
Equilibrium Computation
For Knockout Tournaments Played By Groups

Grzegorz Lisowski, M. S. Ramanujan, and Paolo Turrini

University of Warwick

United Kingdom

{Grzegorz.Lisowski,R.Maadapuzhi-Sridharan,P.Turrini}@warwick.ac.uk

ABSTRACT
In single-elimination knockout tournaments, participants face each

other based on a starting seeding and progress to the next rounds

by beating their direct opponents. In this paper we initiate the

study of coalitional knockout tournaments, which generalise single-

elimination knockout tournaments by allowing groups of players,

or coalitions, to strategically select one of their members to take

part in the tournament, following the starting seeding. We investi-

gate the algorithmic properties of pure strategies Nash equilibria in

these games under various setups, i.e., whether or not choices can

be made at each round and whether or not tournament progres-

sion is important to the group. Despite the more complex tourna-

ment structure when compared to single-elimination, we provide

(quasi-) polynomial-time algorithms for all cases. Our results can

be applied to those tournaments where pre-play selection plays an

important role, such as sport events or elections with run-off.
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1 INTRODUCTION
Sport events are frequently organised as knockout tournaments

among selected individuals or teams. In international competitions,

for example, coaches choose from a nation’s best sportspeople to

maximise their country’s winning chances, which requires studying

the potential rivals at different stages of the tournament. Strategic

selection is also relevant in those tournaments where progression

matters, even when the chances of winning the entire tournament

may be slim. For instance, clubs participating in the UEFA Champi-

ons League receive significant financial rewards for reaching each

stage of the competition and so, selecting the right squad (which

has to be before the beginning of the knockout stages) is critical.

Selection headaches of this type are of course not limited to

sports. Many other competitive environments can be modelled as

tournaments, where self-interested participants strive to make their

best possible choice against the predicted choices of their potential

opponents. If we consider presidential elections with run-off, for

instance, we observe a similar phenomenon: parties put forward
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one candidate each, with the top two in the first round competing

against each other. Also in this case the right selection of a candidate

heavily depends on the potential choices of the opposing parties.

Tournaments, understood as directed graphs over players (see,

e.g. [23], [20], [12], [21]), were introduced in the game theory and

social choice research, and have gained attention in computer sci-

ence for their well-behaved computational properties (see e.g., [4]).

In this paper we focus on what are possibly the simplest and best-

known tournaments, knockout (or single-elimination) tournaments,

where participants are initially associated with the leaves of a full

binary tree, and the winner of the match played between the players

at a pair of sibling nodes proceeds to the next stage, i.e., the parent

of these two nodes. Knockout tournaments have been extensively

analysed in the computational social choice and algorithmic game

theory communities, either in connection with social choice func-

tions (see, e.g. [24], [19], [6]) or from the point of view of an external

manipulator trying to rearrange the initial seeding to guarantee a

certain player to be the winner (see, e.g. [14], [26], [16], [3]).

However, the problem of analysing the strategic behaviour of

groups in knockout tournaments - be they tennis players or party

candidates to choose from - has been largely overlooked.

Our contribution. In this paper we address this gap by extend-

ing standard (single-elimination) tournaments to account for the

strategic behaviour of groups. Before the tournament starts, we

allow each of them to make an independent choice of the best

selection, or candidate, to put forward. We study the equilibrium

behaviour of groups (or coalitions) in such tournaments from an al-

gorithmic point of view. Our analysis spans three axes: A) whether

coalitions choose their candidates once and for all — called one-

shot tournaments (which we model as winner-take-all knockout

tournaments) — or not — dynamic tournaments B) whether only

winning matters — what we call win-lose tournaments — or also

tournament progression — beyond win-lose; C) whether we focus

on computing equilibria or on verifying a given one. Despite the

complex tournament structure, we show polynomial-time or quasi-

polynomial-time algorithms for all these cases (Table 1).

Related literature. Our results are connected to multiple research

lines in the computational analysis of tournaments. In the context

of social choice theory, attention has been paid to stable solutions

[4] and to subclasses displaying desirable properties [5]. The exis-

tence of well-behaved solutions has also motivated the study of the

complexity of their computation (as in e.g., [7], [8], [5]).

Our approach is closely related to strategic voting (see, e.g. [22]),

the growing branch of social choice theory dealing with strategic

behaviour in collective decision-making and, more specifically, to

strategic candidacy [9]. In our case the electorate is composed of
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coalitions who vote for one of their members, i.e., the one to put

forward in the tournament, strategising over the outcome of the

tournament — our social choice function — given the choices of the

opponents. Along these lines, [17] recently studied, in the context of

tournament solutions, how politicians can form a coalition so that

a representative of their group is elected. Further, [11] conducted

a complexity analysis of how parties can win elections based on

the voters’ preferences over the set of all potential candidates. In

the context of voting with candidate selection on Hotelling-Downs

spaces, equilibrium computation was shown to be not tractable in

the general case [13].

Finally, our results are directly relevant to the problem of tourna-

ment manipulation, for example understanding how the seeding can

be manipulated to force a particular winner, a problem extensively

studied in the literature (by e.g. [27], [10], [2] [10], [26], [14], [16],

[3], [18]) or whether a pair of players can reverse their comparison

to make one of them the winner of the tournament (see, e.g., [1]).

Paper structure. In section 2 we provide the basic setup, notably

the definitions of binomial arborescence, coalitional strategies and

equilibrium solutions, together with some key observations. Section

3 analyses one-shot tournaments, providing algorithm for comput-

ing their equilibria, while Section 4 focuses on dynamic ones.

2 PRELIMINARIES
Tournaments. Let [n] = {1, 2, . . . ,n} be a set of players and let

D be a digraph ([n],E) with E ⊆ [n]2, representing the results of

a round-robin tournament played between them. Here, for every

pair of players, exactly one is picked to be the winner between the

two, which is encoded in D as an arc directed from the winner to

the loser. So, for every pair of players i, j with i , j, exactly one

of (i, j), (j, i) belongs to E. We shall call such a graph a tournament

digraph. Also, if (i, j) ∈ E, we say that i beats j.
Let V (D) denote the set of vertices of D. A knockout tournament

or single-elimination tournament (henceforth, SE-tournament) on

D is defined as a complete binary tree T with n leaves L(T ) and a

bijective function π : V (D) → L(T ) called the seeding, mapping the

n players to the n leaves. Then, the winner of the knockout tourna-

ment corresponding to π is determined recursively: the winner at

a leaf l is the player j with l = π (j), and the winner of the subtree

rooted at a node v is the winner of the match between the winners

of the two subtournaments rooted at the children of v , as decided
by the orientation of the unique arc between these two vertices. In

this paper, we will only consider SE-tournaments based on perfect

binary trees, implying that the number of players entering the tour-

nament is a power of 2. An example of a SE-tournament is depicted

in the left side of Figure 1.

