
Disentangling Successor Features for Coordination in
Multi-agent Reinforcement Learning

Seung Hyun Kim
University of Illinois at Urbana-Champaign

United States
skim449@illinois.edu

Neale Van Stralen
University of Illinois at Urbana-Champaign

United States
nealeav2@illinois.edu

Girish Chowdhary
University of Illinois at Urbana-Champaign

United States
girishc@illinois.edu

Huy T. Tran
University of Illinois at Urbana-Champaign

United States
huytran1@illinois.edu

ABSTRACT
Multi-agent reinforcement learning (MARL) is a promising frame-
work for solving complex tasks with many agents. However, a key
challenge in MARL is defining private utility functions that ensure
coordination when training decentralized agents. This challenge is
especially prevalent in unstructured tasks with sparse rewards and
many agents. We show that successor features can help address
this challenge by disentangling an individual agent’s impact on the
global value function from that of all other agents. We use this dis-
entanglement to compactly represent private utilities that support
stable training of decentralized agents in unstructured tasks. We
implement our approach using a centralized training, decentralized
execution architecture and test it in a variety of multi-agent envi-
ronments. Our results show improved performance and training
time relative to existing methods and suggest that disentanglement
of successor features offers a promising approach to coordination
in MARL.

KEYWORDS
Reinforcement Learning; Multi-Agent Reinforcement Learning; Co-
ordination

ACM Reference Format:
Seung Hyun Kim, Neale Van Stralen, Girish Chowdhary, and Huy T. Tran.
2022. Disentangling Successor Features for Coordination in Multi-agent
Reinforcement Learning. In Proc. of the 21st International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2022), Online, May
9–13, 2022, IFAAMAS, 10 pages.

1 INTRODUCTION
Multi-agent reinforcement learning (MARL) has shown promising
results for applications including traffic control [20], smart grids
[14, 31], autonomous driving [27], and UAV control [44]. Many ex-
isting approaches implement centralized architectures to ensure co-
ordination among agents [18, 20, 36]. However, fully centralized ap-
proaches struggle when faced with exponentially large state-action
spaces and communication constraints. Decentralized execution
helps address these issues by allowing agents to make independent
decisions without communication. An open question in MARL is

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

then how to ensure coordination among such decentralized agents,
particularly in unstructured tasks with sparse rewards and many
agents [1, 23].

Previous work has addressed this problem by defining private
utility functions, often referred to as individual value functions, for
optimizing individual agent policies. However, current methods
struggle to ensure scalable and stable learning in complex envi-
ronments like the Starcraft Multi-Agent Challenge (SMAC) [32].
Two concepts that underlie these struggles are factoredness and
learnability. Factoredness ensures a private utility is aligned with
the global utility (e.g., the global value function), while learnability
stabilizes training by disentangling an individual agent’s impact on
the global utility from that of all other agents [42]. Recent frame-
works, such as QMIX [30], QTRAN [37], WQMIX [29], and LICA
[46], propose private utilities that achieve high factoredness and
show promising results. However, these methods do not explicitly
consider learnability, limiting their performance in highly complex
environments with many agents. The counterfactual multi-agent
(COMA) method implements a technique for computing private
utilities with high factoredness and learnability [12], but requires a
complex central critic to learn a joint action value function, limiting
its performance in large multi-agent systems (MAS).

In this work, we ask whether successor features (SFs) can be
used to disentangle an individual agent’s impact on the global value
function from that of all other agents, and if this disentanglement
then enables better training of decentralized agents. More specifically,
we expect such disentanglement to improve decentralized training
by enabling compact representation of a private utility that has
high factoredness and high learnability. We introduce three key
ideas to address this question, all of which leverage the ability
of SFs to separate environment dynamics from rewards. First, we
introduce a private utility, based on a modified formulation of the
estimated difference utility (EDU) [42], that uses SFs to disentangle
the impact of an agent from the global value function. We use our
private utility, named SF-EDU, as an individual value function for
training decentralized agents. Second, we introduce a process for
learning the SF disentanglement vector used to calculate our SF-
EDU. We optimize this disentanglement for learnability, which we
estimate using SFs, to improve training stability and performance.
Third, we introduce a centralized training, decentralized execution
(CTDE) architecture with a shared feature encoding that efficiently
implements these ideas.

Main Track AAMAS 2022, May 9–13, 2022, Online

751



We test our approach in a variety of multi-agent environments.
Our results suggest that disentanglement of SFs is a promising
approach for improving performance in MARL relative to baseline
methods, particularly in unstructured tasks with many agents, such
as SMAC.

2 BACKGROUND
We model our problem as a decentralized partially observable
Markov decision process (dec-POMDP), which is defined by the
tuple (I,S,O𝑖 ,A𝑖 ,P, 𝑅). Here, I is a finite set of agents, S is
the state space of the environment, O𝑖 is the observation space
of agent 𝑖 ∈ I, and A𝑖 is the action space of agent 𝑖 . At every
time step, agents execute a joint action a = (𝑎1, ..., 𝑎 |I |) where
a is in the joint action space A = A1 × ... × A |I | , the environ-
ment updates to a new state 𝑠 based on the transition function
P(𝑠 ′ |𝑠, a) : S × A × S −→ [0, 1], and a global reward 𝑟 is given to
the team based on the reward function 𝑅(𝑠, a) : S × A −→ R.

We assume each agent has access to its own observation history
𝜏𝑖𝑡 = [𝑜𝑖1, ..., 𝑜

𝑖
𝑡 ], where 𝑜𝑖 ∈ O𝑖 and 𝜏𝑖𝑡 ∈ 𝑇 𝑖 . Our goal is to optimize

a stochastic policy for each agent, 𝜋𝑖 (𝑎𝑖 |𝜏𝑖𝑡 ) : 𝑇 𝑖 × A𝑖 −→ [0, 1],
such that the global state value 𝑉 𝜋

𝐺
(𝑠) = E𝜋 (

∑∞
𝑙=0 𝛾

𝑙𝑟𝑡+𝑙 |𝑠𝑡 = 𝑠) or
the global action value𝑄𝜋

𝐺
(𝑠, a) = E𝜋 (

∑∞
𝑙=0 𝛾

𝑙𝑟𝑡+𝑙 |𝑠𝑡 = 𝑠, a𝑡 = a) of
the environment is maximized, where 𝛾 ∈ [0, 1) is a discount factor
and 𝜋 is a joint policy.

2.1 Factoredness and Learnability
The factoredness, 𝐹𝑔𝑖 , of a private utility 𝑔𝑖 is defined as,

𝐹𝑔𝑖 =

∑
z
∑
z′ 𝑢 [(𝑔𝑖 (z) − 𝑔𝑖 (z′)) (𝐺 (z) −𝐺 (z′))]∑

z
∑
z′ 1

, (1)

where z is a joint move (e.g., a joint state action (𝑠, a)), 𝑢 [·] is
the unit step function which has a value of one when the input
argument is positive and zero otherwise, and 𝐺 is the global utility
function. High factoredness implies that positive changes in private
utility result in positive changes in global utility, thus ensuring
globally beneficial updates in decentralized training.

