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ABSTRACT
In this paper, we investigate the role of risk diversity in groups of
agents learning to play collective risk dilemmas (CRDs). We show
that risk diversity poses new challenges to cooperation that are
not observed in homogeneous groups. While increasing average
risk contributes, in general, for agents to cooperate with higher
probability, increasing risk diversity significantly reduces a popula-
tion’s ability to achieve a collective target. Risk diversity leads to
asymmetrical changes in agents policies — i.e. the increase in con-
tributions from individuals at high risk is unable to compensate for
the decrease in contributions from individuals at low risk — which
reduces the total contributions in a population and overall social
welfare. At the same time, risk diversity offers novel opportunities
to design financial incentives, which, as we show, can improve
cooperation, target achievement and global welfare beyond the
levels obtained in the absence of diversity. Our results highlight
the need to align risk perceptions among agents and implement
diversity-based incentive policies in order to improve collectives’
abilities to avoid future catastrophic events.
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1 INTRODUCTION
The World Economic Forum recently (January 2021) published its
16𝑡ℎ report on global risks [18]. Among the most concerning risks
are climate change, biodiversity loss, extreme weather, as well as
societal division and economic fragility. While some of these threats
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are on the verge of becoming unavoidable, individual and collective
behaviors can still be adapted to avoid disastrous outcomes. This
requires cooperation and coordination between a large number
of agents, from citizens to policy-makers. Environmental, societal,
economic, and other foreseeable collective risks require collective
efforts — whether on a regional, national or international level —
for successful resolutions of the problems and avoidance of crises.

While it is evident that large collective efforts are needed to avoid
these disasters, people, institutions or countries remain reluctant to
cooperate. On the one hand, no entity has the power of saving the
system on its own. This is known as the problem of many hands
(PMH) and occurs in interactions with a large number of players
[55]. This challenge becomes even more prominent when actions
are not directly harmful but only cause the risk of a harm [54].
On the other hand, cooperation in such contexts entails a social
dilemma: the best individual outcome occurs if others contribute to
the collective good and risks are avoided without one’s intervention.
This selfish reasoning, and the shifting of responsibility onto others,
configures the so-called tragedy of the commons [22]. The tension
within individuals/entities created by the urgent need of coopera-
tion, the individually rational choice to defect, and the uncertainty
about future outcomes and strategies of others, makes decision
making non-trivial [3, 4, 25, 43]. The collective risk dilemma (CRD)
is a simple game metaphor that tries to capture such challenges
[11, 31, 40, 44, 56, 57].

In a CRD, agents decide how much of their wealth to contribute
to a common pool with the goal of collectively achieving a target
threshold that avoids future losses. If the target is not achieved,
there is a risk that large losses are incurred by everyone.

The dynamics within groups playing CRDs have been tackled
using different tools, from behavioral experiments [9, 11, 31, 51]
to evolutionary game theory [40, 42, 44, 45, 57] and multi-agent
reinforcement learning [12, 30]. However, previous works on CRDs
considered a homogeneous risk factor [11, 31, 40, 45]. In reality, het-
erogeneous risk exposures and perceptions are ubiquitous. Recently,
the COVID-19 crisis highlighted discrepancies in risk perception
among countries [1, 20], as well as discrepancies in risk perception
and exposure among individuals [7, 26, 34, 52]. Some studies have
looked into other types of heterogeneities among agents and have
reported significant changes in cooperation and target achievement
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[23, 30, 57]. The findings on other heterogeneities motivated us to
investigate the effect of introducing risk diversity in a population
of agents facing collective risks. We examine how averaging out
the risk value instead of considering risk diversity can alter the
results we observe. To the best of our knowledge, this is the first
work to explore risk diversities in the context of CRDs.

In multi-player games with common risks or common goods (i.e.,
where agents contribute to a common good instead of escaping a
common risk), financial incentives (FI), in the form of punishments
or rewards, are an effective mechanism to increase cooperation and
target achievement [13, 21, 48–50]. After studying the effects of
risk diversity, we explore how FI between peers at different risk
exposure, hence with different interests for cooperation, can unify
collective efforts and decrease the chances of failure. We investi-
gate the benefits of FI on target achievement, overall cooperation
and the secured welfare of agents. We contribute by showing how
heterogeneity and non-symmetrical games can conceive new use
cases for FI.

While the game tensions play a decisive role in the choices made
by the agents, the final equilibrium of the system will also largely
depend on the decision making process of agents. In fact, a game
can be either studied from a static or a dynamic perspective based
on how agents are assumed to make their decisions. A static per-
spective often assumes that agents are rational and fully know
all possible strategy profiles and their respective outcomes which
leads to convergence to Nash equilibria. Yet, experimental studies
have shown that humans often do not select the rational choices
[15, 19, 29, 47], and rather adapt their policies based on experience.
Reinforcement learning (RL) suggests new tools to analyse deci-
sion making dynamics and, in fact, was shown to accurately model
human behaviors in several social dilemmas [39]. Reinforcement
learning has rapidly evolved in the past years, and several varia-
tions were developed specifically to promote cooperation in social
dilemmas [16, 24]. However, the aforementioned algorithms require
sharing large amounts of information and have therefore mostly
been applied to 2-player games. The goal of this paper is to examine
the cooperation challenges that emerge under RL dynamics in large
player and asymmetric games with risk diversity. As such, we do
not exploit algorithms designed to encourage cooperation in social
dilemmas, but focus on independent RL where agents can only
observe their own actions and rewards.