Arborescences. The proofs in the paper will often use the techni-

cal notion of binomial arborescence [26], which allows for a succinct

formulation of the structural properties of SE-tournaments. An ar-

borescence is a rooted directed tree such that all the arcs are directed

away from the root.

Definition 1 ([26]). Let D be a tournament digraph. The set of

binomial arborescences over D is recursively defined as follows:

• Each a ∈ V (D) is a binomial arborescence rooted at a;

a1

d1
d1

c2

a1
b2

a1

a1

b2

d1

c2

Figure 1: On the left an SE-tournament with 4 players. On
the right the corresponding binomial arborescence. Notice
that the first-round matches are (a1,b2) and (d1, c2), and the
only second-round match is (a1,d1), which is won by a1.

a1

a2

b1

b2

c1

c2

d1

d2

Figure 2: A coalitional structure of teamsA,B,C,D, eachwith
two members. In red, the arborescence-shaped selection.

• If, for some r > 0, Ta and Tb are 2
r−1

-node binomial arbores-

cences rooted at a and b respectively, then the tree T resulting

from adding an arc from a to b is the 2
r
-node binomial ar-

borescence rooted at a.

An example of binomial arborescence is in the right of Figure 1.

If a binomial arborescence T is such that V (T ) = V (D), then
T is a spanning binomial arborescence (s.b.a.) of D. Intuitively, an
s.b.a. can be used to compactly encode how an SE-tournament will

evolve, following its tournament digraph.

As shown by [26], there is a formal connection between binomial

arborescences and knockout tournaments.

Proposition 1 ([26]). Let D be a tournament digraph and let

v⋆ ∈ V (D). Then, there is a seeding of V (D) such that the resulting

knockout tournament is won by v⋆ iff D has an s.b.a. rooted at v⋆.

As a result of this proposition, we shall interchangeably use the

terms binomial arborescence and SE-tournament, when these are

clear from the context. Henceforth, we will mainly work with bino-

mial arborescences, as this allows for neater proofs and procedures.

Subtournaments. Consider now a set of players [2m ]. We denote

by SEπ ,[2m ] the spanning binomial arborescence representing the

SE-tournament played by the players in [2m ] following the seeding

π . We call the root of SEπ ,[2m ] the winner of SEπ ,[2m ]. Moreover,

for each r ∈ {0, . . . ,m}, we denote by SE
r
π ,[2m ]

the binomial ar-

borescence representing the subtournament of SEπ ,[2m ] played by

the winners of all the r th round matches of SEπ ,[2m ] (notice that

there are exactly 2
m−r

players who win at least r rounds). In other

words, SE
0

π ,[2m ]
is the same as the full tournament SEπ ,[2m ] and, for

every r ∈ [m], SErπ ,[2m ]
denotes the subgraph of SE

r−1
π ,[2m ]

obtained

by simply deleting all its leaves. Notice that SE
m
π ,[2m ]

contains a

single vertex which corresponds to the winner of SEπ ,[2m ].

Furthermore, let u,v1,v2 be vertices of a binomial arborescence

T such that u is the parent of v1 and v2. For each x ∈ {1, 2}, let
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ℓx denote the size (number of vertices) of the largest binomial

arborescence contained in T and rooted at vi . If ℓ1 < ℓ2, then
we say that v2 is a heavier child of u than v1. We denote this by

v2 ⋟
T
u v1, with the explicit references to u and T dropped when

these are clear from the context. Notice that ℓ1 and ℓ2 can never

be equal. If v2 is the unique child of u that is heavier than all of

their siblings, then we say that v2 is the heaviest child of u. The
lightest child of u is symmetrically defined. For r ∈ [log ℓ], these

notions can be extended in the natural way to r heaviest children
(or r lightest children) of u. Intuitively, assuming u is not a leaf, the

heaviest child of u is the last player beaten by u in the knockout

tournament and the lightest child of u is the first player beaten by

u, i.e., the opponent of u in the first round. Similarly, the r heaviest
children of u are the last r opponents of u that lose to u and the r
lightest children of u are the first r opponents of u that lose to u.

Coalitional Structures. In this paper we study coalitional tourna-

ments, where players are partitioned into groups (also called teams

or coalitions). Informally, each coalition will put forward one of

their members in the spot allocated to them by the seeding. When

each coalition makes their choice, this will give rise to a standard

SE-tournament. So, for a set P of players, a coalitional structure

of P is a partition C = {C1,C2, ...,Cℓ} of P, such that ℓ = 2
m

for

somem > 0. For a set C′ ⊆ C of coalitions, we use P(C′) to denote

their set of players. That is, P(C′) =
⋃
C ∈C′ C . Moreover, for a

player p ∈ P, we denote by C(p) the coalition to which p belongs.

We use DC to denote the |C|-partite coalitional structure repre-

senting the results of matches played between all pairs of players

of distinct coalitions. So, DC is a graph (P,E) such that for every

pair of players pi ,pj ∈ P for which pi ∈ Ci , pj ∈ Cj and Ci , Cj ,

exactly one of (pi ,pj ), (pj ,pi ) belongs to E.
Figure 2 shows a 4-partite coalitional structure, with a strategic

selection reflecting the SE-tournament and the binomial arbores-

cence in Figure 1.

Input representation. In order to analyze the running time of our

algorithms, we need to first establish the input representation and

input size. Given the observations above, we represent a coalitional

knockout tournament in spaceO(n2 logn)+O(n log ℓ)+O(ℓ log ℓ),
where ℓ is the number of coalitions and n the total number of

players. Here, O(n2 logn) is a bound on the representation of DC ,

O(n log ℓ) is the space to represent the partition of players into

coalitions and O(ℓ log ℓ) the space to represent the seeding. As the

number of coalitions ℓ is at most the number of players n (we do

not permit empty coalitions), the input has bit-size O(n2 logn).
We assume that the seeding is fixed and known to all coalitions

a priori. Hence, when possible, in order to keep the notation simple,

we will refrain from explicitly referring to the seeding.