The learnability, 𝜆𝑖,𝑔𝑖 (z), of 𝑔𝑖 is defined as,

𝜆𝑖,𝑔𝑖 (z) =
E𝑧′

𝑖

[
|𝑔𝑖 (z) − 𝑔𝑖 (z−𝑖 + 𝑧′𝑖 ) |

]
Ez′−𝑖

[
|𝑔𝑖 (z) − 𝑔𝑖 (z′−𝑖 + 𝑧𝑖 ) |

] , (2)

where 𝑧𝑖 are the components of z that only depend on agent 𝑖 and
z−𝑖 are the components of z that depend on all agents other than
agent 𝑖 . Learnability measures how sensitive an agent’s private util-
ity is to its own actions rather than the actions of other agents; high
learnability thus reduces noise from other agents when updating
an agent’s private utility.

The EDU private utility assures full factoredness and promotes
learnability by minimizing the influence of other agents on an
individual agent’s private utility [42]. For a private utility 𝑔𝑖 (z), the
EDU is defined as,

𝐸𝐷𝑈𝑖 ≡ 𝐺 (z) − E𝑧𝑖 [𝐺 (z) |z−𝑖 ], (3)

whereE𝑧𝑖 [𝐺 (z) |z−𝑖 ] disentangles (or marginalizes) the impact of all
possible joint-actions for agents other than agent 𝑖 from the global
utility. However, implementing EDU is challenging when there is no
explicit method for calculating this marginalization term. Function

approximation can helpwith this challenge [5, 12], but is still limited
in environments with many agents or complex interactions among
agents. That is, this term is difficult to approximate if the value
function is highly elastic in response to the joint actions of other
agents. We leverage SFs to overcome this challenge.

For the remainder of this paper, we define the global utility𝐺 (z)
as the global state value function𝑉 𝜋

𝐺
(𝑠) and a private utility𝑔𝑖 (z) as

an individual state value function 𝑉 𝜋𝑖

𝑖
(𝜏𝑖𝑡 ). Note that we use action

value functions instead of state value functions when calculating
expectations of utility over actions. While we refer to 𝑉 𝜋𝑖

𝑖
and 𝑄𝜋𝑖

𝑖
as individual value functions for agent 𝑖 , we note that they are more
precisely utility functions since they do not strictly estimate the
expected discounted sum of future rewards [30].

2.2 Successor Features
Successor representation (SR) was introduced in [7] as an approach
for separating environment dynamics from rewards inMDPs, which
can be used, for example, to enable fast policy adaptation [7, 13, 24]
and task decomposition [21]. The SR defines the expected dis-
counted future occupancy of state 𝑠 ′, given starting state 𝑠 , action
𝑎, and policy 𝜋 , as,

𝑀𝜋 (𝑠, 𝑎, 𝑠 ′) = E𝜋

[ ∞∑
𝑙=0

𝛾𝑙1[𝑠𝑡+𝑙+1 = 𝑠 ′] |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

]
, (4)

where 1[·] is one when the input argument is true. The SR effec-
tively measures the interconnectedness of different states in the
environment, i.e., the dynamics of the environment. Given the SR,
the action value function can be approximated as,

𝑄𝜋 (𝑠, 𝑎) =
∑
𝑠′

𝑀 (𝑠, 𝑎, 𝑠 ′)𝑅(𝑠 ′). (5)

SR thus distinctly separates the environment dynamics, captured
by𝑀 , from the environment reward structure, captured by 𝑅.

Successor features (SFs) generalizes SR to allow for the use of
function approximation and applications in continuous state spaces
[3, 22, 45]. The basis of SFs is that the expected one-step reward
can be decomposed into a set of features, 𝝓 (𝑠), and a linear reward
weighting, w, as follows,

𝑅(𝑠) = 𝝓 (𝑠)𝑇 ·w. (6)

SFs then define the expected discounted future occupancy of fea-
tures 𝝓, given starting state 𝑠 and policy 𝜋 , as,

𝝍𝜋 (𝑠) = E𝜋

[ ∞∑
𝑙=0

𝛾𝑙𝝓 (𝑠𝑡+𝑙+1) |𝑠𝑡 = 𝑠

]
, (7)

where the 𝑖th element of 𝝍 represents the expected discounting of
the 𝑖th feature of 𝝓. The state value function can then be calculated
as the following,

𝑉 𝜋 (𝑠) = 𝝍𝜋 (𝑠)𝑇 ·w. (8)

The original SR and SF formulations assume a fully observable
MDP. We use SFs in our dec-POMDP setup by defining 𝝓 (𝑠) and
𝝍𝜋 (𝑠) of individual agents as 𝝓 (𝜏𝑖𝑡 ) and 𝝍𝜋𝑖 (𝜏𝑖𝑡 ), respectively. For
the remainder of this paper, we omit the 𝜋 notation in all global
value functions and the 𝜋𝑖 notation in all individual value functions
and SF notations for simplicity.

Main Track AAMAS 2022, May 9–13, 2022, Online

752



3 RELATEDWORK
The previous works most related to ours focus on decentralized
coordination through careful construction of private utilities (often
referred to as individual value functions). The value decomposition
network (VDN) [39] considers the global value to be a linear sum-
mation of individual value functions. QMIX [30] extends VDN by
modeling the global value as a non-linear function of individual
value functions through the use of a mixing network, with a central-
ized update that guarantees full factoredness. WQMIX [28] further
extends QMIX by modifying the update step to use a weighted up-
date over joint actions, thereby reducing QMIX’s underestimates of
the value approximation. LIIR [10] proposes an alternative approach
to improving credit assignment by reshaping individual agent ob-
jective functions with a learned intrinsic reward term. LICA [46]
presents an actor-critic architecture that uses the mixed critic from
QMIX and includes a modified policy-gradient exploration step to
improve exploration near locally-optimal solutions.

These methods show promising results, but do not directly ad-
dress the learnability of decentralized agents. VDN theoretically
provides infinite learnability, but only under the assumption that
the global value is truly a linear sum of individual value functions,
which has been empirically shown to be a weak assumption in com-
plex games. We aim to achieve high learnability, while maintaining
high factoredness, in an effort to better handle noisy updates in
decentralized settings for improved training speed, stability, and
performance. COMA [12] aims to achieve high factoredness and
learnability by using an EDU critic as an advantage for a policy gra-
dient. QTRAN [37] also aims for high learnability by using a similar
counterfactual joint action value function to learn agent-specific
contributions to a task. However, COMA and QTRAN require a
function approximation of the joint state action value. We address
learnability in a manner that removes this requirement for better
scaling in MAS with complex interactions among many agents.

Other works achieve coordination through reward redistribution
amongst individual agents [8, 9, 40], but require domain-specific
knowledge to define the reward shaping mechanisms. SFs have also
been applied to MARL in previous works. [15] uses SFs in lieu of
traditional value networks, allowing for efficient policy transfer to
new reward structures. However, [15] assumes individual rewards
are given to agents; we instead focus on environments where a
global reward is given with no prior definition of individual rewards.
[16] uses SFs within a VDN structure and uses its decomposition of
dynamics and rewards for better value estimation under dynamic
policies when learning. Our method instead proposes an entirely
new line of work in which we leverage the linear feature composi-
tion of SFs to disentangle an individual agent’s value from all other
agents in the global value function.

