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ABSTRACT
Recent advances in multiagent learning have seen the introduc-

tion of a family of algorithms that revolve around the population-

based training method PSRO, showing convergence to Nash, cor-

related and coarse correlated equilibria. Notably, when the num-

ber of agents increases, learning best-responses becomes exponen-

tially more difficult, and as such hampers PSRO training meth-

ods. The field of mean-field games provides an asymptotic solu-

tion to this problem when the considered games are anonymous-

symmetric. Unfortunately, themean-field approximation introduces

non-linearities which prevent a straightforward adaptation of PSRO.

Building upon optimization and adversarial regret minimization,

this paper sidesteps this issue and introduces mean-field PSRO,

an adaptation of PSRO which learns Nash, coarse correlated and

correlated equilibria in mean-field games. The key is to replace the

exact distribution computation step by newly-defined mean-field

no-adversarial-regret learners, or by black-box optimization. We

compare the asymptotic complexity of the approach to standard

PSRO, greatly improve empirical bandit convergence speed by com-

pressing temporal mixture weights, and ensure it is theoretically

robust to payoff noise. Finally, we illustrate the speed and accuracy

of mean-field PSRO on several mean-field games, demonstrating

convergence to strong and weak equilibria.
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1 INTRODUCTION
This paper introduces a new mean-field reinforcement learning

algorithm, Mean-Field Policy Space Response Oracles (MF-PSRO),
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guaranteed to converge to Nash, correlated and coarse-correlated

equilibria in a large variety of games, without any hypothesis there-

upon. Policy Space Response Oracles (PSRO) [20] is originally a

two-player zero-sum game algorithm meant to be a generalization

of double-oracle [25], fictitious play [6], and independent reinforce-

ment learning [24]. The algorithm’s main loop is composed of two

steps: given a policy set, compute an optimal distribution of play.

Then, compute a best-response to this distribution, add it to the set

and re-iterate. Remarkably, recent years have shown the algorithm’s

versatility by demonstrating great advances in learning 𝑁 -player

equilibria using PSRO-derived approaches, managing to converge

towards 𝛼-Rank [30, 34] optimal strategy cycles [28], or towards

(coarse) correlated equilibria
1
[23]. However, both the latter two

approaches’ convergence results rely on potentially fully exploring

the space of deterministic strategies, which grows exponentially in

the number of players. Computing a best response in the general

case of randomized opponent strategies also becomes exponen-

tially more complex as the number of players increases, even with

symmetric simplifications such as anonymity [37], centralized set-

tings [19], or fully cooperative settings [31]. Although anonymity

can allow Polynomial-time Approximation Schemes for computing

approximate Nash equilibria [9, 10], in practice such algorithms are

typically too slow for real life applications. A more promising way

to address such complexity issues is by approximation in the case

of symmetric games by considering asymptotic versions thereof,

where the number of players is infinite and only their distribution

matters: mean-field games [17, 22].

The question of learning Nash equilibria in mean-field games

has been receiving a growing amount of attention, and many meth-

ods have been recently proposed. Among these, we can distin-

guish those relying on fixed-point contraction [2, 14, 38], fictitious-

play [8, 12, 33] or online mirror descent [32]. Comparatively, learn-

ing correlated and coarse correlated equilibria in mean-field games

has not yet, to the best of our knowledge, been studied. The litera-

ture has only started introducing notions of mean-field correlated

and coarse correlated equilibria [7, 11]. However, learning (coarse)

correlated equilibria, notably in Mean-Field Games, is a promising

way to tackle very difficult assignment problems (Routing of car or

network traffic, energy prosumer trade storage strategies, and even,

more broadly, mechanism design problems in general) in a fair and

1
A broad relaxation of Nash, correlated equilibria are closely connected to regret

minimization. They are sometimes referred to as Hannan consistency [16, 27, 29].
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non-coercive way (Every actor has interest in following the central

authority’s recommendation). These equilibria are also easier to

learn than Nash equilibria in N-player games, and can be straight-

forwardly approximated using adversarial no-regret learners [5] or

PSRO-like algorithms [23].

Our central question is:What are the modifications required for
PSRO to successfully converge towards Nash, correlated and coarse
correlated equilibria in mean-field games?

In order to answer it, after introducing the framework of in-

terest (Section 2), we expand on the obstacles encountered when

attempting to adapt PSRO to mean-field games (Section 3), identify

and treat the cases where a straightforward adaptation is possible,

then consider all cases without hypothesis on games. Note that

the general treatment is fundamentally different for Mean-Field

Nash equilibria (Section 4), and for Mean-Field (coarse) correlated

equilibria (Section 5). Finally, we test our algorithms on a number

of OpenSpiel [21] games in Section 6, demonstrating convergence,

and, where possible, comparing with alternative benchmarks.

2 BACKGROUND
2.1 Definitions
A game is a set (X,A, 𝑟 , 𝑃, 𝜇0) where X is the finite set of states,

A is the finite set of actions, 𝑟 : X × A × Δ(X) → R is the

reward function where Δ(X) is the set of distributions over X,

𝑝 : X ×A × Δ(𝑋 ) → X is the state transition function, 𝜇0 ∈ Δ(X)
is the initial state occupancy measure. Given a set Y, we name

Δ(Y) the set of distributions over Y.

A policy is a function 𝜋 : X → Δ(A). We write 𝜋 (𝑥, 𝑎) the
probability of playing action 𝑎 under policy 𝜋 at state 𝑥 . We also

consider the special case of deterministic policies, which are of the

form ∀𝑥 ∈ X, ∃𝑎 ∈ A, 𝜋 (𝑥) = 𝛿𝑎 , or 𝜋 (𝑥, 𝑎′) = ⊮𝑎=𝑎′ . We take Π
to be the set of deterministic policies, which is finite and whose

convex hull spans all policies.