3 ONE-SHOT KNOCKOUT TOURNAMENTS
In this section, we study tournaments where the coalitions choose

a representative once and for all, before the competition starts. We

are interested in equilibrium strategies - specifically, Nash equilibria

- and to study the complexity of their computation and verification.

Starting from a coalition structure C we call a selection of players

by all teams a strategy profile (or simply, a profile) and formally de-

fine it as a function s : C → P, such that s(Ci ) ∈ Ci . In other words,

a strategy profile is a selection by each coalition of one of their

members, an example of which is shown in Figure 2. We note that

a strategy profile s can be simply rewritten as a tuple (p1, . . . ,pℓ)
of members of the corresponding coalitions. Also, whenever the

seeding π is clear from the context, we write SEs to denote the

tournament between players in s following π , and SEs[p′i ]
the tour-

nament obtained from SEs by replacing player pi with p′i (in the

same coalition as pi ). Furthermore, we say that a coalition C wins

tournament SEs if the winner of SEs belongs toC . Figure 1 features
the tournament SE{a1,b2,c2,d1 } , with a1 being the winner.

3.1 Win-Lose Games
The simplest type of one-shot tournaments we look at are the ones

where only winning matters (i.e., win-lose games). When picking a

player to put forward in a win-lose game, a coalition will have to

reason about the possible outcomes of the tournament as a function

of the opponents’ choices. To encode this reasoning we define

appropriate variants of the classical Nash equilibria.

Definition 2 (Eqilibria). A profile s = (p1, . . . ,pℓ) is a Nash
Equilibrium (NE), if for all i and for all p′i ∈ Ci : if Ci wins SEs[p′i ]
then Ci wins SEs .

In other words, in a NE, no coalition can improve their outcome

by changing their representative unilaterally. Clearly, a NE need

not exist in general, which opens important algorithmic questions

regarding their existence and computation.

3.1.1 Structural and algorithmic properties of NE.

Equilibrium existence. We start by addressing the question of

deciding whether a given strategy profile is a NE, what we call the

problem of recognising a NE. To do so we introduce a technical

notion and a key lemma, before we are able to show its tractability.

Definition 3. Let j ∈ [ℓ] such that pj is the root of the s.b.a. SEs .
Let j ′ be a coalition distinct from j and consider the pj -pj′ path H in

SEs . For every player p on this path, we denote byOpponent+H [p,pj′]
the set defined as follows.

• If p = pj′ , Opponent+H [p,pj′] is the set of children of pj′ in SEs .

• Else,Opponent+H [p,pj′] is the set {p}∪{v |v is a child of p and v ⋟p
p′}, where p′ denotes the unique child of p contained in H .

The utility of the above definition is derived from the fact that it

formalises the set of future opponents that the coalition Cj′ would

have to face if it were to replace pj′ with a different player p′j′ in the

profile s – what we denote

⋃
p∈V (H )Opponent

+
H [p,pj′]. Note that

this set is no larger than log ℓ since that is the maximum number

of opponents faced by any player in the tournament. We drop the

explicit reference toH in this notation when the rootpj (the winner)
is clear from the context. See Figure 3 for a visual illustration.

The following structural lemma forms the crux of our algorithmic

results. Informally, we use the fact that a profile is a NE if and

only if no coalition which is losing the tournament can switch

their representative to one which beats all players beaten by the

original representative plus every future opponent (that the original

representative did not get to face following its loss), along with the

properties of the technical notion in Definition 3.
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Figure 3: An example of a non-NE strategy, where players 12
and 33 belong to the same coalition (for convenience called
Coalition 12), and all other coalitions consist of one player
only and the index of the Coalition is the same as the index
of the player (e.g., Player 14 plays for Coalition 14). There
are 33 players and 32 coalitions in total. The seeding pairs
up Coalition 2i + 1 and Coalition 2i + 2 in the first round, for
each i ∈ {0, . . . , 15}. Consider the path 1 → 9 → 11 → 12, call
it H . Notice that Opponent+[12, 12] = ∅,Opponent+[11, 12] =
{11},Opponent+[9, 12] = {9, 13},Opponent+[1, 12] = {1, 17}.
Thus, if Coalition 12 wanted to win by replacing its
chosen player (Player 12) with an alternative, then it
would have to beat the players chosen by Coalitions
{11, 9, 13, 1, 17}, which are precisely the Coalitions indexed
by

⋃
p∈V (H )Opponent

+
H [p, 12]. Also, fixing the choices of all

coalitions, player 33 improves upon player 12, beating all the
potential future opponents – Players {11, 9, 13, 1, 17}.

Lemma 1. Consider a profile s = (p1, . . . ,pℓ) and let j ∈ [ℓ] such

that pj is the root of the s.b.a. SEs . Then, s is a NE iff there is no

j ′ ∈ [ℓ] \ {j} and player p′j′ ∈ Cj′ such that p′j′ beats all players in

Opponent+[p,pj′] for every player p on the pj -pj′ path in SEs .

Figure 3 shows a non-NE profile based on the characterization

in Lemma 1. As a consequence of this lemma, we obtain a simple

algorithm for testing whether a given profile is a NE.

Proposition 2. Recognising a NE is P-time solvable.

We note that this test can be done in O(n3)-time, implying a

running time that is subquadratic in the input size.

Equilibrium computation. We are further interested in computing

a NE, which is much more complex than recognising one. Sur-

prisingly, we show that this can still be done in quasi-polynomial

time.

To be precise, our main theorem, Theorem 1, will show the

existence of an nO (log ℓ)
-time algorithm for computing a NE. To

obtain this result, we will make use of a key lemma, Lemma 2, which

establishes that a NE (if one exists) can be obtained by composing

specific types of strategies for various subtournaments. This lemma

effectively implies that we can compute a NE (if one exists) by

examining only at most nO (log ℓ)
out of the set of possibly nΩ(ℓ)-

many strategy profiles.

Let us start with providing several useful notions. For a set S

and q ∈ N, we denote by
( S
≤q

)
the set of subsets of S of size at most

q and by [q]≥0 the set {0} ∪ [q]. Let us denote by Cr (Cj ) the set

of coalitions who could potentially meet Coalition Cj within the

first r -rounds (over all possible digraphs DC and profiles s) plus
the Coalition Cj itself. Notice that |Cr (Cj )| = 2

r
. Thus, Cr (Cj ) \

Cr−1(Cj ), denotes the set of all possible opponent coalitions that

Cj could face exactly in the r th round. For technical reasons, we

set Cr (Cj ) = ∅ for every r ∈ {−1,−2} and Cj ∈ C. Finally, for the

seeding π we define by π rj the restriction of π to Cr (Cj ). Similarly,

for a profile s , we denote by srj , the profile s |Cr (Cj ), which is the

restriction of s to Cr (Cj ). Conversely, we say that s is an extension

of srj . Notice that there can be multiple possible extensions of srj .