4 OUR APPROACH
We present the Disentangled SFs for Coordination (DISSC) frame-
work, which leverages SFs to disentangle the impact of an indi-
vidual agent on the global value function from the impact of all
other agents. We use this disentanglement to improve coordination
in MARL by compactly representing the EDU private utility and
learnability. Our framework is composed of three key ideas: (1) an
SF-EDU formulation that uses SFs to represent the marginalization

term in the EDU for unstructured tasks; (2) a process for learning
an SF disentanglement vector that is optimized for learnability and
used to calculate our SF-EDU; and (3) a CTDE architecture that
efficiently implements these techniques. Our overall architecture is
summarized in Figure 1.

4.1 SF-EDU Private Utility Formulation
A challenge with using the EDU private utility is efficiently cal-
culating the marginalization term, i.e., E𝑧𝑖 [𝐺 (z) |z−𝑖 ]. Rather than
marginalizing 𝐺 (z) with a joint move, we instead present a modi-
fied EDU formulation that uses SFs to marginalize𝐺 (z) with 𝝍. We
define our SF-EDU private utility as,

𝐸𝐷𝑈𝑖 ≈ 𝑉𝐺 (𝑠) − E𝜋𝑖 [𝑄𝐺 (𝜏𝑖𝑡 , 𝑎𝑖 ) |𝝍−𝑖 ] (9)

≈ 𝑉𝐺 (𝑠) −𝑉−𝑖 (𝜏𝑖𝑡 ) (10)

≈ 𝑉𝐺 (𝑠) − 𝝍𝑇−𝑖 ·w , (11)

where 𝝍−𝑖 are the SFs associated with the contribution of all agents
other than agent 𝑖 to the global value. We define the second term
in Equation (9) with respect to local agent information due to our
dec-POMDP formulation. Similar to the original EDU formulation
in Equation (3), the second term in Equation (11) represents the ex-
pected global value (or utility) associated with all agents other than
𝑖 . We implement our formulation by calculating the global value
𝑉𝐺 with a central critic and the marginalizing term using a decen-
tralized critic. We then define 𝑉𝑖 = 𝐸𝐷𝑈𝑖 to calculate a generalized
advantage estimator 𝐴𝑖 = 𝑅𝑖 (𝜏𝑖𝑡 ) + [𝛾𝑉𝑖 (𝜏𝑖𝑡+1) −𝑉𝑖 (𝜏

𝑖
𝑡 )] for training

our decentralized actor policies. We discuss our implementation in
more detail in Section 4.3.

The intuition behind SF-EDU is that certain features in an agent’s
observation are likely not relevant to that agent’s contribution to the
global value, and instead mostly contain noise associated with other
agent contributions to the global value (see Figure 4 for a visual
example of this idea). We represent those non-relevant features as
𝝍−𝑖 . In principle, one could identify these non-relevant features
using any latent features. However, our choice to use SFs allows
us to directly relate the non-relevant features to a marginalized
value function (i.e., 𝑉−𝑖 ), due to the unique separation property of
SFs, where the value function can be decomposed into the product
of a feature representation and a linear weighting, as shown in
Equation (8).

4.2 SF Disentanglement Vector for
Marginalizing Global Value and Reward

We estimate 𝝍−𝑖 by learning an SF disentanglement vector, 𝜷 , that
filters an agent’s SF encoding to only focus on features relevant
to that agent’s contribution to the global value and reward. More
formally, we implement 𝜷 as an element-wise rescaling vector that
operates on an agent’s features 𝝓 and SFs 𝝍 as follows,

𝝓−𝑖 = 𝝓 ⊙ (1 − 𝜷), (12)
𝝍−𝑖 = 𝝍 ⊙ (1 − 𝜷), (13)

where ⊙ denotes an element-wise product. We use the rescaled SFs
𝝍−𝑖 to estimate𝑉−𝑖 for calculating our SF-EDU, as shown in eq. (11).
Similarly, we leverage Equation (6) to use the rescaled features 𝝓−𝑖
to estimate the individual reward 𝑅𝑖 associated with agent 𝑖 (i.e.,

Main Track AAMAS 2022, May 9–13, 2022, Online

753



VG 

𝜏t
i

R-i

V-i

Shared Parameters Between Agents

𝑎t
N

 

Central 
Critic

Actor 1

Actor N 

Environment

(𝑠𝑡 , 𝑟𝑡)

𝜏t
N

VG 

𝜏t
1

𝑎t
1
 ...

Feature 
Encoder 𝝓

𝜋𝑖 (𝜏t
𝑖 )

Policy Advantage
Ri = R - R-i , Vi = VG - V-i

Ai  = Ri
 + [𝛾Vi(𝜏t

i
+1) - Vi(𝜏t

i) ]

Actor 
Network

Feature 
Discounting

𝑎t
𝑖
 Dot Product

w

𝝍

𝝓-i

𝝍-i

Element-wise Product

⊙ 

⊙ 

⊙ 

1 - 𝜷

Figure 1: The architecture used to implement our DISSC framework. Our framework uses SFs to learn a disentanglement
vector 𝛽 that allows us to estimate individual agent value and reward functions, 𝑉𝑖 and 𝑅𝑖 , respectively. We use 𝑉𝑖 and 𝑅𝑖 to
train decentralized agents, supported by a central critic used to estimate the global value function 𝑉𝐺 . We optimize 𝛽 for
learnability, which we estimate using SFs, to improve training stability in complex environments with many agents.

the reward generated solely by agent 𝑖) as follows,

𝑅𝑖 = 𝑅 − 𝑅−𝑖 = 𝑅 − (𝝓−𝑖𝑇 ·w) . (14)

This quantity is used in the generalized advantage estimator for
training individual agent policies. We focus on 𝝓−𝑖 and 𝝍−𝑖 rather
than their complements because we find them to improve stability
during training, likely due to better initialization.

We learn 𝜷 by optimizing it with respect to the learnability of SF-
EDU. The intuition behind this idea is based on the fact that SF-EDU
aims to approximate EDU, which achieves high learnability through
its marginalization term. Since we estimate this marginalization
term using 𝝍−𝑖 , which is calculated from 𝜷 , by optimizing 𝜷 such
that SF-EDU has high learnability, we ensure that 𝜷 effectively
filters an agent’s observation to focus on features relevant to its
contribution to the global value function.