We examine how risk diversity can affect a population’s abil-
ity to achieve a target threshold to effectively avoid a disastrous
outcome. From there, we explore the benefits that introducing fi-
nancial incentives can have on overall welfare, cooperation and
target achievement. As our main contributions, we show that:

(1) Symmetrical diversity in risk leads to asymmetrical changes
in agents policies, reducing overall contributions, target
achievement and welfare;

(2) Higher risk values reduce the consequences of risk diversity;
(3) Higher target achievement is not always equivalent to higher

welfare;
(4) Risk diversity offers opportunities in the design of finan-

cial incentives, which can foster higher cooperation, target
achievement and global welfare than the ones obtained in
the absence of diversity.

We begin our paper with Section 2 on related work. In Section 3,
we model the collective risk dilemma, explain how risk diversity is
introduced, describe the agents’ learning dynamics, and present the
structure of the designed financial incentives. Finally, we display
our results in Section 4 and conclude our paper in Section 5.

2 RELATEDWORK
In this section, we delve into the literature on risk and diversity in
collective games, we outline the ways in which risk diversities can
appear in a society, and present usages of financial incentives to
promote cooperation in social dilemmas.

Previous works on CRDs, both experimental and theoretical,
have concluded that a higher risk translates into a higher probability
that agents cooperate and, consequently, might help in escaping
the tragedy of the commons [6, 11, 30, 31, 40, 42].

The global risk factor is not the only decisive factor in an agent’s
willingness to cooperate. The introduction of different inequali-
ties between agents was shown to have a significant impact on
cooperation. Under evolutionary game theory, wealth and returns
inequality were found to reduce cooperation in a continuous public
goods game [23]. Similar results were found for wealth inequalities
in CRDs, in experimental settings [51], as well as under evolution-
ary game theory [57], and reinforcement learning [30].

While most sources of heterogeneity studied in the literature
focus on wealth inequality, we argue that risk — either perceived or
effective — is yet another source of heterogeneity worth studying
in populations facing collective risk dilemmas. A survey of 119
countries confirmed significant variance in public concern and risk
assessment of the global climate change problem [27]. The Global
Risk Report reveals how participants assess differently the risks
of different global concerns [18]. Similarly, the recent COVID-19
pandemic led to the distinction between people at normal risk
and those at increased risk of severe illness from COVID-19. The
World Health Organization identified medical conditions that can
increase the risk of getting seriously ill [34]. Other governmental
units have classified jobs into different risk exposure levels [33], and
several other studies and reports have been published highlighting
similar diversities [5, 17, 35, 53]. We note that risk diversity can
either emerge from a subjective diversity in risk perception or an
objective diversity in actual risk exposure. In this work, we focus
on the consequences of diversity in risk exposure.

In games with collective risks, FI were studied as a means to
prevent free-riding and promote cooperation among agents, both
in homogeneous and symmetrical games [21, 48], as well as in
heterogeneous games with wealth inequality [13].

FI in the form of peer-rewards or institutional rewards can also
promote cooperation in public goods games [8, 14, 37, 38, 49, 59].

In the context of reinforcement learning, the introduction of
decaying peer-rewards during training, was empirically proven to
be effective for avoiding the tragedy of the commons in a resource
appropriation setting [28] and increase the chances of converging
to a pro-social equilibrium in a Stag-Hunt game [58].

The literature on rewards and punishments in social dilemmas,
recognizes financial incentives as an instrument to prohibit free-
riding [46]. In our work we identify a novel purpose for FI emerging
from the challenges raised by diversity in risk exposure. Under such
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diversity, an agent at low risk of facing a disaster can choose to
defect, not to free-ride on the contributions of others, but simply
because of an indifference towards target achievement. For an agent
at low risk, if the threshold is not met, the chances of facing a dis-
aster are low. If the cost of cooperating is equal or higher than the
cost of failing, an agent can lose interest in target achievement.
For instance, vaccinated individuals with low probability of facing
severe illness from COVID-19 can feel discouraged to follow un-
pleasant safety measures. Nevertheless, a vaccinated person can
still be contagious, and the selfish behavior can have dangerous
consequences for other people at high risk. From a climate action
perspective, people in different locations can be at different risks
of facing extreme weather, forest fires, floods etc. and therefore
can experience different levels of motivation to achieve climate
agreements. We investigate how financial incentives can provide a
new solution for aligning interests among heterogeneous agents,
rather than only a way to discourage free-riding.

In this section, we highlighted from the literature the effect that
the risk and different heterogeneities have on cooperation in collec-
tive risk dilemmas. We identified a lack of papers investigating risk
heterogeneities despite their prevalence in real-life interactions. In
this paper, we address this gap and investigate the consequences
that risk diversity has on populations facing collective risks. We ex-
ploit our findings to propose a new use case for financial incentives
in non-symmetrical social dilemmas.

3 MODEL
Dynamics in a multi-agent system depend both on the decision
making dynamics of the agents composing it and on the environ-
ment dynamics where interactions take place. In this section, we
detail the dynamics of the collective risk dilemma that agents are
engaged in, the learning dynamics of the individual agents, as well
as the dynamics of the added financial incentives.