We next define a mapping ζ which allow us to reason about a

NE in terms of the outcomes of specific subtournaments.

Definition 4. We define the function ζ : C×P×P×[log ℓ]≥0×( P
≤log ℓ

)
→ 2

S
as follows. Let Cj ∈ C, r ∈ [log ℓ]≥0,pj ∈ Cj ,

pj′ ∈ Cj′ such that Cj′ ∈ Cr (Cj ) \ Cr−1(Cj ), Z ∈
( P
≤log ℓ

)
such

that Z ∩ P(Cr (Cj )) = {pj }. Then, ζ (Cj ,pj ,pj′ , r ,Z ) denotes the set
of all profiles s over Cr (Cj ) such that:

• (a) player pj ∈ Cj wins SEπ rj ,s
• (b) player pj′ is the final opponent of pj in tournament SEπ rj ,s
• (c) for every coalition Cj′′ ∈ Cr (Cj ) \ {Cj } and player pj′′ ∈
Cj′′ , either (i) pj′′ is beaten by a player in Z or (ii) by a player

in the set Opponent+[p,pj′′] for some player p on the pj -pj′′

path in SEπ rj ,s .

For every other choice of Cj ,pj ,pj′ , r ,Z , ζ (Cj ,pj ,pj′ , r ,Z ) = ∅.

So, ζ (Cj ,pj ,pj′ , r ,Z ) is the set of all those profiles over the r -
round tournament comprised of CoalitionCj ’s first r matches, such

that the player pj (from Coalition Cj ) wins these r rounds, Player
p′j is the final opponent of pj in the r round tournament (i.e., pj and

p′j play in the r th round) and all players in any coalition who could

potentially meet Cj within the first r rounds are beaten either by a

player in the set Z or by a player in the set Opponent+[p,pj′′] for
some player p on the pj -pj′′ path in the s.b.a SEπ rj ,s .

An informal description of the motivation behind this definition

is the following. If we take Z to denote pj plus its “potential future
opponents” from round r + 1 onwards, then ζ (Cj ,pj ,pj′ , r ,Z ) con-
tains precisely all those profiles over Cr (Cj ) such that in any profile

(over all coalitions) that is an extension thereof, there is no benefit

for any coalition in Cr (Cj ) (other than possibly Cj ) to unilaterally

alter its strategy because any alternative player will either fail to

win the first r rounds anyway (Property (c) (ii) of Definition 4) or

eventually lose to a “future opponent” in the set Z (Property (c) (i)
of Definition 4). Notice that the set Z is never larger than log ℓ

because the number of rounds in the whole tournament is log ℓ.

Our quasi-polynomial running time arises from the fact that we

have nO (log ℓ)
possibilities for Z and essentially go over all of these

possibilities in our algorithm.

Definition 4 and Lemma 1 entail that by setting the arguments

of the function ζ appropriately, one can capture all NEs. Thus:

Observation 1. Every NE is contained in ζ (Cj ,pj ,pj′ , log ℓ, {pj })
for someCj ∈ C, pj ∈ Cj and pj′ ∈ Cj′ and conversely, for everyCj ∈
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C, pj ∈ Cj and pj′ ∈ Cj′ , every profile in ζ (Cj ,pj ,pj′ , log ℓ, {pj }) is
a NE.

Given the above observation, what naturally suffices is to com-

pute the function ζ for all possible settings of the arguments. How-

ever, this may not be possible in quasi-polynomial time because

even just listing all possible NEs could be too computationally

expensive. To overcome this obstacle, we next prove a structural

result that shows, intuitively, that if a strategy profile s is a NE

for a given tournament, then we can reconstruct s (or an alternate

NE) by going over the subtournaments at every possible level, ex-

amining the image (which is a set of profiles) of ζ by setting the

arguments appropriately, and then merging these profiles. In partic-

ular, we show that if there is a NE-strategy s then, for every round

r ∈ [log ℓ], s extends some profile s ′ in ζ (Cj ,pj ,pj′ , r ,Z ) for some

Cj , pj ∈ Cj , pj′ ∈ Cj′ and Z , and moreover, for any other profile

s ′′ ∈ ζ (Cj ,pj ,pj′ , r ,Z ), we can “cut” s ′ from s and “paste” s ′′ to
obtain another NE. The main algorithmic consequence of this fact

is that for any choice of the arguments Cj ,pj ,pj′ , r and Z , instead
of computing all the profiles contained in ζ (Cj ,pj ,pj′ , r ,Z ), it is
sufficient to compute a single one because if any of them can be

extended to a NE, then every one of them can be extended to a NE.

This “pruning lemma" is at the heart of our algorithm.

Lemma 2. Let s = (p1, . . . ,pℓ) be a NE, r ∈ [log ℓ] and let the

winner of SEs be pj⋆ ∈ Cj⋆ . Let pj ∈ Cj be the winner of the binomial

sub-arborescence SEπ rj ,s
r
j
and let pj′ ∈ Cj′ denote the final opponent

of pj in SEπ rj ,s
r
j
. Let Z =

⋃
p∈V (H )\{pj′ } Opponent

+
H [p,pj′] where

H denotes the pj⋆ -pj′ path in SEs .

(1) Then, ζ (Cj ,pj ,pj′ , r ,Z ) is non-empty.

(2) Moreover, for every pj1 ∈ Cj1 and pj2 ∈ Cj2 , for every ŝ1 ∈

ζ (Cj ,pj ,pj1 , r − 1,Z ∪ {pj′}), and ŝ2 ∈ ζ (Cj′ ,pj′ ,pj2 , r − 1,Z ∪

{pj′}), the composed profile ŝ1 ·ŝ2 is contained in ζ (Cj ,pj ,pj′ , r ,Z ).