However, calculating learnability is challenging in complex envi-
ronments. We therefore use SFs to derive a novel representation of
learnability that can be estimated in such environments. Beginning
with the original learnability equation and re-formulating it to use
value functions as utilities, we represent the learnability 𝜆𝑖 (a) of
an agent’s individual value function as follows,

𝜆𝑖 (a) =
E
𝑎𝑖
′
𝑡

[
|𝑄𝑖 (𝜏𝑖𝑡 , a𝑡 ) −𝑄𝑖 (𝜏𝑖𝑡 , a−𝑖𝑡 + 𝑎𝑖

′
𝑡 ) |

]
Ea−𝑖′𝑡

[
|𝑄𝑖 (𝜏𝑖𝑡 , a𝑡 ) −𝑄𝑖 (𝜏𝑖𝑡 , a−𝑖

′
𝑡 + 𝑎𝑖𝑡 ) |

] (15)

≈
E𝜋𝑖 ,𝜏𝑖

𝑡→𝑡+1

[
|𝝍 (𝜏𝑖𝑡 )w − 𝝍 (𝜏𝑖𝑡 )w− − 𝝍 (𝜏𝑖𝑡+1)w

+ |
]

E𝜋−𝑖 ,𝜏𝑖
𝑡→𝑡+1

[
|𝝍 (𝜏𝑖𝑡 )w − 𝝍 (𝜏𝑖𝑡+1)w− − 𝝍 (𝜏

𝑖
𝑡 )w+ |

] (16)

≈
E𝜋𝑖 ,𝜏𝑖

𝑡→𝑡+1
[|
(
𝝍 (𝜏𝑖𝑡 ) − 𝝍 (𝜏𝑖𝑡+1)

)
·w+ |]

E𝜋,𝜏𝑖
𝑡→𝑡+1
[|
(
𝝍 (𝜏𝑖𝑡 ) − 𝝍 (𝜏𝑖𝑡+1)

)
·w− |]

, (17)

where,
𝑤+ = 𝜷 ⊙ w
𝑤− = (1 − 𝜷) ⊙ w.

(18)

Similar to the original learnability, our representation measures the
ratio of the expected value (or utility) change over variations of

agent 𝑖’s actions relative to the expected value change over all other
agent actions. We approximate the value over variations of agent
𝑖’s actions

[
𝑄𝑖 (𝜏𝑖𝑡 , a−𝑖𝑡 + 𝑎𝑖

′
𝑡 )
]
𝑎𝑖
′
𝑡

as the transition of value between

two consecutive states
[
𝝍 (𝜏𝑖𝑡 ) ·w− + 𝝍 (𝜏𝑖𝑡+1) ·w

+]
𝜋𝑖 ,𝜏𝑖

𝑡→𝑡+1
; we use

a similar approximation for the value over variations of all other
agent actions. These approximations are based on the assumption of
independent features in 𝝍 and the fact that we define 𝝍𝑖 and 𝝍−𝑖 to
be complementary vectors, as shown in Equation (18). We enforce
complementarity by constraining 𝛽 ∈ [0, 1] in the update process,
further described in Algorithm 1. We also calculate the expectation
in the denominator of Equation (17) over the complete joint action
rather than the joint action of agents other than 𝑖 , resulting in
Equation (17) being a conservative estimate of learnability, since
our computation includes the influence of agent 𝑖’s action.

Based on our derived representation for learnability, shown in
Equation (17), we update 𝜷 in a manner that maximizes learnability
using the following loss,

𝐿𝜆,𝜷 =
∑
𝑡


∑
𝑎𝑖𝑡

𝜋𝑖 (𝑎𝑖𝑡 |𝜏𝑖𝑡 )



(𝝍 (𝜏𝑖𝑡 ) − 𝝍 (𝜏𝑖𝑡+1)) ·w+




−𝑐𝜆



(𝝍 (𝜏𝑖𝑡 ) − 𝝍 (𝜏𝑖𝑡+1)) ·w−


 . (19)

The numerator and denominator of Equation (17) are optimized
separately for numerical reasons and 𝑐𝜆 is introduced tomitigate the
impact of magnitude differences between those quantities during
training.

4.3 CTDE Architecture
We implement our framework using a CTDE architecture, building
from recent work suggesting that similar architectures encourage
coordination given a global reward [6, 19]. While we include cen-
tralized training in this work, our framework can be applied to fully
decentralized architectures with little modification.

Our central critic builds from the formulation used by COMA
[12], in that it estimates the global value and sends this value to

Main Track AAMAS 2022, May 9–13, 2022, Online

754



Algorithm 1: DISSC Algorithm
Initialize Θ, 𝜃𝑖 , 𝜋𝑖 , 𝝍𝑖 Initialize 𝜷𝑖 ← 1;
Initialize trajectory buffer 𝐷central, 𝐷𝑖

decentral ;
repeat

Reset environment;
while 𝑡 < max step do

Obtain observations 𝑠𝑡 , 𝜏1𝑡 , 𝜏
2
𝑡 , ... from environment;

Obtain and execute actions 𝜋 (𝜏1𝑡 ), ... , 𝜋 (𝜏I𝑡 );
Store 𝐷central ← (𝑠𝑡 , 𝑟𝑡 );
Store 𝐷𝑖

decentral ← (𝜏
𝑖
𝑡 , 𝑟𝑡 , 𝑎

𝑖
𝑡 )𝑖 ;

if |𝐷central | < central batch size then
Sample (𝑟𝑡 , 𝑉𝐺 (𝑠𝑡 )) ∀𝑠𝑡 ∈ 𝐷central;
Compute TD-target:
𝑇𝐷central = 𝑟𝑡+1 + 𝛾𝑉 −Θ𝐺

(𝑠𝑡+1);
Update central critic:
Θ← Θ − 𝛼central∇Θ (𝑇𝐷central −𝑉𝐺 (𝑠𝑡 ))2;

end
if |𝐷decentral | < decentral batch size then

Sample 𝜋𝑖 , 𝑟𝑡 , 𝝓 (𝜏𝑖𝑡 ), 𝝍 (𝜏𝑖𝑡 ), 𝑉𝑖 , ∀𝜏𝑖𝑡 ∈ 𝐷decentral;
Calculate agent advantage defined in Section 4.1;
Update agent policy: 𝜃𝜋 ← 𝜃𝜋 − 𝑐𝜋∇𝜃𝜋 𝐿𝑝𝑝𝑜 ;
Update 𝝓 representation with Equations (20)
and (21): 𝜃𝝓 ← 𝜃𝝓 − 𝛼𝝓∇𝜃𝝓 (𝐿reward + 𝐿pred);

Update 𝝍 representation with Equation (22):
𝜃𝝍 ← 𝜃𝝍 − 𝛼𝝍∇𝜃𝝍 (𝐿SF);
Update learnability rescaling of agents:
𝜷 ← 𝜷 − 𝛼𝜆∇𝜷𝐿𝜆,𝜷 ;

𝜷 = 𝑐𝑙𝑖𝑝 (𝜷, 0.0, 1.0);
end

end
until Finished;

individual agents for their EDU calculation. However, we estimate
the global state value 𝑉𝐺 instead of the global action value 𝑄𝐺

to better handle large-scale MAS. Our decentralized controllers
implement their own internal actor-critic architectures. We train
the decentralized critics using SFs, where we use the learned 𝝓
and 𝝍 to estimate the global reward 𝑅 and state value 𝑉𝐺 with
Equations (6) and (8), respectively. We optimize individual agents’
policies, 𝜋𝑖 (𝑎𝑖 |𝜏𝑖𝑡 ), with the proximal policy optimization (PPO)
algorithm [33], using our SF-EDU to calculate the advantage in lieu
of the traditional advantage function (as discussed in Section 4.1).