3.1 Game Dynamics
A collective risk dilemma (CRD) is a game in which agents need
to cooperate to avoid an eventual disaster [11, 31, 40, 44, 56, 57].
Agents’ success in avoiding the disaster requires a minimum collec-
tive effort. Effort is modeled by the costly contribution of players
towards a common pool. If contributions are below the threshold
they will not alleviate the consequences of the disaster. Additionally,
all contributions above the threshold do not create any additional
value for the players. As a result, agents are on the one hand mo-
tivated to cooperate to ensure that the disaster is avoided, and on
the other hand motivated to defect and free-ride hoping that others
will put in the required efforts for disaster avoidance.

Formally, in a population of finite size 𝑍 , we allocate for ev-
ery player an initial endowment 𝑏. Players are then sampled into
groups of size 𝑁 to play CRDs. They need to jointly collect enough
contributions to reach a target threshold t to avoid with certainty
a common disaster. If a group manages to achieve the threshold
target, the disaster is avoided and players only lose what they had
contributed to the common pool. However, should the target not
be met, agents, depending on their level of risk exposure to the
disaster, will lose a fraction 𝑝 of their remaining endowment. That
is, every agent 𝑖 , will incur additional disaster losses with a risk

probability 𝑟𝑖 . At the end of the game, player 𝑖 who started with an
initial endowment 𝑏 will be left with

𝑏𝑖
𝑓 𝑖𝑛𝑎𝑙

=

{
(1 − 𝑐𝑖 )𝑏 if the disaster was avoided,
(1 − 𝑐𝑖 )𝑏 − 𝑝 (1 − 𝑐𝑖 )𝑏 otherwise.

(1)
where 𝑐𝑖 represents the binary choice of either contributing 0 or a
fraction 𝑐 of the initial endowment to the pool (𝑐𝑖 ∈ {0, 𝑐}).

The perceived benefits or harm of these losses in endowment
is a subjective function known as the utility in economic game
theory. One common utility function is the log-utility. The log-
utility function has been used when studying the impact of wealth
inequality in CRDs [30] and is used more broadly in economy to
capture what is known as a diminishing marginal utility [36]. It
assumes that losing money is perceived as more painful by poorer
individuals than by richer ones. Similarly, it assumes that losing
𝑥% of one’s wealth is equally painful for anyone, regardless of how
much wealth that percentage represents in absolute value. While
all agents are equally wealthy in our scenario, we do intend to
examine mixtures of heterogeneities in future works, such as the
combination of wealth inequality with risk diversity. With that in
mind, to better compare our results with future works, we decide to
adopt a log-utility function. Moreover, in several scenarios, results
under log-utility do not differ from those under linear utility [30].
The payoffs of the game are expressed as the difference in the log
of agents’ wealth before and after a game was played. Avoiding
a disaster will cost a cooperator 𝑥𝐶 = log

(
𝑏−𝑐𝑏
𝑏

)
= log(1 − 𝑐),

and a defector 𝑥𝐷 = log
(
𝑏
𝑏

)
= 0 or nothing. Facing a disaster

will cost cooperators 𝑥𝐶 = log(1 − 𝑐 − 𝑝 (1 − 𝑐)) and defectors
𝑥𝐷 = log(1 − 𝑝). The goal of each player is to find a probabilistic
strategy 𝜋∗

𝑖
— representing the probability of player 𝑖 choosing to

cooperate — that maximizes the expected payoff.

3.1.1 Introduction of risk diversity. We consider risk diversity in
the form of binary risk classes. That is, we split our population into
two classes: agents at high risk of being affected by the disaster and
agents at low risk. Agents at high risk represent a fraction 𝑧𝐻 of the
population, and agents at low risk represent the remaining fraction
𝑧𝐿 = 1 − 𝑧𝐻 of the population. Given an average population risk
value 𝑟 and a risk diversity value 𝛿 , if the target is not achieved,
agents at high risk will lose an additional fraction 𝑝 of their re-
maining wealth with probability 𝑟𝐻 = 𝑟 + 1

2𝑧𝐻 𝛿 while agents at low
risk only face that disaster with a risk probability 𝑟𝐿 = 𝑟 − 1

2𝑧𝐿 𝛿 —
this guarantees that the average risk in the population remains 𝑟
regardless 𝛿 .

3.1.2 Numerical values. The population size is set to 𝑍 = 200 indi-
viduals, representative of the number of countries engaged in the
climate action problem, a commonly studied CRD. The agents are
organized in groups of 𝑁 = 6. They are given an initial endowment
𝑏 = 1 and can choose to either cooperate and contribute a fraction
𝑐 = 0.1 of it to a common pool or defect and contribute nothing.
Participants have stochastic policies 𝜋𝑖 and will sample for each
game one of the two choices according to the probabilities defined
by their policies. The threshold t is set so that the target is only
achieved if at least half of the agents in a group cooperate, i.e.,
t = 𝑀𝑐𝑏 with 𝑀 = 𝑁

2 . Agents at high and low risk are equally
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frequent in the population with 𝑧𝐻 = 𝑧𝐿 = 50% of the population.
This means, for an average population risk 𝑟 and a risk diversity 𝛿 ,
agents at high risk will face a disaster with probability 𝑟𝐻 = 𝑟 + 𝛿
while agents at low risk will face a disaster with a risk probability
𝑟𝐿 = 𝑟 − 𝛿 . If the threshold target is not achieved, every agent that
faces a disaster pays a penalty of 𝑝 = 0.7 or 70% of its remaining
wealth. We proceed with two experiments: in the first, we investi-
gate the effect of increasing mean risk values 𝑟 , while in the second,
we explore the consequences of increasing risk diversities 𝛿 . This al-
lows us to better understand the impact of risk diversity for regimes
of high and low baseline risk (𝛿 fixed and varying 𝑟 ) and also the
impacts of risk diversity in the form of symmetric risk distribution
(𝑟 fixed and varying 𝛿).