We name 𝐽 the expected payoff function

𝐽 (𝜋, 𝜇) :=
∑

𝑥 ∈X,𝑎∈A
𝜇𝜋 (𝑥)𝜋 (𝑥, 𝑎)𝑟 (𝑥, 𝑎, 𝜇)

where 𝜇𝜋 is the expected state occupancy measure of a represen-

tative player playing policy 𝜋 . State occupancy measures can be

defined in several ways, and our derivations apply to all:

• 𝛾-discounted: 𝜇𝜋 (𝑥)=𝜇0 (𝑥)+𝛾
∑

𝑥 ′∈X

∑
𝑎∈A

𝑝 (𝑥 |𝑥 ′, 𝑎, 𝜇𝜋 )𝜋 (𝑥 ′, 𝑎)𝜇𝜋 (𝑥 ′)

• Finite-horizon: 𝜇𝜋
𝑡+1 (𝑥) =

∑
𝑥 ′∈X

∑
𝑎∈A

𝑝 (𝑥 |𝑥 ′, 𝑎, 𝜇𝜋𝑡 )𝜋 (𝑥 ′, 𝑎)𝜇𝜋𝑡 (𝑥 ′)

with 𝜇𝜋
0

= 𝜇0 (in which case another summation term over 𝑡

appears in 𝐽 ).

Given policies 𝜋1, ..., 𝜋𝑛 ∈ Π, we call restricted game the state-
less game where players choose one policy among {𝜋𝑖 |1 ≤ 𝑖 ≤ 𝑛}
at the beginning of the game, then keep playing it until the end.

We also define meta-games, which are normal-form games

whose payoffmatrix for player 1 is, at row 𝑖 and column 𝑗 , 𝐽 (𝜋𝑖 , 𝜇𝜋 𝑗 )
- and the transpose thereof for player 2. The complex relationship

between these notions, which are equivalent in 𝑁 -player games, is

explored in Section 3.

A correlation device 𝜌 is a distribution over distributions of

policies: 𝜌 ∈ Δ(Δ(Π)), where Δ(Π) is the set of distribution over Π.
It is used to sample population distributions 𝜈 ∈ Δ(Π), from which

individual population recommendations 𝜋 are in turn sampled:

the distribution of policies over the whole mean-field population

follows 𝜈 with probability 𝜌 (𝜈). Given a sequence of distributions

(𝜈𝑡 )𝑡 and a distribution (𝜌𝑡 )𝑡 over them, we write (𝜌𝑡 , 𝜈𝑡 )𝑡 the

correlation device recommending 𝜈𝑡 with probability 𝜌𝑡 .

The empirical play of a sequence 𝜈1, ..., 𝜈𝑇 is the correlation

device which uniformly selects one of the joint members of the

sequence: ∀1 ≤ 𝑡 ≤ 𝑇, 𝜌 (𝜈𝑡 ) = 1

𝑇
.

We write 𝜇 (𝜈) the state occupancy measure of the population
when policies are distributed according to 𝜈 . We also write 𝜋 (𝜈) the
stochastic policy resulting from sampling an initial policy according

to 𝜈 and playing it until the end of the game. Directly, 𝜇𝜋 (𝜈) = 𝜇 (𝜈).

2.2 Mean-field equilibria
We define three notions of mean-field equilibrium: Nash, coarse-

correlated, and correlated equilibrium.

Definition 1 (mean-field Nash eqilibrium). A mean-field
Nash equilibrium (MFNE) is a policy 𝜋 such that, when the whole
population plays 𝜋 , no agent has an incentive to deviate, ie.

𝐽 (𝜋 ′, 𝜇𝜋 ) − 𝐽 (𝜋, 𝜇𝜋 ) ≤ 0 , ∀𝜋 ′ ∈ Π .

Our notions of correlated and coarse correlated equilibria are

different from that of [7] by the fact that our correlation device

samples population distributions 𝜈 ∈ Δ(Π), ie. a distribution of

policies which the population plays, and each agent the gets a

sampled recommendation from 𝜈 .

Definition 2 (mean-field coarse-correlated eqilibrium).

A mean-field coarse-correlated equilibrium (MFCCE) is a cor-
relation device 𝜌 from which players do not have an incentive to
deviate before being given their recommendations, ie.

E𝜈∼𝜌,𝜋∼𝜈
[
𝐽 (𝜋 ′, 𝜇 (𝜈)) − 𝐽 (𝜋, 𝜇 (𝜈))

]
≤ 0 , ∀𝜋 ′ ∈ Π.

Definition 3 (mean-field correlated eqilibrium). Amean-
field correlated equilibrium (MFCE) is a correlation device 𝜌 such
that players do not have an incentive to deviate even after being given
their recommendations, ie.

𝜌 (𝜋)E𝜈∼𝜌 ( · |𝜋 )
[
𝐽 (𝜋 ′, 𝜇 (𝜈)) − 𝐽 (𝜋, 𝜇 (𝜈))

]
≤ 0 , ∀𝜋, 𝜋 ′ ∈ Π

where 𝜌 (𝜋) = ∑
𝜈
𝜈 (𝜋)𝜌 (𝜈).

𝜖-variants of these equilibria are defined by changing 0 in the

above inequalities by 𝜖 > 0: these are approximate equilibria where

one may only gain up to 𝜖 by deviating.

When applied to restricted games, we call these equilibria re-

stricted MFNE, restricted MFCE and restricted MFCCE respectively.

2.3 PSRO in 𝑁 -player games
PSRO [20] is a generalization of Double Oracle [26], and as such is an

iterated best-response algorithm for computing Nash equilibria in

𝑁 -player games. The algorithm, presented in Algorithm 1 initiates

with sets containing random policies. At each iteration, an optimal

policy distribution is computed over the policy sets, and a best

response to this distribution is computed for each player. If all best

responses were already in each player’s policy set, the algorithm

terminates; it continues otherwise.