Our architecture uses a shared SF encoder for all agents. This
shared encoder is motivated by existing work demonstrating ben-
efits of weight sharing [4, 11, 26] and based on a hypothesis that
using SFs, we can model spatial and dynamic features in an envi-
ronment in a manner that is common to all agents regardless of
their type. This weight-sharing significantly reduces network com-
plexity and paves the way towards efficiently utilizing experiences
in heterogeneous MARL training.

4.4 Successor Features Implementation
We train the components of our SF critic, the feature encoder, and
feature discounting using standard SF losses [17, 45]. We first train

the feature encoder to recover a set of features, 𝝓, that encodes
information from local surroundings using the following reward
estimation loss,

𝐿reward,𝜽𝝓 =




𝑟𝑡 − 𝝓𝜃𝝓 (𝜏𝑖𝑡 )𝑇 ·w


2 . (20)

Using this loss alone, however, often does not generate a dense
enough feature set for stable training, particularly in sparse reward
environments. Motivated by [2], we address this issue by imple-
menting auxiliary training networks to predict the next state and
increase the amount of encoded information seen by 𝝓, using the
following prediction loss,

𝐿pred,𝜽𝝓 =




𝑜𝑖𝑡+1 − D(𝝓𝜃𝝓 (𝑜𝑖𝑡 ), 𝑎𝑖𝑡 )


2 , (21)

where D(𝝓 (𝑠𝑖𝑡 ), 𝑎𝑖𝑡 ) is a decoder network that predicts the next
state observation. The feature discounting network is trained to
discount the learned features with the following SF loss,

𝐿SF,𝜃𝝍 =




𝝓 (𝜏𝑖𝑡+1) + 𝛾𝝍𝜃𝝍 (𝜏𝑖𝑡+1) − 𝝍 (𝜏𝑖𝑡 )


2 , (22)

which is the TD-error of the SFs 𝝍 generalized into a Bellman
equation. Our overall algorithm is summarized in Algorithm 1.

5 RESULTS
We test our approach through a set of experiments using the open-
source Multi-Agent Particle (MAP) environments [19], SMAC [32],
and a capture-the-flag (CtF) environment [43]. We compare to
the following published MARL baselines: COMA [12], QMIX [30],
QTRAN [37], WQMIX [29], LIIR [10], and LICA [46]. We tuned
baselines for environments (and individual maps in SMAC) that
they were not originally demonstrated on by running several ex-
periments over common hyperparameters, primarily learning rate
and batch size, and method specific variables, such as 𝛼 in WQMIX.
We also extended the 𝜖-greedy exploration to 1M episodes for 𝑄-
learning baselines to improve exploration in hard SMAC maps and
CtF, as suggested in [29]. Note that our method and all baselines
implemented use a CTDE architecture. All figures plot the mean
performance with one standard deviation shaded.

Similar to existing MARL architectures [10, 29, 30, 46], DISSC
used anMLP feature encoder with an LSTM in the Predator Prey and
SMAC environments. We used MLPs for all other networks. For the
CTF environment, which uses an image-like input, convolutional
layers were added to the head of the feature encoder to capture
spatial relationships. All networks were optimized with an Adam
optimizer with a learning rate of 1E-4 based on the losses described
in Equations (20) to (22). We set 𝑐𝜆 = 0.5 for the results shown;
our testing found our results to have little sensitivity to the value
of 𝑐𝜆 . Code is available at https://github.com/Tran-Research-
Group/DISSC.

5.1 Multi-Agent Particle Environments
We first consider the predator-prey environment from the MAP test
suite [19]. The goal of predator-prey is for three predators to capture
a randomly moving agent as fast as possible. The environment
requires coordination to efficiently and quickly solve the task.

Figure 3 shows results for this environment. We observe that
several methods, including DISSC, are able to sufficiently solve

Main Track AAMAS 2022, May 9–13, 2022, Online

755



��������� �����������

������������
���� �
������	���
���� ������
����
�����

����� ����� �����

�����

�
��
��
��
��
��
��
��
��
��
��
�

�
��
��
��
��
��
��
��
��
��
��
�

�
��
��
��
��
��
��
��
��
��
��
�

�
��
��
��
��
��
��
��
��
��
��
�

�
��
��
��
��
��
��
��
��
��
��
�

���
	�	 ��		�� 	�� 	�� 	��

	�	

��	

	��

	��

	��

	��

���
	�	 ��	 ��� ���	�� 	�� 	�� 	��

	�	

��	

	��

	��

	��

	��

���
	�	 ��	 ��� ���	�� 	�� 	�� 	��

	�	

��	

	��

	��

	��

	��

���
	�		 ���� ���	 ��
� ��			��� 	��	 	�
� ��		

	�	

��	

	��

	��

	��

	��

���
	�	 ��		�� 	�� 	�� 	��

	�	

��	

	��

	��

	��

	��

� �­�  �­��� ������ �­����  ���� �­­��� �­����������

Figure 2: Training convergence plots in five SMAC maps, calculated over five replicates. A higher win-rate indicates better
performance. In easier games, 8m and 2s3z, we match performance of the baselines. In harder games (which control more
agents), our method has significantly faster learning times and higher performance.

���
��� ������ ��� ��� ���
�

���

��

��

��

��

�����

������������


��
��
��
��

�
	�
��

�����
����
����

���
�����

���
������ �­���

Figure 3: Training convergence plots in the predator-prey
environment, over 10 replicates. Most methods solve the
task with some variation in learning speed. Lower episode
length indicates better performance.

the task by minimizing the time taken to capture the prey. COMA,
LICA, and LIIR struggled with this environment. While DISSC
does converge to optimal performance, we note that it is slower
than some alternatives. We believe that this is due to our added
complexity of learning SFs to model the value function; for this
simple environment, that complexity does not outweigh the benefit
of our disentanglement approach.

5.2 Starcraft Multi-Agent Challenge
We also consider the SMAC environment, a Starcraft II mini-game
that focuses on micromanaging a set of agents in combat. We con-
sider several maps ranging in difficulty and heterogeneity of the
controlled agents. Easy maps have smaller numbers of controlled
units and fight an equal number of enemies (8 marines vs. 8 marines
in 8m, 2 stalkers and 3 zealots vs 2 stalkers and 3 zealots in 2s3z).
Hard maps either place the agents at a numbers disadvantage (2
colosi vs. 64 zerglings in 2c_vs_64zg), control a large number of
units (27 marines in 27m_vs_30m), or control highly heterogenous
units (1 Medivac, 2 Mauraders, & 7 Marines in MMM2).

Figure 2 shows our results for various SMAC maps. For easy
maps, we see that nearly all methods are able to attain high levels
of performance, including DISSC. Our method shows fast learning
in 8m but slower initial learning in 2s3z, again suggesting that the
benefits of learning SFs towards learning speed may be reduced for
simple environments.