3.2 Agent Learning Dynamics
The goal of the paper is to understand how simple reinforcement
dynamics can encourage or discourage cooperative behaviors in
populations with risk diversity. The findings of this study can later
be used by works that aim to engineer cooperative capabilities for
agents in these scenarios. We choose to model the agents learning
dynamics using the Roth-Erev Algorithm which was shown to
successfully model human decision making in social dilemmas [39].

Accordingly, we create a population of 𝑍 agents and allow ev-
ery player 𝑖 , to assign and update a propensity value for each of
the possible actions. In the 2-actions collective risk dilemma, this
translates into a propensity vector q𝑖,𝑘 =

[
𝑞𝑖,𝑘 (𝐶), 𝑞𝑖,𝑘 (𝐷)

]𝑇 where
𝑞𝑖,𝑘 (𝐶) and 𝑞𝑖,𝑘 (𝐷) are the respective propensities for the coopera-
tive and the defective action after the 𝑘𝑡ℎ learning interaction. The
resulting propensities are normalized using the soft-max function
to derive the stochastic policy 𝜋𝑖,𝑘 , used to sample an action at the
next interaction. At the end of the interaction, when returns are
distributed, every player 𝑖 , depending on the selected action 𝐴 and
the received reward 𝑥 , updates its propensity vector such that

𝑞𝑖,𝑘+1 (𝐴) = (1 − 𝜙)𝑞𝑖,𝑘 (𝐴) + 𝑥
𝑞𝑖,𝑘+1 (¬𝐴) = (1 − 𝜙)𝑞𝑖,𝑘 (¬𝐴)

(2)

where ¬𝐴 represents the non-chosen action and 𝜙 is a forgetting
parameter that inhibits the propensities from growing to infinity.

We adopt the same population training algorithm used previ-
ously to train a population of agents facing a CRD under wealth
inequality [30]. We summarize the procedure in Algorithm 1. At
every step 𝑘 , a group of 𝑁 agents is selected randomly from the
population of 𝑍 agents. The agents in this group engage in a CRD.
Every player 𝑗 in the group chooses randomly one of the 2 available
actions following probabilities 𝜋 𝑗,𝑘−1, derived by normalizing the
propensity vector q𝑗,𝑘−1. The selected actions and the agents’ risk
factors determine their different payoffs. The payoffs are then used
by the agents in the group to update their propensity vectors. This
is repeated for a total of 𝐾 learning-steps. Since the algorithm does
not guarantee that all agents are chosen equally as many times, we
define 𝐾 ′, the minimum number of learning-steps per agent, and
ensure that training continues until every agent performs at least
𝐾 ′ learning-steps. We choose the same numerical values used by
Merhej et al. and fix 𝐾 = 2.5 × 106, 𝐾 ′ = 3 × 104, and 𝜙 = 1 × 10−3.
We repeat all simulations for 5 runs.

Algorithm 1: Training a population of independent RL
agents using the Roth-Erev algorithm

Init: 𝐾 total number of learning-steps, 𝐾 ′ minimum number
of learning-steps per agent

for 𝑖 ← 1 to Z, population size do
q𝑖,0 ←random initialization;
𝑢𝑖 ← 0 /* number of updates per agent */

for 𝑘 ← 1 to K do
1. sample random group G of size N ;
2. sample actions 𝐴 𝑗 ∼ 𝜋 𝑗,𝑘−1 for 𝑗 ∈ 𝐺 ;
3. evaluate disaster avoidance for 𝑗 ∈ 𝐺 ;
4. calculate log-utility payoff of 𝑗 ∈ 𝐺 ;
5. update q𝑗,𝑘 (Eq. 2);
6. 𝑢 𝑗 ← 𝑢 𝑗 + 1 for 𝑗 ∈ 𝐺 ;
7. 𝑢𝑚𝑖𝑛 ← min(u)

while 𝑢𝑚𝑖𝑛 < 𝐾 ′ do
repeat steps 1. to 7.

3.3 Financial Incentives
Achieving cooperation in amulti-player collective risk social dilemma
is challenging. The introduction of risk diversity among participants
augments the problem with additional difficulties. While agents
at high risk of facing a disaster are highly motivated to achieve
the target, agents at a lower risk, may not feel the same urge. The
indifference of agents at low risk makes the target harder to achieve
for agents at high risk. Because the game itself offers little incentive
for agents at low risk to cooperate, we investigate how a financial
motivation from agents at high risk can drive disinterested agents
to cooperate. We explore financial incentives (FI) as a zero-sum
transfer of a reward from agents at high risk to agents at low risk.
The peer-rewards should align the motives of agents at different
risk levels and ensure cooperation among agents with originally
different interests.