The original PSROpaper introduced several differentmeta-solvers

(Uniform, Exact Nash and PRD, an approximate Nash solver), all of
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Algorithm 1: PSRO(Meta-Solver) (𝑁 -player games)

Result: Policy sets (Π∗
𝑘
= {𝜋𝑘

1
, ..., 𝜋𝑘𝑛 })𝑘=1..𝐾 for all 𝐾

players, policy distributions (𝜈∗
𝑘
)𝑘=1..𝑁

∀𝑘, Π1

𝑘
= {𝜋1

𝑘
} with 𝜋1

𝑘
any policy, 𝜈𝑘 (𝜋1𝑘 ) = 1.0, 𝑛 = 1;

while (Π𝑛+1 \ Π𝑛) ≠ ∅ do
∀𝑘, Π𝑛+1

𝑘
= Π𝑛

𝑘
∪ {𝐵𝑅𝑘 (𝜈)} ;

𝑛 = 𝑛 + 1;

Fill payoff tensors (𝑇𝑘 )𝑘=1..𝐾 :
∀𝑥1, ..., 𝑥𝐾 ,𝑇𝑘 (𝑥1, ..., 𝑥𝐾 ) = Payoff𝑘 (𝜋𝑥1 , ..., 𝜋𝑥𝐾 );
𝜈 = Meta-Solver((𝑇𝑘 )𝑘=1..𝐾 )

end

which were proven to make PSRO converge to a Nash equilibrium

in two-player zero-sum games. Recent work has extended conver-

gence to Alpharank [30]-optimal subsets [28] and to correlated and

coarse correlated equilibria [23] in 𝑁 -player games when using

the right meta-solvers and best-responders. Crucially, the game

specified by the payoff tensors that the meta-solver computes an

equilibrium form is a normal-form matrix game. This yields a ‘lin-

earity of evaluation’ property; specifically, the payoffs when players

make use of mixed strategies are straightforwardly computed from

the payoff tensors specifying the payoffs of the pure strategies

in the game, non-rigorously, we have Payoff(𝛼𝜋1 + (1 − 𝛼)𝜋2) =
𝛼Payoff(𝜋1) + (1 − 𝛼)Payoff(𝜋2), where 𝛼𝜋1 + (1 − 𝛼)𝜋2 is a joint
policy playing 𝜋1 with frequency 𝛼 , and 𝜋2 with frequency (1 − 𝛼).

In the rest of this paper, unless otherwise directly specified, we

consider 𝑛 to be the current PSRO iteration.

3 CHALLENGES IN SCALING TO
MEAN-FIELD GAMES

Our central proposal in this paper is a generalisation of PSRO to

the mean-field setting. We introduce two distinct algorithms for

the computation of either MFNE or MFCE/MFCCE. Both MF-PSRO

algorithms are described as Algorithms 2 and 3 below.

Algorithm 2: MF-PSRO(Nash)

Result: Policy set Π∗ = {𝜋1, ..., 𝜋𝑛 }, Policy Distribution

𝜈∗ ∈ Δ(Π∗) yielding game Nash 𝜋 (𝜈∗)
Π1 = {𝜋1} with 𝜋1 any policy, 𝜈1 (𝜋1) = 1.0, 𝑛 = 1;

while (Π𝑛+1 \ Π𝑛) ≠ ∅ do
Π𝑛+1 = Π𝑛 ∪ {𝐵𝑅(𝜇𝜋 (𝜈𝑛) )} ;
𝑛 = 𝑛 + 1 ;

𝜈𝑛 = argmin

𝜈∈Δ(Π𝑛)
max

𝑖=1,...,𝑛
𝐽 (𝜋𝑖 , 𝜇 (𝜈)) − 𝐽 (𝜋 (𝜈), 𝜇 (𝜈)) ;

end

These two algorithms have a very similar structure to the PSRO

as described for 𝑁 -player games in Section 2.3; within the inner

loop, a distribution is computed for the restricted game under con-

sideration (either a Nash equilibrium, or a (coarse) correlated equi-

librium), and new policies are derived as certain types of best re-

sponse against the computed equilibrium. Keeping the same insight

as [23], we define two different Best Responder functions 𝐵𝑅𝐶𝐸

Algorithm 3: MF-PSRO((C)CE)

Result: Policy set Π∗ = {𝜋1, ..., 𝜋𝑛 }, 𝜖-mean-field correlated

equilibrium 𝜌∗ ∈ Δ(Δ(Π∗))
Π0 = ∅, Π1 = {𝜋1} with 𝜋1 any policy, 𝜌 (𝛿𝜋1 ) = 1.0, 𝑛 = 1;

while (Π𝑛+1 \ Π𝑛) ≠ ∅ do
(If CE) Π𝑛+1 = Π𝑛 ∪ {𝐵𝑅𝐶𝐸 (𝜋𝑖 , 𝜌𝑛) | 𝜋𝑖 , 𝜌𝑛 (𝜋𝑖 ) > 0} ;
(If CCE) Π𝑛+1 = Π𝑛 ∪ 𝐵𝑅𝐶𝐶𝐸 (𝜌𝑛);
𝑛 = 𝑛 + 1;

(If CE) 𝜌𝑛 =

argmin

𝜌∈Δ(Δ(Π𝑛))
E𝜈∼𝜌,𝜋∼𝜈 [max

𝑖=1..𝑛
𝐽 (𝜋𝑖 , 𝜇 (𝜈)) − 𝐽 (𝜋, 𝜇 (𝜈))] ;

(If CCE) 𝜌𝑛 =

argmin

𝜌∈Δ(Δ(Π𝑛))
max

𝑖=1,...,𝑛
E𝜈∼𝜌,𝜋∼𝜈 [𝐽 (𝜋𝑖 , 𝜇 (𝜈)) − 𝐽 (𝜋, 𝜇 (𝜈))];

end

and 𝐵𝑅𝐶𝐶𝐸 , for use with MF-PSRO in computing CEs and CCEs,

respectively:

• 𝐵𝑅𝐶𝐶𝐸 (𝜌) := argmax

𝜋∗∈Π

∑
𝜈 𝜌 (𝜈) 𝐽 (𝜋∗, 𝜇 (𝜈));

• 𝐵𝑅𝐶𝐸 (𝜋𝑘 , 𝜌) := argmax

𝜋∗∈Π

∑
𝜈 𝜌 (𝜈 |𝜋𝑘 ) 𝐽 (𝜋∗, 𝜇 (𝜈)).