In harder maps, we begin to observe the performance benefit
of our method. For the 2c_vs_64zg map, only DISSC, QMIX, and
WQMIX are able to obtain a non-trivial positive win-rate; all other
methods essentially fail to solve the task. However, amongst these
three, our method shows significantly faster learning, the highest
converged performance, and the lowest variance in win rate. As we
move to maps where more agents are controlled (i.e., 2c_vs_64zg,
MMM2, 27m_vs_30m), we see that our method is the only one able
to solve the task. We expect that these performance gains are due
to the learning stability provided by our method through its direct
optimization of learnability, which is most beneficial in complex

Main Track AAMAS 2022, May 9–13, 2022, Online

756



Atta
ck

ab
le

Dist
an

ce

X Posi
tio

n

Y Posi
tio

n

 H
eal

th
Disentanglement Sensitivity:

SMAC Observation Space:

Terrain 
Info

Enemy 
Info

Ally 
Info

Self 
Info

Available 
Actions

Agent 
Types

Enemy 
1

Enemy 
2

… Enemy 
7

… Enemy 
24

High FilteringLow Filtering

1
2
3
4

5

Agent 2 Agent 1

Agent 1’s Filtering of Enemies

Agent 2’s Filtering of Enemies

Near Agent 1 but not Agent 2 Far from Agent 1 and 2 Enemies Out of Observation Range

 Enemy 1

24

…

…

Figure 4: Effect of the disentanglement vector 𝜷 on agent learning. Agent observations in SMAC are a vector with information
about current position, enemies, allies, and available actions. We use Grad-CAM [35] to correlate the sensitivity of the feature
space, 𝝍, with respect to the observation, 𝑜𝑖 . The gradient, 𝜕𝝍/𝜕𝑜𝑖 , can then be multiplied by the disentanglement vector, 𝜷 ,
to understand which observation variables are the most heavily filtered during disentanglement. The breakout shows Agent
1 filters Enemy 1 less than Enemy 7, primarily by their “Attackable” and “Health” variables. This filtering occurs because
Agent 1 is closest to Enemy 1 and can attack the enemy to generate reward by damaging them. The bottom breakout shows
the summation of the filtering across all enemies for Agents 1 and 2 and supports the trend that enemies further away from
agents are more heavily filtered.

environments with many agents. There may also be some benefit
incurred by our architecture, since we use a simplified central critic,
𝑉𝐺 = 𝑓 (𝑠), instead of, for example, complex mixing networks used
by QMIX and WQMIX which scale linearly with the number of
agents, 𝑄𝐺 = 𝑓 (𝑠,𝑉1, ...,𝑉I ). Our architecture thus better scales to
large MAS like 27m_vs_30m and MMM2.

To better understand our method, we also visualize the effect of
our disentanglement vector 𝜷 on individual agents, shown in Fig-
ure 4. We accomplish this by using a Grad-CAM-like [35] approach
to correlate the effect of observations to the latent space 𝝍. More
specifically, we calculate a correlation, 𝜕𝝍/𝜕𝑜𝑖 , that captures the
effect of changing the observation on the feature space. We then
multiply this correlation by 𝜷 to evaluate which elements of the
observation space are being filtered by 𝜷 .

We observe two interesting trends from this analysis. First, we
see that 𝜷 heavily filters specific elements of the observation space,
primarily the “Enemy Health” and “Enemy is Attackable” variables
for nearly every enemy. This result is encouraging, since rewards
in SMAC are given for damaging enemy units, suggesting that 𝜷
learns to assign value based on whether or not an enemy is within
attack range and its health. Second, we see that agents filter different
features depending on their position with respect to enemies, as
agents far away from enemies filter enemy variables more heavily
than agents closer to enemies.

5.3 Capture the Flag (CtF)
We further test our approach in a CtF environment to understand its
performance in a sparse reward setting. Here, two teams of agents
compete against one another to capture their opponent’s flag while
simultaneously defending their own flag. Agent interactions focus
on flag capture and stochastic engagements in which agents can be
temporarily removed from gameplay; these engagements depend
on various factors such as agent strength, proximity to other agents,
and home field advantage. Agents are randomly re-spawned within
their own territory after being removed from gameplay. Flags are
randomly re-spawned within their team’s territory immediately
after being captured. We use an open-source implementation of the
game [43] that operates in a 2D grid-world.

We compare to WQMIX and QMIX (since they show the most
promise among baselines in SMAC hard environments) in this
experiment, along with a vanilla independent actor-critic (IAC)
baseline. We experiment in 5-vs-5 and 7-vs-7 games, where teams
are composed of two types of agents: slow, strong “convoy” agents
and fast, weak “normal” agents. Figure 5 shows that our method,
DISSC, significantly outperforms QMIX and WQMIX, with IAC
falling somewhere in the middle. We expect that the poor perfor-
mance of QMIX and WQMIX is due to convergence to a defensive
policy where the agents remain on their own territory to limit their
chances of being killed. This sub-optimal policy likely occurs due
to limited exploration in this sparse reward environment, a known
issue with many 𝑄-learning methods.

Main Track AAMAS 2022, May 9–13, 2022, Online

757



����

����

����

���

����

����

����

����

����

����

��
��
��
��

�
��

�
�
	��
��
�

��
���
��
��
��
�

�������
��	���������
���������
����������
���

�� ������ ��� ��� ������ ������ ��� ���
�������

�
��
��
���
��
 �




�


�


�


�

�

�

�

��	������������
��� ��

­����
­�������� ������
­�������� ����
����


�


�


�


�

�

�

�

��
��
��
��
��
� 
�


�������
�� ��� ��� ��� ��� ���

��	�����������
����
�������
�

�����
����
���
­������� ��	

�����
����
���
­������� ��	


�


�


�


�

�

�

��
��
��
��
��
� 
�


�������
�� ��� ��� ��� ��� ���

��	�����������
����
�������
�

��
���
���
�

��������

����� ���
��

��	������
����
��
�

Figure 5: (a) TheCtF environment. (b)-(c) Training convergence plots for our consideredmethods in twoCtF settings, calculated
over five replicates. Our method shows improved training time, converged performance, and stability over baselines. We also
show (d) ablation results and (e) learnability and factoredness improvements during training.

Figure 5d also contains results from an ablation study of DISSC,
comparing the effects of our 𝜷 disentanglement vector and our
centralized critic on model performance. We see that removing 𝜷
reduces training stability, supporting our assertion that our modi-
fied EDU improves training stability through its high learnability.
We also see that removing the central critic, and instead allowing
individual agents to evaluate the global value, results in the low-
est converged global return within our model variants, suggesting
that local SF critics struggle to estimate the global value. Local
critics likely struggle because agents only have access to their own
individual observations during training.

We also investigate how factoredness and learnability change
during training to better understand our SF-EDU learning process,
as shown in Figure 5e.We calculated factoredness using Equation (1)
and learnability using Equation (17). We see that during training,
DISSC is able to explicitly increase learnability of individual agents,
though there appears to be a slight tradeoff between factoredness
and learnability. This tradeoff is likely due to our approximation of
the EDU, but is minimal relative to changes in learnability. These
results suggest that learnability and factoredness may naturally
conflict in some environments and therefore require simultaneous
optimization of both in such settings.

