms except the first one will be even. Like before,

this will thus contribute a non-zero term. Also observe that we

have that

��𝛽1�� ≥ 2
𝑤 (𝑀1)

since all the terms and 𝛼 are at least 1.

Now, we look at 𝛽2. We only need to show that

��𝛽2�� < ��𝛽1��. This
will ensure that the coefficient of 𝜋 is non-zero because 𝛽2 cannot

cancel out 𝛽1. It can be shown by a simple combinatorial argument
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that

��𝛽2�� ≤ 2
𝑤 (𝑀′)+𝑟|𝐸 |

. See full version for the details. The main

argument is that since thesematchings are notBestCSMs, they have

signature strictly worse than the BestCSMs and contribute a much

smaller amount to the coefficient. Then we have that

��𝛽1�� −��𝛽2�� > 0.

Thus, with probability at least
1

2
, the coefficient of 𝜋 is non-zero. □

Running time: In both of these cases, the overall running time is

primarily decided by the step where we check the coefficient of 𝜋 .

This can be done with multi-variate polynomial interpolation. For

example, through the approach in [8], we can do this in time𝑛𝑟
2

. The

other manipulations of the determinant and the instance require

at most 𝑂 (𝑛4) operations, giving an overall runtime of 𝑂 (𝑛𝑟 2+4).
The arithmetic on large numbers adds an overhead of 𝑂 (𝑛𝑟 ) for
the case of cumulative better signatures, giving an overall runtime

of 𝑂 (𝑛𝑟 2+𝑟+4). When 𝑟 = 𝑂 (1), the algorithm runs in polynomial

time in either case.

4 HARDNESS RESULTS IN THE FIXED QUOTA
SETTING

We prove our hardness results when every post 𝑝 ∈ P has a unit

quota, and every applicant has strict preferences over the posts. All

our hardness results are based on the hardness of a special case

of labelled perfect matching defined in [16]. We note that there is

a rich literature on similar problems under various other names

such as rainbow matching (for example, see [13]). We show that a

variant of the problem in [16], that we call LABELLEDMATCHING,
is also NP-hard. We define this as follows.

Problem 4.1 (LABELLED MATCHING). Given a bipartite graph
𝐺 = (𝐴 ∪ 𝐵, 𝐸) with |𝐴| = |𝐵 | = 𝑛, and 𝐸 = 𝐸1 ∪ 𝐸2 ∪ . . . ∪ 𝐸𝑟 be a
partition of edges such that every vertex is adjacent to at most one
edge from each 𝐸𝑖 , does the instance admit a matching𝑀 such that
|𝐸𝑖 ∩𝑀 | ≥ 1 for every 𝑖 ∈ [𝑟 ]?

Proposition 4.2. LABELLED MATCHING is NP-hard even on
2-regular graphs.

Now we go back to our original problem of EXACT-SIGN-Q.
We show the hardness reduction from LABELLED MATCHING to

EXACT-SIGN-Q to prove our hardness part of Theorem 1.1.We defer

the proof to the full version of the paper. The main idea is to treat

the partition of edges 𝐸1, 𝐸2, . . . , 𝐸𝑟 from LABELLED MATCHING
as the ranks for the applicants. However, this might cause there

to be ‘gaps’ in the preference lists of applicants. For example, a

vertex incident to an edge from 𝐸1 and 𝐸3 but not 𝐸2 would have a

rank-1 and rank-3 post, but not a rank-2 post. This can be avoided

by adding dummy applicants and posts in a careful way. Next, we

show the hardness of CUM-SIGN-Q. We show a reduction from

EXACT-SIGN-Q.

Proof of Theorem 1.2(Hardness). Given an instance of EXACT-
SIGN-Q on a graph 𝐺 with input signature 𝜌 = (𝜌1, 𝜌2, . . . , 𝜌𝑟 )
with 𝑟 ≥ 2, we reduce to an instance of CUM-SIGN-Q with 2𝑟 + 1

ranks. We assume without loss of generality that 𝑉 = A ∪ P with

|A| = |P | = 𝑛 and

∑
1≤ 𝑗≤𝑟 𝜌 𝑗 = 𝑛. Let the applicants and posts be

numbered from 1 to 𝑛.