We note that 𝐵𝑅𝐶𝐶𝐸 (𝜌) is the Best Response corresponding to

a unilateral deviation from 𝜌 , ie. deviating before having been

given a recommendation, whereas 𝐵𝑅𝐶𝐸 (𝜋𝑘 , 𝜌) is the best response
generated by deviating from recommendation 𝜋𝑘 .

Given these proto-algorithms, several important questions are

immediately raised. First, are these algorithms guaranteed to return

instances of the equilibria they seek to find? This is a purely mathe-

matical question. Second, how should the restricted game equilibria

in the inner loop be computed? As described in Section 2.3, the

restricted game in usual applications of PSRO satisfies a ‘linearity

of evaluation’ property. However, this linearity property is lost in

the case of mean-field games, in which the representative player’s

payoff is generally non-linear as a function of the population occu-

pancy measure; to take the same example as Section 2.3, in general,

𝐽 (𝛼𝜋1+ (1−𝛼)𝜋2, 𝜇) = 𝛼 𝐽 (𝜋1, 𝜇) + (1−𝛼) 𝐽 (𝜋2, 𝜇), but due to poten-
tial non-linearity of 𝑟 , and thus of 𝐽 , in 𝜇, and to dependence of 𝑝 in

𝜇, 𝐽 (𝜋, 𝜇𝛼𝜋1+(1−𝛼)𝜋2 ) ≠ 𝛼 𝐽 (𝜋, 𝜇𝜋1 ) + (1 − 𝛼) 𝐽 (𝜋, 𝜇𝜋2 ). We provide

an example of this non-linearity in Appendix C. This presents a

serious barrier in directly applying PSRO to mean-field games, and

an important contribution of this paper is how to circumvent this

barrier. We do however note that for a limited class of mean-field

games, linearity is preserved; we describe the details of this case in

Appendix D.

The next two sections treat the theoretical and implementation

questions raised above for Nash equilibria, and for (coarse) corre-

lated equilibria, in turn.

4 CONVERGENCE TO NASH EQUILIBRIA
4.1 Existence and computation of restricted

game equilibria
In the inner loop of MF-PSRO(Nash), an important subroutine is

the computation of a mean-field Nash equilibrium for the restricted
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game; namely, a distribution 𝜈 ∈ Δ(Π𝑛) such that

𝐽 (𝜋 ′, 𝜇 (𝜈)) − 𝐽 (𝜋 (𝜈), 𝜇 (𝜈)) ≤ 0 , ∀𝜋 ′ ∈ {𝜋1, ..., 𝜋𝑛}.
We note that if at least one such 𝜈 exists, then the following op-

timization problem in the inner loop of MF-PSRO(Nash), which

minimizes exploitability, will return a Nash equilibrium

𝜈∗ = argmin

𝜈∈Δ𝑛
max

𝑖=1...𝑛
𝐽 (𝜋𝑖 , 𝜇 (𝜈)) − 𝐽 (𝜋 (𝜈), 𝜇 (𝜈)) . (1)

Fortunately, the conditions of existence for a Nash equilibrium

of the restricted game - so called restricted Nash equilibrium - only

require continuity of 𝑟 with respect to 𝜇, as shown in the following

theorem.

Theorem 4 (Existence of restricted Nash eqilibria). If the
reward function of the game is continuous with respect to 𝜇, then there
always exists a restricted game Nash equilibrium.

Proof. Let 𝜙 : Δ(Π𝑛) → 2
Δ(Π𝑛)

be the best-response map in

the restricted game characterized by policies in the set Π𝑛 :

∀𝜈 ∈ Δ(Π𝑛), 𝜙 (𝜈) := argmax

𝜈′∈Δ(Π𝑛)
𝐽 (𝜋 (𝜈 ′), 𝜇 (𝜈)) .

Δ(Π𝑛) is non-empty and convex, togetherwith closed and bounded

in a finite-dimensional space, and therefore compact.

For all 𝜈 ∈ Δ(Π𝑛), argmax

𝜈′∈Δ(Π𝑛)
𝐽 (𝜋 (𝜈 ′), 𝜇 (𝜈)) ⊆ Δ(Π𝑛) because

Δ(Π𝑛) is closed, and 𝜙 (𝜈) is therefore non-empty.

Let 𝜈1, 𝜈2 ∈ 𝜙 (𝜈), 𝑡 ∈ [0, 1].
𝐽 (𝜋 (𝑡𝜈1 + (1− 𝑡)𝜈2), 𝜇 (𝜈)) = 𝑡 𝐽 (𝜋 (𝜈1), 𝜇 (𝜈)) + (1− 𝑡) 𝐽 (𝜋 (𝜈2), 𝜇 (𝜈))
so 𝑡𝜈1 + (1 − 𝑡)𝜈2 ∈ 𝜙 (𝜈) and 𝜙 (𝜈) is therefore convex.