Proof. We first show that srj ∈ ζ (Cj ,pj ,pj′ , r ,Z ). By the defi-

nition of srj , pj is the root of SEπ rj ,s
r
j
and pj′ is the heaviest child

of pj in SEπ rj ,s
r
j
. Hence, if srj < ζ (Cj ,pj ,pj′ , r ,Z ), then there exists

pj′′ ∈ Cj′′ ∈ Cr (Cj ) \ {Cj }, such that pj′′ beats every player in Z
and pj′′ beats every player in the set Opponent+[p,pj′′] for every
player p on the pj -pj′′ path in SEπ rj ,s

r
j
. Along with our choice of Z ,

this would then also imply that pj′′ beats every player in the set

Opponent+[p,pj′′] for every player p on the pj⋆ -pj′′ path in SEs ,

contradicting our choice of s as a NE (see Lemma 1).

For the second statement, we need to prove that Properties

(a), (b), and (c) in Definition 4 are satisfied by ŝ = ŝ1 · ŝ2. The
first two properties are satisfied since pj beats pj′ , pj = SE

r−1
ŝ1

,

and pj′ = SE
r−1
ŝ2

. Suppose Property (c) is violated. Then, for some

pj′′ ∈ Cj′′ ∈ Cr (Cj ) \ {Cj }, pj′′ beats all players in Z and all play-

ers in the set Opponent+[p,pj′′] for each player p on the pj -pj′′

path in SEπ rj , ŝ . However, note that if Cj′′ ∈ Cr−1(Cj ) then we ob-

tain a contradiction to our assumption that ŝ1 ∈ ζ (Cj ,pj ,pj1 , r −
1,Z ∪ {pj′}) satisfies Property (c) of Definition 4, and otherwise

(if Cj′′ ∈ Cr (Cj ) \ Cr−1(Cj )), this violates our assumption that

ŝ2 ∈ ζ (Cj′ ,pj′ ,pj2 , r − 1,Z ∪ {pj′}) satisfies Property (c) of Defini-

tion 4. □

Lemma 2 forms the core of our algorithm to compute a NE, whose

running time we establish with the following theorem.

Theorem 1. There is an nO (log ℓ)
-time algorithm for computing a

NE.

Proof. Due to Observation 1, our algorithm to compute a NE

aims to identify and return an element of a non-empty ζ (Cj ,pj ,pj′ ,
log ℓ, {pj }) if such a Cj ,pj ,Cj′ and pj′ exist. This is necessary and

sufficient. We achieve this via a dynamic programming algorithm

that fills a table T where the cells are indexed by tuples of the form

(Cj ,pj ,pj′ , r ,Z ). Moreover, any non-empty cell indexed by the tuple

(Cj ,pj ,pj′ , r ,Z ) contains a single element of ζ (Cj ,pj ,pj′ , r ,Z ) and
an empty cell indexed by the tuple (Cj ,pj ,pj′ , r ,Z ) indicates that
ζ (Cj ,pj ,pj′ , r ,Z ) is empty. Notice that if the table is filled correctly,

then the solution (i.e., a NE strategy) can be determined by going

over all possibleCj ,pj ,Cj′ and pj′ (of which there are polynomially

many) and examining the entry ofT indexed by the tuple (Cj ,pj ,pj′ ,
log ℓ, {pj }).

We next describe how to fill the tableT . We proceed by iteratively

increasing the value of r and in each iteration, filling all cells ofT cor-

responding to the value of r in the current iteration. In the base case,
r = 1 and so for every Cj ∈ C, it follows that |Cr (Cj )| = 2. Hence,

for every Z ∈
( C
≤log ℓ

)
, pj ∈ Cj and pj′ ∈ Cj′ ∈ C1(Cj ) \ {Cj }, it is

straightforward to decide whether ζ (Cj ,pj ,pj′ , 1,Z ) , ∅ in polyno-

mial time by simply trying all possible profiles. If it is non-empty,

then we compute and add toT (Cj ,pj ,pj′ , 1,Z ) an arbitrary element

of ζ (Cj ,pj ,pj′ , 1,Z ). Otherwise we set T (Cj ,pj ,pj′ , 1,Z ) = ∅ (in-

cluding for those indices which ζ maps to ∅ by definition). Hence

we may assume that we have filled the table T for all entries with

r = 1. Note that this step takes time nO (log ℓ)
since we have poly-

nomially many choices for Cj ,pj ,Cj′ ,pj′ and n
O (log ℓ)

possibilities

for Z and furthermore, determining the entry T (Cj ,pj ,pj′ , 1,Z ) for
each fixed choice of Cj ,pj ,Cj′ ,pj′ and Z as described above takes

only polynomial time.

Now, suppose that r > 1 and inductively assume that for all

r ′ < r , for all choices of Cj , Cj′ , pj , pj′ , and Z , we have filled the

table entryT (Cj ,pj ,pj′ , r
′,Z ) correctly. Now, fix a choice ofCj ,Cj′ ,

pj ∈ Cj , pj′ ∈ Cj′ , and Z ∈
( P
≤log ℓ

)
and we describe our proce-

dure to fill the table entry T (Cj ,pj ,pj′ , r ,Z ). We check if there is

a ŝ1 ∈ T (Cj ,pj ,pj1 , r − 1,Z ∪ {pj′}) and a ŝ2 ∈ T (Cj′ ,pj′ ,pj2 , r −
1,Z ∪ {pj′}) for some choice of pj1 and pj2 . If yes, then we set

T (Cj ,pj ,pj′ , r ,Z ) = ŝ1 · ŝ2 and otherwise we set it to ∅. The second

point of Lemma 2 indicates that composing ŝ1 and ŝ2 in this way

indeed results in a profile that is contained in ζ (Cj ,pj ,pj′ , r ,Z ),
implying the correctness of our algorithm. Finally, the claimed run-

ning time bound follows from the fact that the table T has nO (log ℓ)

entries in total, each of which is being filled in polynomial time

using constant-time lookups into polynomially-many previously

filled entries of T . □

Observe that our algorithm actually achieves more than what is

claimed in the statement of the theorem. Indeed, for every player pj ,
our algorithm computes an equilibrium in which pj is the winner
(if one exists).
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3.2 Beyond Win-Lose Games
In earlier sections we assumed coalitions to be only interested in

winning the tournament. It is however natural to look at scenarios

in which participants have a major incentive to progress as far as

possible even if they do not win, as in the UEFA Champions League.