Let𝐺 = (𝑉 , 𝐸1 ∪ 𝐸2 . . . ∪ 𝐸𝑟 ) where 𝐸 𝑗 is the set of rank- 𝑗 edges.
We construct a graph 𝐻 as follows. Make 𝑟 copies of the vertex set

𝑉 = A ∪ P times to get graphs𝐺1,𝐺2, . . . ,𝐺𝑟 where𝐺 𝑗 has vertex

set (A ( 𝑗) ∪ P ( 𝑗) ) and only contains rank- 𝑗 edges, i.e. 𝐸 𝑗 . Let the

edges of 𝐸 𝑗 have rank-2 𝑗 in 𝐺 𝑗 . Let 𝑎
( 𝑗)
𝑖

represent the copy of 𝑎𝑖

in 𝐺 𝑗 and similarly let 𝑝
( 𝑗)
𝑖

represent the copy of 𝑝𝑖 in 𝐺 𝑗 . We add

(𝑟 − 1) · 𝑛 dummy posts and applicants

𝐷𝑃 = {𝑑 (1,1)𝑝 , . . . , 𝑑
(1,𝑛)
𝑝 , 𝑑

(2,1)
𝑝 . . . , 𝑑

(𝑟−1,𝑛)
𝑝 }

𝐷𝐴 = {𝑑 (1,1)𝑎 , . . . , 𝑑
(1,𝑛)
𝑎 , 𝑑

(2,1)
𝑎 . . . , 𝑑

(𝑟−1,𝑛)
𝑎 }

such that for every 𝑖, 𝑗 ,𝑑
(1,𝑖)
𝑝 , . . . , 𝑑

(𝑟−1,𝑖)
𝑝 are all connected to copies

of 𝑎
( 𝑗)
𝑖

through rank-1 edges and for every 𝑖, 𝑗 , 𝑑
(1,𝑖)
𝑎 , . . . , 𝑑

(𝑟−1,𝑖)
𝑎

are all connected to 𝑝
( 𝑗)
𝑖

through rank-2 𝑗 + 1 edges.

Lemma 4.3. There is a matching𝑀 in 𝐺 with 𝜎 (𝑀) = 𝜌 iff there
is a matching 𝑀 ′ in 𝐻 such that 𝜎 (𝑀 ′) ≥C ((𝑟 − 1) · 𝑛, 𝜌1, 𝑛 −
𝜌1, 𝜌2, 𝑛 − 𝜌2, . . . , 𝑛 − 𝜌𝑟 ) = 𝜋 .

Given𝑀 in𝐺 , it is easy to recover𝑀 ′
in 𝐻 . We do the following:

for all rank- 𝑗 edges matched in 𝐺 , match the corresponding edge

in 𝐺 𝑗 in 𝐻 . For all the unmatched vertices, match them to dummy

applicants or posts. It can be observed that 𝜎 (𝑀 ′) = 𝜋 ≥C 𝜋 .

Now suppose we have a matching𝑀 in𝐻 with 𝜎 (𝑀) = 𝜋 ′ ≥C 𝜋 .

We will show that 𝜋 ′ = 𝜋 . This can be done via a series of claims

whose proofs we defer to the full version.

Claim 4.4. 𝑀 is a perfect matching for 𝐻 .

Claim 4.5. For every 𝑎𝑖 ∈ A, exactly 𝑟 −1 copies of 𝑎𝑖 are matched
to the dummy posts 𝐷𝑃 . For every 𝑝𝑖 ∈ P, exactly 𝑟 − 1 copies of 𝑝𝑖
are matched to the dummy applicants 𝐷𝐴 .

Claim 4.6. For every 𝑗 ≥ 1, 𝜋 ′
2𝑗

≥ 𝜌 𝑗 and 𝜋 ′
2𝑗

+ 𝜋 ′
2𝑗+1 = 𝑛.

Lemma 4.7. 𝜋 ′ = 𝜋 .

Now, we need to show that there is a matching in𝐺 that achieves

signature 𝜌 . We do this in the following way: for every applicant

𝑎 ∈ A, match it to 𝑝 ∈ P such that some copy of 𝑎 is matched to

some copy of 𝑝 in𝑀 . From Claim 4.5, this gives us a matching since

every applicant is matched to exactly one non-dummy post and

vice versa. Consider Lemma 4.7 and the observation that rank-2 𝑗

edges in 𝐻 correspond to rank- 𝑗 edges in 𝐺 , the corresponding

matching has signature 𝜌 . This concludes the proof of Lemma 4.3.

We observe that the above constructed instances have ties and

gaps in the preference lists. These can be removed via some minor

bookkeeping. This can be done in a manner similar to that in the

proof of hardness part of Theorem 1.1. We defer these details to

the full version. This then concludes the proof of hardness part of

Theorem 1.2. □

5 EXPERIMENTS
We present the empirical evaluation of the cumulative better signa-

ture for the fixed quota setting as well as the cost-based setting. We

report results on available real-world data sets as well as synthet-

ically generated data sets. The experiments were conducted on a

laptop running on a 64-bit Windows 10 Home edition and equipped

with an Intel Core i5-8250U CPU @1.60GHz and 8GB of RAM. We

used IBM ILOG CPLEX Optimization Studio 20.1 with Python APIs
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Table 1: Fixed quota setting results on the real-world data sets. All values are given in percentage. The cells with background
green meet the input requirement whereas the ones with background pink fail to meet the input requirement.