The proof of Graph(𝜙) being closed is provided in Appendix A. It
relies on the fact that since 𝑟 is continuous in 𝜇, so is 𝐽 , and since the

function 𝜈 → 𝐽 (𝜋 (𝜈), 𝜇) is linear for all 𝜈 ∈ Δ(Π𝑛), the function
(𝜈1, 𝜈2) → 𝐽 (𝜋 (𝜈1), 𝜇 (𝜈2)) is bicontinuous, which is enough to

ensure Graph closedness. We have all the hypotheses required to

apply Kakutani’s fixed point theorem [18]: there thus exists 𝜈∗ ∈
Δ(Π𝑛) such that 𝜈∗ ∈ 𝜙 (𝜈∗), ie. 𝜈∗ = argmax𝜈′ 𝐽 (𝜋 (𝜈 ′), 𝜇 (𝜈∗)),
which means that ∀𝜈 ′ ∈ Δ(Π𝑛), 𝐽 (𝜋 (𝜈 ′), 𝜇 (𝜈∗)) ≤ 𝐽 (𝜋 (𝜈∗), 𝜇 (𝜈∗)),
in other words: 𝜈∗ is a Nash equilibrium of the restricted game. □

Having established the existence of Nash equilibria for the re-

stricted mean-field game in the inner loop of MF-PSRO(Nash), we

now turn to the problem of how such an equilibrium can be (approx-

imately) computed. As remarked earlier, due to the non-linearity of

the restricted game, this problem is a non-linear (and potentially

non-convex) optimisation problem over Δ(Π𝑛). Thus, the optimal

solution of Equation (1) can be, in the absence of any additional

assumptions on the game, found via Black-Box optimization ap-

proaches, such as random search [35], Bayesian optimization [13],

evolutionary search (our experiments use CMA-ES [15]), or any

other appropriate method for the considered game.

4.2 Convergence to Nash
The termination condition of PSRO is the following: if at step 𝑁 + 1,
the new policy 𝜋𝑛+1 produced by the algorithm is in Π𝑛 , then
the algorithm terminates. Given that each 𝜋𝑖 is a deterministic

policy, and that the set of deterministic policies is finite, PSRO will

therefore necessarily terminate. We must only prove one thing:

Proposition 5 (Termination-optimality). If MF-PSRO(Nash)
terminates, it stops at a Nash equilibrium of the true game.

Proof. If MF-PSRO(Nash) terminates at step 𝑛, then

𝜋∗ = argmax

𝜋 ∈Π
𝐽 (𝜋, 𝜇 (𝜈)) ∈ Π𝑛 .

Since 𝜈 is a Nash equilibrium of the restricted game by assump-

tion, then necessarily 𝐽 (𝜋∗, 𝜇 (𝜈)) ≤ 𝐽 (𝜋 (𝜈), 𝜇 (𝜈)), and thus ∀𝜋 ∈
Π, 𝐽 (𝜋, 𝜇 (𝜈)) ≤ 𝐽 (𝜋 (𝜈), 𝜇 (𝜈)), which concludes the proof. □

Using the former discussion and this property, we deduce

Theorem 6 (mean-field PSRO convergence to Nash eqilib-

ria). MF-PSRO(Nash) converges to a Nash equilibrium of the true
game.

5 CONVERGENCE TO (COARSE)
CORRELATED EQUILIBRIA

We now turn our attention to the versions of MF-PSRO that aim

to compute mean-field correlated equilibria and mean-field coarse

correlated equilibria.

5.1 Overview
Computing restricted MF(C)CEs is potentially more involved than

computing restricted MFNE; while the optimisation problem defin-

ing restricted Nash equilibria is over the finite-dimensional space

Δ(Π𝑛), the optimisation problem defining restricted MF(C)CEs is

over the infinite-dimensional space Δ(Δ(Π𝑛)). One could resort

to computing an approximate MFNE (a special case of both MFCE

and MFCCE) using the black-box optimisation approach described

in the previous section, but it is possible to exploit the structure

of the mean-field game to compute approximate MF(C)CEs more

efficiently. The approach we pursue is fundamentally based on no-

regret learning; we also find opportunities to increase the quality of

the approximate equilibrium by post-processing the output of the

regret-minimisation algorithm via linear programming; see Figure 2

for an overview of the techniques at play.

5.2 Approximate (coarse) correlated equilibria
via regret minimisation

Our goal is to approximate an MF(C)CE for the restricted MFG

based on the policy set Π𝑛 = {𝜋1, . . . , 𝜋𝑛}, as required within the

inner loop of Algorithm 3. Recall that this amounts to solving the

optimisation problem

𝜌𝑛 = argmin

𝜌∈Δ(Δ(Π𝑛))
max

𝑖=1,...,𝑛
E𝜈∼𝜌,𝜋∼𝜈 [𝐽 (𝜋𝑖 , 𝜇 (𝜈)) − 𝐽 (𝜋, 𝜇 (𝜈))]

in the case of coarse correlated equilibria, and

𝜌𝑛 = argmin

𝜌∈Δ(Δ(Π𝑛))
E𝜈∼𝜌,𝜋∼𝜈 [max

𝑖=1..𝑛
𝐽 (𝜋𝑖 , 𝜇 (𝜈)) − 𝐽 (𝜋, 𝜇 (𝜈))]

in the case of correlated equilibria. In principle, similar black-box

techniques described for approximating Nash equilibria in the pre-

vious section may be applied to solve these problems too. However,

such an approach is likely to be inefficient in practice, and instead

we build on regret-minimisation theory, a classical approach to

computing (C)CEs in 𝑁 player games.
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The overall approach relies on the fact that if the population

distribution 𝜇 is fixed, the payoff function E𝜋∼𝜈 [𝐽 (𝜋, 𝜇)] is linear
in the distribution 𝜈 ∈ Δ(Π𝑛), and we are in fact considering online

linear optimisation problems. Focusing first on the case of coarse

correlated equilibria, we will make use of Algorithms A achieving

𝑂 (
√
𝑇 ) external regret in online linear optimisation, of the form

described in Algorithm 4.

We may apply such an algorithm for MF(C)CE computation as

shown in Algorithm 5.