6 CONCLUSIONS AND FUTUREWORK
A critical challenge in MARL is ensuring coordination among de-
centralized agents in unstructured and complex tasks. We show
that SFs can be used to disentangle the impact of individual agents

on the global value function, from the impact of all other agents.
This disentanglement allows us to compactly represent a individual
value function that has high factoredness and high learnability such
that we can train decentralized agents in a coordinated and stable
manner. We implement our approach in a CTDE architecture and
demonstrate that it shows improved training time and performance
over alternatives in several multi-agent environments.

For future work, we suggest exploring learning SF disentan-
glements that account for specific agent types. While our results
suggest such heterogeneity is not required, further developments
may be able to leverage agent-specific disentanglements to iden-
tify potential roles or specializations for a given task. This notion
is also inspired by recent biological discoveries in mammals that
have shown cell specialization to encode environment information
in a semi-structured format, instead of an unknown latent space
[25, 34, 38, 41].

ACKNOWLEDGEMENTS
This work was supported in part by ONR N00014-20-1-2249 and
ARL W911NF2020184.

REFERENCES
[1] Christopher Amato, Girish Chowdhary, Alborz Geramifard, and N Kemaï. 2013.

Decentralized Control of Partially Observable Markov Decision Processes. In
52nd IEEE Conference on Decision and Control. IEEE, 2398–2405.

[2] Andre Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo Hessel,
Daniel Mankowitz, Augustin Zidek, and Remi Munos. 2018. Transfer in deep

Main Track AAMAS 2022, May 9–13, 2022, Online

758



reinforcement learning using successor features and generalised policy improve-
ment. 35th International Conference on Machine Learning, ICML 2018 2 (2018),
844–853. arXiv:1901.10964

[3] André Barreto, Will Dabney, Rémi Munos, Jonathan J. Hunt, Tom Schaul, Hado
Van Hasselt, and David Silver. 2017. Successor features for transfer in reinforce-
ment learning. Advances in Neural Information Processing Systems 2017-Decem,
Nips (2017), 4056–4066. arXiv:1606.05312

[4] Elildo A.R. Carvalho and Juarez C.B. Pezzuti. 2010. Hunting of jaguars and pumas
in the Tapajós-Arapiuns Extractive Reserve, Brazilian Amazonia. ORYX 44, 4
(2010), 610–612. https://doi.org/10.1017/S003060531000075X arXiv:1605.06676

[5] Mitchell Colby, William Curran, Carrie Rebhuhn, and Kagan Turner. 2014. Ap-
proximating difference evaluations with local knowledge. 13th International
Conference on Autonomous Agents and Multiagent Systems, AAMAS 2014 2, 2
(2014), 1577–1578.

[6] Kevin Corder, Manuel M. Vindiola, and Keith Decker. 2019. Decentralized Multi-
Agent Actor-Critic with Generative Inference. (2019). arXiv:1910.03058 http:
//arxiv.org/abs/1910.03058

[7] Peter Dayan. 1993. Improving Generalization for Temporal Difference Learning:
The Successor Representation. Neural Computation 5, 4 (1993), 613–624. https:
//doi.org/10.1162/neco.1993.5.4.613

[8] Sam Devlin and Daniel Kudenko. 2011. Theoretical considerations of potential-
based reward shaping for multi-agent systems. In The 10th International Confer-
ence on Autonomous Agents and Multiagent Systems. ACM, 225–232.

[9] Sam Devlin, Logan Yliniemi, Daniel Kudenko, and Kagan Tumer. 2014. Potential-
based difference rewards for multiagent reinforcement learning. In Proceedings of
the 2014 international conference on Autonomous agents and multi-agent systems.
165–172.

[10] Yali Du, Lei Han, Meng Fang, Tianhong Dai, Ji Liu, and Dacheng Tao. 2019. LIIR:
Learning individual intrinsic reward in multi-agent reinforcement learning. In
Advances in Neural Information Processing Systems, Vol. 32.

[11] Partha S. Dutta, Nicholas R. Jennings, and LucMoreau. 2005. Cooperative informa-
tion sharing to improve distributed learning in multi-agent systems. Journal of Ar-
tificial Intelligence Research 24 (2005), 407–463. https://doi.org/10.1613/jair.1735

[12] Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and
Shimon Whiteson. 2018. Counterfactual multi-agent policy gradients. Thirty-
Second AAAI Conference on Artificial Intelligence (2018).

[13] Samuel J. Gershman, Christopher D. Moore, Michael T. Todd, Kenneth A. Norman,
and Per B. Sederberg. 2012. The successor representation and temporal context.
Neural Computation 24, 6 (2012), 1553–1568. https://doi.org/10.1162/NECO_a_
00282

[14] Arman Ghasemi, Amin Shojaeighadikolaei, Kailani Jones, Morteza Hashemi,
Alexandru G. Bardas, and Reza Ahmadi. 2020. A multi-agent deep reinforcement
learning approach for a distributed energy marketplace in smart grids. 2020
IEEE International Conference on Communications, Control, and Computing Tech-
nologies for Smart Grids, SmartGridComm 2020 (2020). https://doi.org/10.1109/
SmartGridComm47815.2020.9302981 arXiv:2009.10905

[15] Tarun Gupta, Akshat Kumar, and Praveen Paruchuri. 2019. Successor Features
Based Multi-Agent RL for Event-Based Decentralized MDPs. Proceedings of the
AAAI Conference on Artificial Intelligence 33 (2019), 6054–6061. https://doi.org/
10.1609/aaai.v33i01.33016054

[16] Tarun Gupta, Anuj Mahajan, Bei Peng, Wendelin Böhmer, and Shimon Whiteson.
2021. Uneven: Universal value exploration for multi-agent reinforcement learning.
In International Conference on Machine Learning. PMLR, 3930–3941.

[17] Tejas D. Kulkarni, Ardavan Saeedi, Simanta Gautam, and Samuel J. Gershman.
2016. Deep Successor Reinforcement Learning. (2016). arXiv:1606.02396 http:
//arxiv.org/abs/1606.02396

[18] Alex Tong Lin, Mark J. Debord, Katia Estabridis, Gary Hewer, and Stanley
Osher. 2019. CESMA: Centralized Expert Supervises Multi-Agents. (2019).
arXiv:1902.02311 http://arxiv.org/abs/1902.02311

[19] Ryan Lowe, YiWu, Aviv Tamar, Jean Harb, Pieter Abbeel, and IgorMordatch. 2017.
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments.
Nips (2017). https://doi.org/10.1007/BF01744832 arXiv:1706.02275

[20] Jinming Ma and Feng Wu. 2020. Feudal multi-agent deep reinforcement learning
for traffic signal control. In Proceedings of the International Joint Conference on
Autonomous Agents and Multiagent Systems, AAMAS, Vol. 2020-May. 816–824.
www.ifaamas.org

[21] Marlos C. Machado, Marc G. Bellemare, and Michael Bowling. 2018. Count-
Based Exploration with the Successor Representation. (2018). arXiv:1807.11622
http://arxiv.org/abs/1807.11622

[22] Sephora Madjiheurem and Laura Toni. 2019. State2vec: Off-Policy Successor
Features Approximators. (2019), 1–10. arXiv:1910.10277 http://arxiv.org/abs/
1910.10277

[23] Laetitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. 2012. Indepen-
dent reinforcement learners in cooperative Markov games: a survey regarding
coordination problems. Knowledge Engineering Review 27, 1 (2012), 1–31.