Here, we study coalitional games in which the teams’ utility

is determined by the round they reach. We call these games be-

yond win/lose (B-W/L) games. Formally, we define utility functions

u1, . . . ,uℓ where for any s = (p1, . . . ,pℓ), ui (s) = k if and only

pi ∈ SE
k
s \ SEk+1s . As with the win/lose scenario, in a NE no coali-

tion can improve their utility by selecting different player.

Definition 5 (BeyondWin/Lose NE). A profile s = (p1, . . . ,pℓ)
is a: Beyond Win-Lose Nash Equilibrium (B-W/L NE), if for all

i,k ∈ [log ℓ]≥0,p
′
i : if ui (s[p

′
i ]) = k , then ui (s) ≥ k .

In the remainder of this section we focus on structural results

characterising B-W/L NE and algorithmic results addressing the

problems of recognition and computation for each.

3.2.1 Algorithmic properties of B-W/L NE. We begin by providing a

structural result which we then use for recognising and computing

B-W/L NEs, capturing when a profile is a B-W/L NE.

Lemma 3. Consider a profile s = (pi , . . . ,pℓ) and let j ∈ [ℓ]

such that pj wins SEs . Furthermore, suppose that pj′ ∈ Cj′ is the

final opponent of pj in SEs . Then, s is a B-W/L NE if and only if (a)

s1 = s |C
log ℓ−1(Cj ) and s2 = s |C\C

log ℓ−1(Cj ) are both B-W/L NEs and

(b) there is no p′j′ ∈ Cj′ which beats pj such that p′j′ wins SE
log ℓ−1

s2[p′j′ ]
.

Proof. In the forward direction, suppose that s is a B-W/L NE.

Observe that if Property (b) is violated then Cj′ can improve its

position in SEs[p′j′ ]
, so s is not a B-W/L NE. Moreover, suppose that

one of s1 or s2 is not a B-W/L NE for the respective subtournaments.

W.l.o.g., suppose that for someCi ∈ C\{Cj ,Cj′},ui (s1[p
′
i ]) > ui (s1).

That is, Ci is able to improve its position in the subtournament

played by C
log ℓ−1(Cj ) by playing p

′
i instead of pi . Then,ui (s[p

′
i ]) >

ui (s). That is, Ci can also strictly improve its position in s[p′i ], a
contradiction to s being a B-W/L NE. The argument when Ci ∈

C \ C
log ℓ−1(Cj ) is identical and hence Property (a) also holds.

Conversely, suppose that Properties (a) and (b) hold and s is
not a B-W/L NE. Let p′i ∈ Ci be such that ui (s[p

′
i ]) > ui (s). Since

Property (b) holds, it cannot be the case that i ∈ {j, j ′}. Moreover,

if Ci ∈ Clog ℓ−1(Cj ), then it contradicts our assumption that s1 is a
B-W/L NE and, otherwise, our assumption that s2 is one. □

This allows us to provide a P-time algorithm for recognising a

B-W/L NE, which can be extended to the computation problem.

Proposition 3. Recognising a B-W/L NE is P-time solvable.

Proof. By Lemma 3, we have that for a given profile s = (pi , . . . ,pℓ)
and j ∈ [ℓ] such that pj is the winner of SEs , s is a B-W/L NE if

and only if there is no j ′ ∈ [ℓ] \ {j} and player p′j′ ∈ Cj′ such

that p′j′ beats the parent of pj′ as well as all players in the set

Opponent+[pj′ ,pj′]. The P-time algorithm for recognising a B-W/L

NE follows. □

Theorem 2. Computing a B-W/L NE is P-time solvable.

Proof. Notice that if there is a B-W/L NE, then for r = 1, for

everyCj ∈ C, the subtournament over Cr (Cj ) can bewon by exactly

one out of the two coalitions in this subtournament and the set

of potentially winning players that can participate in a B-W/L NE

can be easily computed in polynomial time. Indeed, suppose that

Cj and Cj′ are the two coalitions in this subtournament. If every

player in Cj loses to some player in Cj′ and every player in Cj′

loses to some player in Cj , then in any profile, at least one out of

these two coalitions will be able to improve their final position

by at least one place, implying the non-existence of a B-W/L NE.

Hence, we identify all players in Cj (Cj′ ) that beats every player in

Cj′ (respectively, Cj ) by examining all matches between players in

these two coalitions. This is clearly P-time computable.

We now inductively argue a similar property for r > 1. By the

induction hypothesis, we have that if there is a B-W/L NE, then

for every Cj ∈ C, the subtournaments over Cr (Cj ) \ Cr−1(Cj ) and

Cr−1(Cj ) can be won by exactly one coalition each (say, C ′
and

C ′′
respectively) and the potentially winning players from each

of these coalitions (denoted by P⋆(C ′) and P⋆(C ′′) respectively)

that can participate in a B-W/L NE can be computed in polynomial

time. Now, notice that for a B-W/L NE to exist, exactly one out of

the following two cases must occur: either (i) there is a player in

P⋆(C ′) that beats every player in P⋆(C ′′) or (ii) there is a player

in P⋆(C ′′) that beats every player in P⋆(C ′). Moreover, the set of

players satisfying (i) or (ii) can be computed in polynomial time. □

4 DYNAMIC KNOCKOUT TOURNAMENTS
We now allow coalitions to choose players at each round of the

tournament. In this model, a strategy of a coalitionC consists of ℓ−1

(not necessarily distinct) players representing, for each opposing

coalition, a choice of a player of C to face said opposing coalition.

We therefore model coalitional choices as dynamic strategy profiles

σ : C → (C → P). Specifically, for each distinct i, j ∈ [ℓ],σ (Ci )(Cj )

elects a member of the coalition Ci when facing coalition Cj . For

every C ∈ C, let S(C) denote the set of all functions C → C , i.e.
the set of all possible responses to a given coalition. We require

dynamic strategy profiles σ to be such that σ (Ci ) ∈ S(Ci ) for each
Ci ∈ C. We use ρi to denote σ (Ci ) for every coalition Ci ∈ C.

Equivalently, we represent σ as a tuple (ρ1, . . . , ρℓ) where ρi ∈

S(Ci ), and denote with ρi j the player inCi selected to play against

Cj (also named ρi (Cj )). In this interpretation, for every i ∈ [ℓ],

σ (Ci )(Ci ) is meaningless as a coalition does not face itself, and

so we assigned an arbitrary player of Ci to be σ (Ci )(Ci ) (say the

lexicographically smallest one).