In this paper we do not focus on how FI among peers can emerge
in a self-organized way but rather study the benefits of the existence
of a pre-arranged agreement between the two classes. We detail
below the design of the FI and the conditions for a transfer to occur.

In a group of 𝑁 participants engaging in a CRD, let 𝑁𝐻 be the
number of agents at high risk, and 𝑁𝐿 = 𝑁 − 𝑁𝐻 , the number of
agents at low risk. We use the superscript to indicate cooperative
and defective agents. That is, out of 𝑁𝐿 agents at low risk, we have
𝑁𝐶
𝐿
cooperators and 𝑁𝐷

𝐿
= 𝑁𝐿 − 𝑁𝐶

𝐿
defectors. The same notation

can be applied to agents at high risk. After an interaction, if the tar-
get threshold is achieved, agents at high risk will transfer a fraction
of their wealth to agents at low risk as an incentive to motivate
cooperative actions. To outbalance cooperation costs, every agent
at high risk will contribute a fraction 𝑓 = 2𝑐 of the original en-
dowment, i.e., twice the cooperation cost, to a pool dedicated for
financial incentives. The collected sum (2𝑐𝑏×𝑁𝐻 ) by agents at high
risk is then equally distributed among 𝑁𝐶

𝐿
cooperators at low risk.

Agents at high risk who started with an initial endowment 𝑏,
will end the game with

𝑏𝐻
𝑓 𝑖𝑛𝑎𝑙

=

{
𝑏 − 𝑐𝑏 − 2𝑐𝑏 if they cooperated,
𝑏 − 2𝑐𝑏 if they defected. (3)
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(a) (b) (c) (d)

Figure 1: (a) Group achievement of populations with and without risk diversity w.r.t. the risk 𝑟 . In all cases, group achievement
increases with 𝑟 . (b) Learned strategies of agents from a population without diversity (mean risk) and those of agents from
populations with risk diversities 𝛿 = 0.1 and 𝛿 = 0.3 w.r.t. the risk 𝑟 . With higher risk, the relative impact of the diversity
decreases and agents behave more like homogeneous populations. (c) Group achievement of populations under different mean
risk w.r.t. the risk diversity 𝛿 . Risk diversity decreases overall group achievement despite a constant average risk. (d) Learned
strategies of agents at high and low risk in populations of different mean risk w.r.t. the risk diversity 𝛿 . For high diversity, the
reduction in cooperation from agents at low risk is not compensated by an equal increase from agents at high risk and overall
contributions decrease. In all the panels, shaded areas represent the standard deviation over 5 runs.

On the other hand, agents at low risk who started with an initial
endowment 𝑏, will finish the game with

𝑏𝐿
𝑓 𝑖𝑛𝑎𝑙

=

{
𝑏 − 𝑐𝑏 + 2𝑐𝑏 𝑁𝐻

𝑁𝐶
𝐿

if they cooperated,
𝑏 if they defected.

(4)

Again, agents receive as payoffs the difference in the log of their
wealth before and after an interaction.

If the target threshold is not achieved, no rewards are transferred
and agents receive the payoffs of the original game of Section 3.1.

4 RESULTS
We study the consequences of risk diversity for populations of
agents learning to play the game introduced in section 3.1 with the
RL algorithm of section 3.2. After the learning phase, the strategies
are evaluated based on a) the resulting population’s probability of
achieving the target threshold t, and b) the amount of remaining
wealth in that population. To get those values, for every setting, we
rollout a gamewhere the population is split into groups of𝑁 players.
In each group, agents, following their learned strategies, choose
to either contribute or not. At the end of the game, we calculate
𝜂, the percentage of groups in the population that successfully
reach the target, as well as 𝜁 , the fraction of secured welfare or
remaining wealth in the population after cooperation costs and
disaster losses. The two variables are evaluated and averaged over
106 simulations. Studies are run both on heterogeneous populations
with risk diversity, as well as on their homogeneous counterparts
(i.e., populations with the same average risk 𝑟 but no diversity 𝛿).

4.1 Effect of Risk Inequality on Cooperation
and Target Achievement

To study the effect that risk inequality can have on a population
facing a CRD, we begin by comparing the group achievement rate

𝜂 and the learned strategies of a homogeneous population on one
hand, with those of heterogeneous populations with risk diversity
factors 𝛿 = 0.1 and 𝛿 = 0.3 on the other hand. We plot the results
for varying average risk factors 𝑟 in Figures 1a and 1b.

With or without risk diversity, we observe that the group achieve-
ment rate increases with the risk (Figure 1a). This comes from the
higher willingness of agents to cooperate (Figure 1b) as the costs of
failure increase with the risk. The results we show are consistent
with other studies on collective risks [30, 40].

However, while most studies report that inequalities have a
decisive impact on group achievement [30, 41, 57], the impact of
risk diversity is mitigated at higher risk values. The consequences
of risk diversity are largest for 𝛿 = 𝑟 , when the relative strength of
the diversity 𝛿/𝑟 is the highest. This value decreases as 𝑟 increases,
resulting in achievements similar to homogeneous populations.

The observation remains true for the learned strategies. In fact, as
𝑟 increases, the strategies learned by both classes seem to converge
to the strategies learned by a homogeneous population.