[24] I. Momennejad, E. M. Russek, J. H. Cheong, M. M. Botvinick, N. D. Daw, and S. J.
Gershman. 2017. The successor representation in human reinforcement learning.
Nature Human Behaviour 1, 9 (sep 2017), 680–692. https://doi.org/10.1038/s41562-

017-0180-8
[25] Maria E. Montchal, Zachariah M. Reagh, and Michael A. Yassa. 2019. Precise

temporal memories are supported by the lateral entorhinal cortex in humans.
Nature Neuroscience 22, 2 (feb 2019), 284–288. https://doi.org/10.1038/s41593-
018-0303-1

[26] Lucas Oliveira Souza, Gabriel De Oliveira Ramos, and Celia Ghedini Ralha.
2019. Experience sharing between cooperative reinforcement learning agents.
Proceedings - International Conference on Tools with Artificial Intelligence, IC-
TAI 2019-Novem (2019), 963–970. https://doi.org/10.1109/ICTAI.2019.00136
arXiv:1911.02191

[27] Praveen Palanisamy. 2019. Multi-Agent Connected Autonomous Driving using
Deep Reinforcement Learning. NeurIPS (2019). arXiv:1911.04175 http://arxiv.
org/abs/1911.04175

[28] Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. 2020.
Weighted QMIX: Expanding Monotonic Value Function Factorisation for Deep
Multi-Agent Reinforcement Learning. In Neurips. arXiv:2006.10800v2

[29] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Far-
quhar, Jakob Foerster, and Shimon Whiteson. 2020. Monotonic value function
factorisation for deep multi-agent reinforcement learning. Journal of Machine
Learning Research 21 (2020). arXiv:2006.10800v2

[30] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Far-
quhar, Jakob Foerster, and Shimon Whiteson. 2018. QMIX: Monotonic Value
Function Factorisation for Deep Multi-Agent Reinforcement Learning. Technical
Report. arXiv:1803.11485v2

[31] Martin Roesch, Christian Linder, Roland Zimmermann, Andreas Rudolf, Andrea
Hohmann, and Gunther Reinhart. 2020. Smart grid for industry using multi-
agent reinforcement learning. Applied Sciences (Switzerland) 10, 19 (2020), 1–20.
https://doi.org/10.3390/app10196900

[32] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Far-
quhar, Nantas Nardelli, Tim G.J. Rudner, Chia Man Hung, Philip H.S. Torr, Jakob
Foerster, and Shimon Whiteson. 2019. The StarCraft multi-agent challenge.
In Workshop on Deep Reinforcement Learning at the 33rd Conference on Neural
Information Processing Systems (NeurIPS 2019). arXiv:1902.04043

[33] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter
Abbeel. 2015. Trust Region Policy Optimization. (2015). https://doi.org/10.1063/
1.4927398 arXiv:1502.05477

[34] Heidrun Schultz, Tobias Sommer, and Jan Peters. 2015. The role of the human
entorhinal cortex in a representational account of memory. https://doi.org/10.
3389/fnhum.2015.00628

[35] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. 2020. Grad-CAM: Visual Explanations from
Deep Networks via Gradient-Based Localization. International Journal of Com-
puter Vision 128, 2 (2020), 336–359. https://doi.org/10.1007/s11263-019-01228-7
arXiv:1610.02391

[36] Tianmin Shu and Yuandong Tian. 2018. M3RL: MIND-AWARE MULTI-
AGENT MANAGEMENT REINFORCEMENT LEARNING. Technical Report.
arXiv:1810.00147v3 https://github.com/facebookresearch/M3RL.

[37] Kyunghwan Son, Daewoo Kim,Wan Ju Kang, David Hostallero, and Yung Yi. 2019.
QTRAN: Learning to factorize with transformation for cooperative multi-agent
reinforcement learning. In 36th International Conference on Machine Learning,
ICML 2019, Vol. 2019-June. 10329–10346. arXiv:1905.05408

[38] Kimberly L. Stachenfeld, Matthew M. Botvinick, and Samuel J. Gershman. 2017.
The hippocampus as a predictive map. Nature Neuroscience 20, 11 (2017), 1643–
1653. https://doi.org/10.1038/nn.4650

[39] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vini-
cius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl
Tuyls, and Thore Graepel. 2018. Value-decomposition networks for cooperative
multi-agent learning based on team reward. In Proceedings of the International
Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, Vol. 3.
2085–2087. arXiv:arXiv:1706.05296v1

[40] Zhenggang Tang, Chao Yu, Boyuan Chen, Huazhe Xu, Xiaolong Wang, Fei Fang,
Simon Du, YuWang, and Yi Wu. 2021. Discovering Diverse Multi-Agent Strategic
Behavior via Reward Randomization. ICLR (2021).

[41] Albert Tsao, May Britt Moser, and Edvard I. Moser. 2013. Traces of experience in
the lateral entorhinal cortex. Current Biology 23, 5 (mar 2013), 399–405. https:
//doi.org/10.1016/j.cub.2013.01.036

[42] Kagan Tumer. 2006. Designing agent utilities for coordinated, scalable and robust
multi-agent systems. Coordination of Large-Scale Multiagent Systems (2006),
173–188. https://doi.org/10.1007/0-387-27972-5_8

[43] Neale Van Stralen, Seung Kim, H Tran Tran, and Girish Chowdhary. 2020. Evalu-
ating Adaptation Performance of Hierarchical Deep Reinforcement Learning. In
2020 International Conference on Robotics and Automation (ICRA).

[44] Fangkai Yang, Daoming Lyu, Bo Liu, and Steven Gustafson. 2018. Peorl: Inte-
grating symbolic planning and hierarchical reinforcement learning for robust
decision-making. IJCAI International Joint Conference on Artificial Intelligence
2018-July (2018), 4860–4866. arXiv:1804.07779

[45] Jingwei Zhang, Jost Tobias Springenberg, Joschka Boedecker, and Wolfram Bur-
gard. 2017. Deep reinforcement learning with successor features for navigation

Main Track AAMAS 2022, May 9–13, 2022, Online

759



across similar environments. IEEE International Conference on Intelligent Robots
and Systems 2017-Septe (2017), 2371–2378. https://doi.org/10.1109/IROS.2017.
8206049 arXiv:1612.05533

[46] Meng Zhou, Ziyu Liu, Pengwei Sui, Yixuan Li, and Yuk Ying Chung. 2020. Learn-
ing Implicit Credit Assignment for Cooperative Multi-Agent Reinforcement
Learning. In Neurips.

Main Track AAMAS 2022, May 9–13, 2022, Online

760