Input representation. Notice that a dynamic strategy can be rep-

resented as a matrixM of the size ℓ × ℓ, where ℓ is the number of

coalitions. Then, each entry of the matrix M[i, j] such that i , j
corresponds to σ (Ci )(Cj ). If i = j ,M[i, j] is empty. Given this repre-

sentation, a dynamic strategy can be encoded in space O(ℓ2 logn).
While dynamic games typicallywarrant history-dependent strate-

gies, the tree structure of coalitional knockout tournaments allows

for a pair of coalitions to meet only at a unique round, if ever, as a

function of the initial seeding. Therefore, each coalitional choice is

effectively history-dependent when the initial seeding is fixed.

Mirroring the one-shot case, we represent tournaments between

coalitions, as induced from a dynamic strategy profile. Let DC be a
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digraph on P and σ a dynamic strategy profile over C. A dynamic

coalitional digraph (DC ,σ ) is a digraph with vertex set C where

(i, j) is an arc of (DC ,σ ) if and only if (σi (Cj ),σj (Ci )) is an arc of

DC . Also, the notion of binomial arborescence SEσ is lifted from

the one-shot case in the natural manner.

Further, the solution concept is lifted from the one-shot case as

expected, both for the win-lose (d-NE) and the beyond win-lose (B-

WL d-NE) games. The techniques used in the proofs of the results

in this section are similar to their one-shot correspondents. Thus,

we omit some of them.

4.1 Dynamic Win-Lose Games
In this section, we begin by lifting NEs to the current setting.

Definition 6. A dynamic profile σ = (ρ1, . . . , ρℓ) is a dynamic

Nash Equilibrium (d-NE), if for all i and for all ρ ′i : if SE
log ℓ

π ,σ [ρ′i ]
= Ci

then SE
log ℓ
σ = Ci .

So, a dynamic strategy profile is a dynamic NE if no losing coali-

tion can become a winner by changing their strategy (which now

corresponds to selecting a player for each opposing coalition) uni-

laterally. We establish a useful structural equivalence between d-NE,

and NE for a one-shot coalitional tournament defined on an auxil-

iary tournament digraph where the players correspond to the set of

the given parties’ strategies. We first define the auxiliary digraph.

Definition 7. Consider the digraph DC . We define by D
Dyn
C

the

graph with vertex set

⋃
C ∈C S(C) and arc set defined as follows. For

every distinctCi ,Cj ∈ C, for every ρi ∈ S(Ci ) and ρ j ∈ S(Cj ), there

is an arc (ρi , ρ j ) if (ρi (Cj ), ρ j (Ci )) is an arc in DC and there is an

arc (ρ j , ρi ) otherwise.

That is, D
Dyn
C

has the arc (ρi , ρ j ) if and only if the player pi
elected to face Cj by Ci wins against the player Cj elected to face

Ci . Observe that like DC , D
Dyn
C

is also a |C|-partite tournament

digraph with a partition for every S(Ci ) where Ci ∈ C.

This construction allows us to reason about the dynamic solu-

tion concepts in terms of one-shot tournaments, as the following

characterisation shows.

Lemma 4. Let σ be a dynamic strategy profile over the coalitions

C. Then, σ is a d-NE for the dynamic SE-tournament over C using the

pairwise results in DC and seeding π iff (ρ1, . . . , ρℓ) is a NE for the

one-shot SE-tournament over the coalitions S(C) = {S(C)| C ∈ C}

using the pairwise results in D
Dyn
C

and seeding π projected from the

coalitions in C to those in S(C) in the natural way.

4.1.1 Algorithmic properties of d-NE. We now address the algo-

rithmic questions of recognising and computing a dynamic NE.

Observe that in D
Dyn
C

, the number of vertices could be as large

as ℓ ·mℓ
wherem is the size of the largest coalition in DC . As a

result, although we can transfer our structural results on NEs from

the one-shot setting to the dynamic setting using the graph D
Dyn
C

,

we cannot simply use the same algorithms because the running

time, though polynomial in the size of D
Dyn
C

, will no longer remain

polynomial in the size of the actual input, which is linear in the

size of the graph DC . However, using appropriate queries that can

be answered in polynomial-time (in the size of DC ), we can still

obtain a polynomial-time algorithm for recognising a d-NE. In the

rest of the paper, polynomial-time refers to polynomial-time in the

size of DC .

Lemmata 1 and 4 entail the tractability of recognising d-NE.

Proposition 4. Recognising a d-NE is P-time solvable.

Proof. By invoking Lemma 1 on D
Dyn
C

and the equivalence

given by Lemma 4, we conclude that a given dynamic profile σ =
(ρ1, . . . , ρℓ) won by Cj is a d-NE if and only if there is no j ′ ∈

[ℓ] \ {j} and strategy ρ ′j′ ∈ S(Cj′) such that ρ ′j′ beats all players

in the set Opponent+[ρ, ρ j′] for every player ρ on the ρ j -ρ j′ path

in the b.a SEσ contained in the graph D
Dyn
C

. Observe that given

σ , the b.a. d-SEσ and the set Opponent+[ρ, ρ j′] for every player ρ
on the ρ j -ρ j′ path can be computed in polynomial time by simply

querying, for every pair of coalitions – “who is the winner between

the two" if both played their respective strategies contained in σ .
Now, for any j ′ ∈ [ℓ] \ {j}, we can check whether there is a strategy

ρ ′j′ ∈ S(Cj′) which beats the players selected by the respective

coalitions by simply inspecting the arcs of the graph DC . □

Then, with reasoning similar to the one-shot case we obtain a

quasi-polynomial-time algorithm for computing a d-NE if it exists.

Theorem 3. A d-NE can be computed in nO (log ℓ)
-time.

4.2 Beyond Dynamic Win-Lose Games
Let us further analyse the final case, that of tournaments where

coalitions can modify their choices at each round and are interested

in tournament progression. The solution studied in this section is a

natural modification of that considered earlier.

We define utility functions u1, . . . ,uℓ where, for every profile

σ = (ρ1, . . . , ρℓ), ui (σ ) = k if and only ifCi ∈ SE
k
σ \ SEk+1σ . That is,

Coalition Ci wins k rounds but not k + 1 rounds. This means that

the utility of coalition i is dependent on the final round which they

reach under a given strategy profile. The solution concept mirrors

the one we defined previously.)

Definition 8. A dynamic profile σ = (ρ1, . . . , ρℓ) is a Beyond
Win-Lose Dynamic Nash Equilibrium (B-W/L d-NE), if for all i,k ∈

[log ℓ]≥0, ρ
′
i : if ui (σ [ρ

′
i ]) = k , then ui (σ ) ≥ k .