Upon our first findings, we investigate the role of the diversity
factor 𝛿 . In a second experiment, we examine the variations in target
achievement and cooperation with respect to the risk diversity 𝛿 .
In Figure 1c, we observe how for the same average risk, stronger
diversity causes a drop in achievement. Again, the effect is mitigated
for larger risk values (𝑟 = 0.7) and amplified at 𝑟 = 𝛿 , when all the
population’s risk is only carried by half of the population, i.e. where
𝑟𝐿 = 𝑟 − 𝛿 = 0 and 𝑟𝐻 = 𝑟 + 𝛿 = 1. The conclusions are coherent
with the results in Figure 1a.

Figure 1d shows the strategies followed by individuals at high
and at low risk in populations with mean risk 𝑟 = 0.5 and 𝑟 = 0.7.
Results for 𝑟 = 0.1 and 𝑟 = 0.3 are qualitatively similar to the re-
sults for 𝑟 = 0.5 and are omitted for more visibility. For stronger
diversity, we notice an increased gap in cooperation rates between
the two classes as agents at low risk cooperate less and agents at
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high risk compensate by cooperating more. However, as the relative
strength of the diversity 𝑟/𝛿 approaches 1, i.e., 𝛿 = 𝑟 , the reduction
in cooperation of agents at low risk is not compensated by a similar
increase in cooperation from agents at high risk. As a consequence,
total contributions in the population decrease which explains the
drop in target achievement. When risk diversity is relatively strong,
and especially when it concentrates responsibility of target achieve-
ment on a subset of the population, target achievement and overall
contributions of a population significantly decline. We notice that
this does not occur for 𝑟 = 0.7 since values of 𝛿 > 0.3 are not
supported.

4.1.1 Reinforcement learning dynamics and Nash equilibria. We
highlight the distinctions between solutions found under learn-
ing with reinforcement dynamics and the game theoretical Nash
equilibria. The general Nash equilibrium is a point where no agent
can increase personal payoff by deviating alone from the chosen
strategy profile. The Nash equilibrium considers fully independent
players with no pre-established coordination between them. While
it is difficult to extract Nash equilibria for 𝑛-player threshold games
[10], we can prove that total defection is at least one of the possible
Nash solutions. In the case where 𝑍 − 1 agents in the population
defect, the best response of the 𝑍 𝑡ℎ agent is to defect as well. This
is because no agent can achieve the target alone and cooperation
would only result in unnecessary costs. When learning under re-
inforcement dynamics, whether with or without risk diversity, no
population converged to the defective Nash equilibrium. We con-
firmed that this result remains true for simulations where agents
start with a stronger initial preference for defection.

Additionally, we can check if the learned strategies are Nash
equilibria. For all tested risk values, if we fix 𝑍 − 1 strategies in
the population and only allow the 𝑍 𝑡ℎ agent to change its strat-
egy, defection is the most profitable choice. In that sense, learned
strategies are not Nash equilibria. Populations of reinforcement
learners do not converge to defective or other possible Nash so-
lutions. We hypothesize that the large size of the population can
hamper convergence to Nash equilibria for adaptive agents. After a
costly cooperative act, if several agents in a population simultane-
ously increase their defection rate, the next interaction may become
less profitable as the increase in failure (caused by a reduction in
target achievement) is not compensated by the individual decrease
in cooperation cost. Assessing the benefits of diverging alone from
a strategy profile, which is necessary information for computing
Nash equilibria, is not easily done in populations of reinforcement
learners where several agents simultaneously change their strate-
gies. Learning with reinforcement dynamics in large populations
seems to help in escaping defective Nash equilibria.

4.2 Effect of Risk Inequality on Secured
Population Welfare

While we have shown that target achievement increases with the
risk 𝑟 and decreases with the diversity 𝛿 , we question how this
translates to the total welfare of the population.We plot respectively
in Figures 2a and 2b, the fraction of remaining welfare for a) fixed
diversities 𝛿 and varying risks 𝑟 , and b) for a fixed average risk
𝑟 = 0.5 and varying risk diversities 𝛿 . Losses in welfare can either
come from cooperation costs or disaster occurrences.

(a) (b)

Figure 2: (a) Total populationwelfare when following learned
strategies for a fixed 𝛿 = 0.1 and varying risk factors 𝑟 . Total
welfare decreases with the risk despite higher target achieve-
ment rates. (b) Population welfare distribution between low
at risk and high at risk agents for 𝑟 = 0.5 and varying diver-
sity factors 𝛿 . Total welfare remains relatively constant but
drops for 𝛿 = 0.5 when the losses of agents at high risk are
not compensated by the gains of agents at low risk.

Despite the fact that target achievement increases with the risk
(Figure 1a), Figure 2a indicates that the total welfare of a population
drops with higher risk values. Although agents increase their con-
tributions and achieve the target threshold more often, the increase
is not enough to compensate for the elevated risk of a disaster.
Higher risk values are often considered a means for escaping the
tragedy of the commons [31, 40, 42]. Our findings suggest that this
can be true if a disaster’s real risk is smaller than its perceived risk
by the agents. This is because a real increase in risk is not met
with a sufficient increase in cooperation and target achievement
to cover the larger losses from higher risk exposure. Higher target
achievement is not equivalent to higher welfare.