Algorithm 4: Generic form of regret-minimisation algo-

rithm for online linear optimisation on the domain Δ(Π𝑛).
Result: A sequence of predictions (𝜈𝑡 )𝑇𝑡=1 such that

max𝜈∈Δ(Π𝑛)
∑𝑇
𝑡=1 𝑅𝑡 (𝜈) −

∑𝑇
𝑡=1 𝑅𝑡 (𝜈𝑡 ) = 𝑂 (

√
𝑇 ).

for 𝑡 = 1, 2, . . . ,𝑇 do
Algorithm makes a prediction 𝜈𝑡 ∈ Δ(Π𝑛);
Algorithm observes a linear reward function

𝑅𝑡 : Δ(Π𝑛) → R;
Algorithm receives the reward 𝑅𝑡 (𝜈𝑡 );

end

Algorithm 5: Protocol for computing an approximate

MF(C)CE via regret-minimisation

for 𝑡 = 1, 2, . . . ,𝑇 do
Representative player selects distribution 𝜈𝑡 ∈ Δ(Π𝑛)
using a regret-minimisation algorithm A based on past

loss function (𝑅𝑠 )𝑡−1𝑠=1
;

Player observes reward function

𝑅𝑡 (𝜈) = E𝜋∼𝜈 [𝐽 (𝜋, 𝜇 (𝑣𝑡 )];
Representative player receives reward

𝑅𝑡 (𝜈𝑡 ) = E𝜋∼𝜈𝑡 [𝐽 (𝜋, 𝜇 (𝑣𝑡 )];
end
Return empirical average 𝜌 = 1

𝑇

∑𝑇
𝑡=1 𝛿𝜈𝑡 .

Algorithm 5 returns the empirical average
1

𝑇

∑𝑇
𝑡=1 𝛿𝜈𝑡 , which

is in fact an approximate MF(C)CE for the restricted game, as the

following result shows.

Proposition 7. The empirical average 𝜌 = 1

𝑇

∑𝑇
𝑡=1 𝛿𝜈𝑡 returned

by Algorithm 5 using a regret-minimisation algorithm A of the form
described in Algorithm 4, is a 𝑂 (1/

√
𝑇 )-MF(C)CE for the restricted

mean-field game.

Proof. This is a direct computation. The benefit of the repre-

sentative player deviating to 𝜋𝑖 under the correlation device 𝜌 is

E𝜈∼𝜌 [𝐽 (𝜋𝑖 , 𝜇 (𝜈)) − E𝜋∼𝜈 [𝐽 (𝜋, 𝜇 (𝜈))]]

=
1

𝑇

𝑇∑
𝑡=1

(
𝐽 (𝜋𝑖 , 𝜇 (𝜈𝑡 )) − E𝜋∼𝜈𝑡 [𝐽 (𝜋, 𝜇 (𝜈𝑡 ))]

)
=
1

𝑇
𝑂

(√
𝑇

)
= 𝑂

(
1/
√
𝑇

)
,

where the penultimate equality follows from the regret-minimising

property of algorithm A. The proof for CEs is similar. □

Figure 1: Uniform vs. Compressed 𝜌 - CCE Gap / Time

This result establishes a rigorous means of approximating an

MF(C)CE in the restricted game considered within the inner loop

of mean-field PSRO, and therefore provides an implementable ver-

sion of mean-field PSRO. By strengthening the regret minimisation

algorithm described above to minimise internal regret, we obtain a

time-average strategy that is an approximate MFCE. In both cases,

we have the following correctness guarantee for MF-PSRO.

Theorem 8 (MF-PSRO Convergence to MF(C)CEs). MF-PSRO
using a no-internal-regret (Respectively no-external-regret) algorithm
to compute its MFCE (RespectivelyMFCCE) with average regret thresh-
old 𝜖 and Best-Response Computation 𝐵𝑅𝐶𝐸 (Respectively 𝐵𝑅𝐶𝐶𝐸 )
converges to an 𝜖-MFCE (Respectively an 𝜖-MFCCE).

Proof. Based on previous discussions, we know that PSROmust

necessarily terminate.

If PSRO terminates when using a restricted MFCCE, we must

have

𝜋∗ = argmax

𝜋

∑
𝜈

𝜌 (𝜈) 𝐽 (𝜋, 𝜇 (𝜈)) ∈ Π𝑛 .

By definition of 𝜌 ,
∑
𝜈 𝜌 (𝜈)

(
𝐽 (𝜋∗, 𝜇 (𝜈)) − 𝐽 (𝜋 (𝜈), 𝜇 (𝜈))

)
≤ 𝜖 , and

therefore ∀𝜋 ∈ Π,
∑
𝜈 𝜌 (𝜈)

(
𝐽 (𝜋, 𝜇 (𝜈)) − 𝐽 (𝜋 (𝜈), 𝜇 (𝜈))

)
≤ 𝜖 , ergo:

𝜌 is a mean-field 𝜖-coarse correlated equilibrium.

The proof for mean-field correlated equilibria follows a similar

line of arguments and is detailed in Appendix B. □

As we will see in the next section, it is often possible to im-

prove upon the uniform mixture of (𝜈𝑡 )𝑇𝑡=1 output by the regret-

minimisation algorithm to obtain a more accurate approximation

to an MF(C)CE.