Data Input requirement CSM RMM FM

set #rank 1 #top 3 size #rank 1 #top 3 size #rank 1 #top 3 size #rank 1 #top 3 size

ranks ranks ranks ranks

Real-1 ≥ 60 ≥ 85 ≥ 90 60.04 85.00 91.23 66.03 81.41 85.96 48.73 84.48 93.82

Real-2 ≥ 60 ≥ 80 ≥ 85 60.02 80.01 85.55 61.88 78.02 82.99 51.82 80.59 88.74

Real-3 ≥ 70 ≥ 90 ≥ 95 70.01 90.02 95.49 73.02 87.55 93.13 60.84 90.45 97.42

Table 2: Cost-based setting results on the real-world data sets. All values are given in percentage.

Data Input requirement CF-1 CF-2 CF-3

set #rank 1 #top 3 size max total max total max total

ranks violation violation violation violation violation violation

Real-1 ≥ 65 ≥ 85 ≥ 90 3.21 14.81 5.37 10.25 10.73 17.73

Real-2 ≥ 65 ≥ 80 ≥ 85 3.97 17.38 4.43 13.33 4.06 14.86

Real-3 ≥ 75 ≥ 90 ≥ 95 5.04 10.46 4.56 12.34 3.65 11.21

to solve integer linear programs. The results on synthetic data sets

are deferred to the full version.

Real-world data sets: The data sets Real-1, Real-2 and Real-3 are

obtained from the elective allocation at an educational institution

for three different periods. Each data set has around 2000 students

(applicants in our model) and 100 courses (posts in our model). Each

course has an upper bound on the number of students it can take,

and every student has a strict preference ordering over the courses

the student is interested in. A student needs to be assigned to at

most one course.

Fixed quota setting: For each data set we select an input signature
𝜌 such that the instance admits a matching which is cumulatively

better than 𝜌 . The signature is selected such that it is practically

appealing in real-world applications. However, we observe that,

neither the rank-maximal matching nor the fair matching are able

to meet the requirement in terms of the signature. Table 1 shows

our results in this setting. For the data set Real-1 suppose the re-

quirement is to match at least 60% students to their rank-1 courses,

at least 85% students to one of their top 3 courses, and the size of

the matching must be at least 90% (see row-1 column Input require-

ment Table 1). The size of the rank-maximal matching (RMM) is 86%

thus not meeting the requirement of 90% students being matched.

Similarly, the fair matching (FM) matches only 49% students to

their rank-1 courses thus failing to meet the 60% requirement of

rank-1 matches. See row-1 columns RMM and FM in Table 1. The

RMM and FM are obtained by implementing the known algorithms

in [10, 11] respectively. The CSM is obtained by an linear linear

program formulation (CSM ILP). By choice of the signature, the

CSM satisfies the requirement.

Cost-based setting: We begin with an instance of the fixed quota

setting. We obtain the cost for every post 𝑝 by defining a function

which takes as input the input quota 𝑞(𝑝) and the number of appli-

cants #𝑁 (𝑝) who applied to 𝑝 . In fact we define three natural cost

functions called CF-1, CF-2, CF-3. Using these we derive different

instances of the cost-based setting from a single instance of the

fixed quota setting. For an instance in the fixed quota setting, we

select a signature 𝜌 such that the input fixed quota instance does

not admit a matching that is cumulatively better than 𝜌 . For each

of the three instances derived from this instance, we use our algo-

rithm in Theorem 1.4 and compute a matching with minimum cost.

The absolute cost of the matching obtained is not of significance.

Since we started with a fixed quota setting instance, we measure

the violation in the upper quota for every course, and we report

the max violation (bold font) and total violation. Table 2 gives our
results for the real-world data sets. We observe that the maximum

violation for any course is around 5% (except for Real-1 with cost

function CF-3) and the total violation is around 15%. We believe

these are acceptable values in practice in order to meet the sig-

nature requirement of the allocation. We briefly describe our cost

functions below:

• CF-1: 𝑐 (𝑝) =𝑚𝑎𝑥{0, (#𝑁 (𝑝) − 𝑞(𝑝))}
• CF-2: linear cost model that assign costs in non-decreasing

order of the ratio
#𝑁 (𝑝)
𝑞 (𝑝) .

• CF-3: 𝑐 (𝑝) =
#𝑁 (𝑝) .𝐿𝐶𝑀

𝑞 (𝑝) , where LCM represents the least

common multiple of all the quotas.

We make the following observations from our experiments:

• The cumulatively better signature allows us to express re-

quirements which the input instance may admit and is not

captured by the standard measures like rank-maximality or

fairness.

• The cost based setting experiments open up the possibility

of converting a fixed quota setting instance to a cost-based

instance by selecting an appropriate cost function. Thus,

although the input instance may not admit a matching with

the desired signature, we may be able to achieve the same

by violating the quotas by a small value.
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