Similarly, while target achievement decreased with risk diversity,
Figure 2b suggests that the tendency is not directly translated to
the total welfare. As 𝛿 increases and 𝜂 decreases, agents at high risk
are more exposed to disasters and suffer larger losses. However,
simultaneously, agents at low risk are less exposed to disasters and
save on cooperation costs. For 𝛿 ≤ 0.4, the total losses and gains
in the population balance out and the average welfare remains
relatively unchanged. Lower target achievements do not strictly
imply larger losses.

Nonetheless, this result does not extend to all risk diversity val-
ues. For 𝛿 = 0.5, although risk diversity remains symmetrical in the
population, the resulting gains and losses in welfare in each class are
non-symmetrical. The asymmetry is such that the losses of agents
at high risk are greater than the gains of agents at low risk. The
population as a whole incurs additional losses from risk diversity.
The findings demonstrate how in the case of strong diversity, ignor-
ing heterogeneities and averaging out can lead to over-optimistic
results and an underestimation of the expected losses.

In the next section, we investigate how financial incentives can
help a population of reinforcement learners reduce its losses despite
high risk diversity.
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(a) (b) (c)

Figure 3: (a) Overall group achievement for populations engaging in a CRD of average risk 𝑟 = 0.5 and risk diversity 𝛿 = 0.5 with
and without financial incentives (FI). We observe a clear rise in target achievement with FI. (b) The corresponding cooperation
rates learned by agents at high and low risk in each case. FI positively encourage agents at low risk to cooperate. This allows
agents at high risk to cooperate a little less and save on cooperation costs. (c) Welfare of agents at high and low risk as well
as the total welfare of the population in situations with and without FI. In the case of FI, we plot for agents at high and low
risk, both the secured wealth before and after reward transfer. Thanks to higher cooperation from agents at low risk, agents
at high risk face disasters less often and secure more of their initial welfare (from 49 to 91%). This is only possible if they
sacrifice a fraction of that wealth (in light color) and transfer it to agents at low risk. Meanwhile, agents at low risk who now
cooperate more, incur cooperation costs and their welfare drops (from 100 to 90%). This is compensated by the new received
incentives from agents at high risk (hatched dark color). Both agents transferring financial incentives and agents receiving
them in exchange for cooperative contributions manage to increase their wealth. FI create a new win-win equilibrium.

4.3 Financial Incentives
We uncovered how risk diversity can decrease overall contributions
in a population, reduce target achievement, and in some cases result
in unnecessary losses in resources. Here, we take the extreme case
of 𝑟 = 𝛿 = 0.5 where cooperation, threshold reaching and total
welfare are at their minima. We examine how financial incentives
(FI) can improve on each of the three criteria. We train a population
of RL agents of average risk 𝑟 = 0.5 and risk diversity 𝛿 = 0.5,
to play a CRD with additional FI as described in Section 3.3. In
this setting, agents at low risk face no risk at all (𝑟𝐿 = 𝑟 − 𝛿 = 0).
Defection from agents at low risk is not motivated by free-riding
but by an indifference towards target achievement.

We observe in Figure 3a that FI can significantly increase group
achievement from 27% to 96%. The almost certainty with which
the population meets the target, cannot be achieved by a unilateral
cooperation of agents at high risk. Figure 3b plots the cooperation
levels of agents at high and low risk in settings with and without
FI. While agents at low risk never cooperate in the original setting,
FI actively motivate them to do so. We observe a switch from total
defection to total cooperation. Meanwhile, this allows agents at
high risk to reduce their cooperation from 58% to around 50% and
save on cooperation costs.

While FI increase group achievement, they are costly actions
for agents at high risk. We have seen earlier that higher target
achievement does not necessarily translate into higher welfare.
In Figure 3c we plot the average welfare of each class of agents,
with and without FI. Through increased target achievement and
avoidance of disasters, agents at high risk increase their secured

welfare from 𝜁 = 49% to 91%. Yet, the increased wealth is only
possible if agents at high risk reward their peers at low risk. Almost
half of the gained wealth is spent on FI which eventually reduces
the total welfare to 𝜁 = 72%. Nevertheless, despite the costs of
financial incentives, the final secured wealth of agents at high risk
remains higher than the secured wealth without FI.

Next, we examine the consequences of FI on agents at low risk.
Without FI, agents at low risk, tominimize cooperation costs, almost
never cooperate. Since they are at no risk of facing disasters, their
wealth remains untouched (𝜁 = 1). With FI, agents consistently
cooperate and lose on average 𝑐 = 10% of their wealth decreasing 𝜁
to 90%. However, this is supplemented by incentives from agents
at high risk which in turn increases their welfare to new highs of
109% of their initial wealth.

From a population’s perspective, FI are internal exchanges of
rewards. Although no wealth is actively produced, financial incen-
tives create new pro-social equilibria, leading to overall increased
gains in welfare (from 74 to 90%).

Our results confirm the powerful advantages of zero-sum FI in a
population facing collective risks under risk diversity. FI can miti-
gate and overcome the challenges imposed by risk diversity such
as the decrease in target achievement, cooperation and secured
welfare. Moreover, FI not only recover from risk diversity, but also
improve on settings without diversity. Figures 1c and 1d show that
populations without risk diversity (𝛿 = 0), achieve the target thresh-
old with probability 𝜂 = 80% and an average cooperation 𝜋 = 60%.
Financial incentives enhance these performances and achieve the
target at a rate of 𝜂 = 96% and an average cooperation of 𝜋 = 75%.
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While risk diversity decreases cooperation and target achievement,
one can profit from risk heterogeneity to design incentive schemes
which foster levels of collective success that are even higher than
those obtained in the absence of heterogeneity. Yet, the collective
benefits do not completely abolish the internal inequalities in the
population. Considerable differences in cooperation and secured
wealth still exist between the two classes. This raises the challenge
of designing incentives that can attain even higher levels of fairness
and equality within a population.