5.3 Improving the Bandit: Speed
5.3.1 The No-Regret Speedup Algorithm: Bandit Compression. One
could use No-regret learners directly to converge towards MF(C)CE,

but their equilibrium contains 𝑇 different distributions. This po-

tentially means a very high amount of different 𝜈𝑡 recommended

by our (C)CE, which can lead to learning difficulties on the part of
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Mean-Field game Restricted MFG Induced NFG

𝜀-MF(C)CE Nash equilibrium

Π𝑛={𝜋1,...,𝜋𝑛 }⊆Π {𝜈1,...,𝜈𝑇 }⊆Δ(Π𝑛)

Regret minimisation( 1

𝑇
,𝜈𝑡 )𝑡=1..𝑇 Linear programming

(𝜌𝑡 ,𝜈𝑡 )𝑡=1..𝑇

Figure 2: Reductions involved in approximation equilibrium computation in MF-PSRO.

best-responders (since every separate 𝜈 must be taken into account),

implementation difficulties of equilibria in the real world, and inef-

ficiencies: Indeed, changing per-timestep weights
1

𝑇
to potentially

non-uniform 𝜌𝑡 can lead to converging to 𝜖 ′-MF(C)CE instead of

𝜖 ones, with 𝜖 ′ ≪ 𝜖 , which is illustrated in figure 1, computed at

the first iteration of PSRO, in the Crowd Modelling [33] game. We

define (𝜌𝑡 )𝑡 as the optimal solution of the following optimization

problem:

min

𝜌
max

𝑖
𝜌𝑡Regret𝑖 (2)

s.t. ∀𝑡 𝜌𝑡 ≥ 0,
∑
𝑡

𝜌𝑡 = 1

with Regret𝑖 [𝑡] := 𝐽 (𝜋𝑖 , 𝜇 (𝜈𝑡 )) − 𝐽 (𝜋 (𝜈𝑡 ), 𝜇 (𝜈𝑡 )).
We note that Problem (2) can be interpreted as finding the row

player’s Nash equilibrium distribution in a zero-sum normal-form

game whose payoff matrix for player 1 is Regret. We note that this

objective can be expressed linearly.

A similar problem can be solved to find better restricted mean-

field correlated equilibria. First, define

Regret𝑖, 𝑗 (𝑡) = 𝜈𝑡 (𝑖)
(
𝐽 (𝜋 𝑗 , 𝜇 (𝜈𝑡 )) − 𝐽 (𝜋𝑖 , 𝜇 (𝜈𝑡 ))

)
The following problem gives optimal temporal weights 𝜌 for re-

stricted mean-field correlated equilibria

min

𝜌
max

𝑖, 𝑗
𝜌𝑡Regret𝑖, 𝑗 (3)

s.t. ∀𝑡 𝜌𝑡 ≥ 0,
∑
𝑡

𝜌𝑡 = 1.

This problem can similarly be expressed linearly. The following

theorem confirms the optimality of 𝜌 , the solution of Problem (2)

or Problem (3):

Theorem 9 (Optimality of 𝜌). If 𝜌 = 1

𝑇

∑𝑇
𝑡=1 𝛿𝜈𝑡 is a restricted

𝜖-MFCCE (respectively 𝜖-MFCE), then (𝜌∗𝑡 , 𝜈𝑡 )𝑡 , with 𝜌∗ the optimal
solution of Problem 2 (respectively 3), yields a restricted 𝜖 ′-MF(C)CE
of the restricted game, with 𝜖 ′ ≤ 𝜖 ; and no other 𝜌 distribution over
(𝜈𝑡 )𝑡 can yield an 𝜖 ′′-MF(C)CE with 𝜖 ′′ < 𝜖 ′.

Proof. For restricted MFCCEs, the deviation incentive against

the correlation device sampling 𝜈𝑡 with probability 𝜌𝑡 in the re-

stricted game is

E𝜈∼𝜌,𝜋∼𝜈
[
𝐽 (𝜋 ′, 𝜇 (𝜈)) − 𝐽 (𝜋, 𝜇 (𝜈))

]
= max

𝑖
𝜌𝑡Regret𝑖 .

Since the uniform distribution is a possible value for 𝜌 , we nec-

essarily have max

𝑖
𝜌𝑡Regret𝑖 ≤ max

𝑖

1

𝑇

∑
𝑡 Regret𝑖 [𝑡] = 𝜖 , which

concludes that part of the proof. The proof for restricted MFCEs

follows the same line of arguments, and is detailed in Appendix I.4.

Optimality of the solutions of problems (2) and (3) directly fol-

lows from their definitions together with the above derivations. □

Given the empirical tendency of this approach to compress tem-

poral distribution, we name it bandit compression. Empirically,

it allows us to find much more accurate (figure 1) and sparser (Ap-

pendix E) distributions than uniformly averaging over

(
𝜈𝑡

)
𝑡 , and

in a much lower number of steps. Yet, this algorithm is only exact

in the case where the regret used by the algorithm is noiseless. The

next question is therefore, how sensitive is bandit compression to

noise in the regret matrix?

5.3.2 On the value-continuity of min-max problems. We provide

bounds on computed Average Regrets differences when 𝐽 is per-

turbed by an additive random variable 𝜖: 𝐽 (𝜋, 𝜇) = 𝐽 (𝜋, 𝜇) + 𝜖 ,
giving rise to notation Regret

𝜖
𝑖
, and to the identity, if we write

𝜖𝑡 = 𝜖𝑡 − (𝜈𝑡 )𝑡𝜖𝑡 , Regret𝜖𝑖 = Regret𝑖 + 𝜖𝑖 .
We write

Regret∗ = min

𝜌
max

𝑖
𝜌𝑡Regret𝑖 , Regret

𝜖
∗ = min

𝜌
max

𝑖
𝜌𝑡Regret𝜖𝑖

We name 𝑖∗ and 𝜌∗ the terms such that Regret∗ = (𝜌∗)𝑡Regret𝑖∗ ,
and 𝑖𝜖∗ and 𝜌𝜖∗ the same values for Regret

𝜖
∗ .

The quantity we wish to bound is how much additional re-

gret we experience in expectation (ie. without noise) when us-

ing the noisy mixture weight 𝜌𝜖∗ instead of 𝜌∗, which we name

Δ𝑂 = max

𝑖
(𝜌𝜖∗ )𝑡Regret𝑖 − (𝜌∗)𝑡Regret𝑖∗ .

Proposition 10 (Value-continuity of min-max). The optimal-
ity gap Δ𝑂 is bounded in the following way:

0 ≤ Δ𝑂 ≤ (𝜌∗)𝑡𝜖𝑖𝜖∗ −min

𝑖
(𝜌𝜖∗ )𝑡𝜖𝑖 ≤ 2| |𝜖 | |∞ ≤ 4| |𝜖 | |∞ .