4.2.1 Algorithmic properties of B-W/L d-NE. Let us commence by

the study of NE in the beyond win/lose, dynamic setting. We first

provide a structural result on which we base the analysis of its

algorithmic properties.

Lemma 5. Consider a dynamic profile σ = (ρi , . . . , ρℓ) and let

j ∈ [ℓ] such that Cj wins SEσ . Furthermore, suppose that Cj′ is the

final opponent of Cj in SEσ . Then, σ is a B-W/L d-NE if and only if

σ1 = σ |Clog ℓ−1(Cj )
and σ2 = σ |C\Clog ℓ−1(Cj )

are both B-W/L d-NEs

and (b) (ρ j , ρ j′) is an NE.

Proof. In the forward direction, consider a B-W/L d-NE σ =
(ρi , . . . , ρℓ). Observe that if Property (b) is violated then Cj′ can

improve its position by choosing ρ j′j ∈ Cj′ as a player which

beats ρ j j′ , contradicting our assumption that σ is a B-W/L d-NE.

Hence we conclude that Property (b) is satisfied. On the other
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ONE-SHOT DYNAMIC

CHECK FIND CHECK FIND

W/L NEaaa P Q-P P Q-P

B W/L NEa P P P P

Table 1: Summary of the algorithmic results in the paper.

hand, suppose that one of σ1 or σ2 is not a B-W/L d-NE for the

respective subtournaments. Without loss of generality, suppose

that for someCi ∈ C \ {Cj ,Cj′},Ci is able to improve its position in

the subtournament played by C
log ℓ−1(Cj ) by choosing the strategy

ρ ′i instead of ρi . Then, Ci can also strictly improve its position in

SEσ [ρ′i ]
, a contradiction to σ being a B-W/L d-NE. The case when

Ci ∈ C \ C
log ℓ−1(Cj ) is identical and hence Property (a) holds.

Conversely, suppose that Properties (a) and (b) hold and suppose

that σ is not a B-W/L NE. Let ρ ′i ∈ S(Ci ) be such that ui (σ [ρ
′
i ]) >

ui (σ ). Since Property (b) holds, it cannot be the case that i ∈ {j, j ′}.

Moreover, if Ci ∈ Clog ℓ−1(Cj ), then it contradicts our assumption

that σ1 is a B-W/L d-NE and otherwise, it contradicts our assump-

tion that σ2 is a B-W/L d-NE. □

The following algorithmic result follows from Lemma 5.

Theorem 4. Recognising and computing a B-W/L d-NE are P-time

solvable.

Notice that a coalitional knockout tournament can admit mul-

tiple dynamic B-W/L NEs for a fixed seeding, but these are all

outcome-equivalent.

5 DISCUSSION
We introduced a model for knockout tournaments played between

groups, to allow for each group to strategically select a member

to take part in it. We carried out an algorithmic analysis of Nash

equilibrium strategies under various setups occurring in practice,

showing tractable results (polynomial-time or quasi-polynomial-

time) for all cases. Table 1 gives an overview of our results.

We covered, for space reasons, only the treatment of Nash equi-

libria, but alternative solution concepts have also been studied.

In particular, dominant strategy equilibria (DSE), where a profile

s = (p1, . . . ,pℓ) is called a DSE if for all i and s ′: ifCi wins SEs ′ ∈ Ci
then Ci wins SEs ′[pi ]. In other words, no coalition can improve on

their DSE strategy, irrespective of the choices of their opponents.

Adapting this one-shot win-lose definition to the beyond win-lose

and dynamic counterparts, analogously to what done with Nash

equilibria, P-time algorithms can be shown for all cases in Table 1.

We foresee various potential research directions building on our

work, which involve relaxing some of the assumptions, especially

on participants knowledge and strategies, and looking at alternative

solution concepts. Here we discuss a few concrete ones.

(1) It is interesting to explore fast parameterized algorithms for

finding a one-shot or dynamic W/L NE, e.g., parameterized

by the number of coalitions ℓ.

(2) All our results so far have assumed a tournament with a fixed

seeding. However the choice of seeding may influence the

tournament enormously, in particular some seedings may

admit an equilibrium while others may not. Establishing the

complexity of finding a seeding such that a given solution

concept exists is therefore an important problem in this

setup. This has repercussions for tournament fixing [26], as

a malicious external attacker may be in a position to choose

a seeding with a favourable winner in all resulting equilibria

and high complexity barriers may act against it.

(3) A third direction for future research is to establish the exis-

tential and algorithmic properties of the considered solution

concepts under relaxed versions of our model. For instance,

consider the scenario in which the beating relation or tourna-

ment digraph is relaxed to be stochastic. In this case, studying

the existence and computational complexity of various equi-

libria based on the expected utility would be of high interest.

This would bring us closer to understanding a setting that

models real-world scenarios more faithfully than possible

using only a “static” tournament digraph.

(4) The combination of sequential decision-making in tourna-

ments and the beating relation between players suggests

novel solution concepts. Assume that coalition A can win

a win-lose one-shot tournament, provided coalition B does

not field player b, who defeats every player in A. We have

that, every time B fields b, A is indifferent to the choice of

any of their players. However there is a sense in which A
must play a potential winner, should something happen to b.
This suggests a trembling-hand interpretation of the beat-

ing relation (building on a classical solution concept [25]),

which coalitions can try and exploit. Intuitively, profile s is
a trembling-hand tournament perfect equilibrium if, for every

coalition Ci , the strategy profile s is a Nash equilibrium at

each sub-tournament, where Ci plays si as if they were able

to reach that sub-tournament.

(5) Another natural research direction concerns the possibility

of cooperative and semi-cooperative behaviour among coali-

tions. Assume that coalition A needs coalition B to win the

tournament, but B can never win. We envisage an interesting

variant of endogenous games [15] arising in our tournaments.

Before the tournament starts, A can transfer a part of the

expected payoff to B, should B refrain from fielding a player

blocking A. This should be seen as a form of manipulation,

e.g., flipping results of a certain number of matches, where

incentives comes from the players themselves

(6) Finally, the extension to mixed strategies is a natural follow-

up. It is then interesting to explore whether the knockout

tournament structure can add any advantage in terms of

(mixed-strategy) Nash equilibrium computation, as opposed

to full-blown normal form games.
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