5 CONCLUSIONS
We examine how risk inequality between RL agents can affect a
population’s target achievement rate and the cooperation levels of
different risk classes. First, we find that high risk diversity (large
values of 𝛿/𝑟 ) causes a noticeable reduction in group achievement.
As diversity increases, cooperation levels of agents at high and
low risk respectively increase and decrease. However, while the
change in risk exposure is symmetrical between the classes, the
changes in cooperation are not. The asymmetry is always such
that the increase in cooperation of one class is smaller than the
accompanied decrease in cooperation of the other class. This raises
significant target achievement difficulties. Despite challenges in
cooperation, populations of reinforcement learners never converge
to fully defective Nash equilibria.

Next, we find that changes in target achievement cannot be di-
rectly mapped to changes in welfare. We show that welfare can
decrease despite increased target achievement or remain constant
despite a reduction in target achievement. Depending on the ap-
plication, it can be relevant to consider the target achievement or
the total welfare as a measure of the effectiveness of a strategy, or
even search for conciliating solutions in between. Nevertheless, for
high risk diversities, we observe again an asymmetry in welfare
gains and losses among the two classes. Agents at high risk lose
more welfare because of disaster occurrences than agents at low
risk gain from reduced disaster exposure and cooperation costs.

Finally, we propose to leverage risk heterogeneity using financial
incentives that can simultaneously increase target achievement,
global contributions and the welfare of both agents at high and
at low risk. Moreover, the achieved performances are higher than
the ones obtained in homogeneous populations. However, we note
that while financial incentives can raise global performance of
heterogeneous populations above those of similar homogeneous
populations, they do not fully eliminate inequalities in the popula-
tion. Designing FI that promote higher fairness and equality in a
population can be an interesting topic for future works.

We note that, in this paper, we studied diversity in risk exposure
assuming that agents recognize their true risk of exposure to a
disaster. In reality, the real risk of exposure to a disaster is often
not known and people behave according to how likely they assess
or perceive an imminent danger to be. Based on the risk percep-
tion, people plan mitigation and adaptation policies to respectively
mitigate or reduce the likelihood of a disaster occurring (here, in-
creasing 𝜂) and adapt or reduce the impact of the possible damages
in the case of disaster occurrence (here, decreasing the cost of fail-
ure 𝑝) [32]. Investigating cooperation in the context of collective
risks is analogous to evaluating mitigation policies. Cooperation

in the form of contributions helps a group of agents to achieve a
target threshold and avoid a possible disaster.

We have shown in our study, that when agents are at different
risk exposure levels (e.g., healthy and unhealthy people in the face
of pandemics, people in geographic locations that are more or less
prone to extreme weather etc.), effective mitigation policies are
harder to implement, i.e., the target achievement drops. This is
because the population at low risk is reluctant to cooperate, making
the problem harder to solve for the rest of the population at high risk.
Here, we have shown that financial incentives from agents at high to
agents at low risk can overcome the emerging difficulties. When the
usage of such agreements is not possible, our results demonstrate
the urgent implementation of proper adaptation measures (building
flood defenses, increasing hospital capacity etc.), as the likelihood
of a disaster increases with increased risk diversity.

Additionally, we found that agents do not sufficiently increase
their contributions with increased risk. Higher target achievements
are achieved, but they do not compensate for the increased losses
of ever more likely disasters. Mitigation policies, although effective,
must still be accompanied by adaptation policies to alleviate the
damages of possible disasters. Because agents contribute more but
not sufficiently more with the risk, another conceivable solution
would be to increase risk perception of participants. Convincing
players that they are at a higher risk than they actually are, can
incite them to contribute more and avoid disaster losses.

The most alarming setting happens when agents perceive a risk
lower than the real risk. We know that agents do not contribute
enough with higher risks. A further reduction in contributions
because of a false sense of security can be highly dangerous. This is
the case of the climate change problem in underdeveloped countries
[27]. Education may be crucial for aligning the risk perceptions of
agents with the actual risk of the problem and achieving long term
cooperation. Nevertheless, education and knowledge propagate
slowly and through several generations. In the face of an imminent
danger, financial incentives again, from countries perceiving the
high danger to countries not assessing the emergency, can be a fast
and practical way of increasing global contributions and mitigating
the problem.

In the context of developing cooperative AI, our findings under
risk diversity suggest that cooperation cannot be enforced using
communication, retaliation or other classical solutions for symmet-
rical social dilemmas. Mixing individualistic and social qualities in
agents is necessary to achieve cooperative AI under diversity. An
illustrative example is the idea of hyper-rational choices in which
actors think about profit or loss of other actors in addition to their
personal profits [2]. For fully individualistic agents, allowing inter-
agent contracts, bargains and financial incentives, can be a way for
selfish cooperation to emerge. This requires the understanding of
the payoffs of the game, the capacity to develop win-win propos-
als, and the ability to implement those contracts (i.e, the ability to
receive and provide rewards from and to other agents).
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