Proof. By optimality of 𝜌∗, we already have that Δ𝑂 ≥ 0.

Δ𝑂 = max

𝑖
(𝜌𝜖∗ )𝑡Regret𝑖 − (𝜌∗)𝑡Regret𝑖∗

= max

𝑖
(𝜌𝜖∗ )𝑡 (Regret𝑖 + 𝜖𝑖 ) − (𝜌𝜖∗ )𝑡𝜖𝑖 − (𝜌∗)𝑡Regret𝑖∗

≤ (𝜌𝜖∗ )𝑡 (Regret𝑖𝜖∗ + 𝜖𝑖𝜖∗ ) −min

𝑖
(𝜌𝜖∗ )𝑡𝜖𝑖 − (𝜌∗)𝑡 (Regret𝑖𝜖∗ + 𝜖𝑖𝜖∗ ) + (𝜌∗)𝑡𝜖𝑖𝜖∗

≤ (𝜌𝜖∗ − 𝜌∗)𝑡 (Regret𝑖𝜖∗ + 𝜖𝑖𝜖∗ ) + (𝜌∗)𝑡𝜖𝑖𝜖∗ −min

𝑖
(𝜌𝜖∗ )𝑡𝜖𝑖

≤ (𝜌∗)𝑡𝜖𝑖𝜖∗ −min

𝑖
(𝜌𝜖∗ )𝑡𝜖𝑖 ≤ 2| |𝜖 | |∞

∀𝑡, 𝜖𝑡 = 𝜖𝑡 − (𝜈𝑡 )𝑡𝜖𝑡 , and 𝜖𝑡 ≤ ||𝜖 | |∞ and −(𝜈𝑡 )𝑡𝜖𝑡 ≤ ||𝜖 | |∞, there-

fore | |𝜖 | |∞ ≤ 2| |𝜖 | |∞, which concludes the proof. □

The tightness of this bound can be verified via noting that if

𝜌∗ = 𝜌𝜖∗ and the minimum of (𝜌∗)𝑡𝜖𝑖 is reached for 𝑖 = 𝑖𝜖∗ , then the

optimality gap is null.

We discuss this bound in more details in Appendix F, where we

compute its value on several examples.
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5.3.3 The improved PSRO algorithm. We add bandit compression

onto Algorithm 5, accompanied with a few optimization criteria,

yielding Algorithm 6. The improvements and their motivations are

discussed in Appendix I.1.

Remark 11 (Use of the Algorithm for Nash-Convergence).

We note that one can also use Algorithm 6 for convergence towards
MFNE if one uses an iterative solver for computing the Nash equilib-
rium - in that case,A is the Nash solver, and Regret∗ is the exploitabil-
ity. Since a Nash equilibrium only uses a single distribution, one can
either bypass solving Problem 2, or solve it trivially with 𝜌 (𝜈∗) = 1.

Algorithm 6: Sped-up mean-field PSRO((C)CE)

Result: Policy set Π∗ = {𝜋1, ..., 𝜋𝑛 }, 𝜖-MF(C)CE 𝜌∗

Π0 = ∅, Π1 = {𝜋1} with 𝜋1 any policy, 𝜌 (𝛿𝜋1 ) = 1.0, 𝑁 = 1;

while (Π𝑛+1 \ Π𝑛) ≠ ∅ or 𝜌𝑡𝑜𝑙 > 𝜌𝑙𝑖𝑚 do
Π𝑛+1 = Π𝑛 ∪ {𝐵𝑅 (𝐶)𝐶𝐸 (𝜋𝑖 , 𝜌𝑇 ) | 𝜋𝑖 , 𝜌 (𝜋𝑖 ) > 0} ;
if Π𝑛+1 == Π𝑛 then

𝜌𝑡𝑜𝑙 =
𝜌𝑡𝑜𝑙
2

end
𝑁 = 𝑁 + 1;

Initialize A(Π𝑛+1);
Step Count = 0;

while Regret∗ > 𝜌𝑡𝑜𝑙 do
Step Count += 1 ;

Do one step of A(Π𝑛+1) ;
if Step Count ≡ 𝜏𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠 == 0 then

Compute 𝜌∗ optimal solution of Problem 2 (CCE)

/ 3 (CE) ;

Compute 𝜌∗’s associated regret Regret∗ ;
end

end
𝜌𝑛+1 = 𝜌∗

end

6 EXPERIMENTAL RESULTS
To demonstrate the viability of our approach, we use three different

metrics presented in Section 6.1, which we evaluate when running

MF-PSRO on four different mean-field games, which are described

in Section 6.2. Evaluation methods are detailed in Section 6.3, and

evaluation results are discussed in Section 6.4.

6.1 Evaluation metrics
For a given correlation device 𝜌 , we define

CCEGap(𝜌) := max

𝜋

∑
𝜈

𝜌 (𝜈)
(
𝐽 (𝜋, 𝜇 (𝜈)) − 𝐽 (𝜋 (𝜈), 𝜇 (𝜈)

)
By construction, we directly have that CCEGap(𝜌) = 0 is equivalent

to 𝜌 being an MFCCE. In the same fashion, we define

CEGap(𝜌) := max

𝜋 ′
max

𝜋 |𝜌 (𝜋 )>0

∑
𝜈

𝜌 (𝜈 |𝜋)
(
𝐽 (𝜋 ′, 𝜇 (𝜈)) − 𝐽 (𝜋 (𝜈), 𝜇 (𝜈)

)
for MFCE characterisation. Finally, for a given population distribu-

tion 𝜈 ∈ Δ(Π), we introduce
Exploitability(𝜈) := max

𝜋
𝐽 (𝜋, 𝜇 (𝜈)) − 𝐽 (𝜋 (𝜈), 𝜇 (𝜈))

so that CCEGap(𝜌) = 0, which reaches 0 if and only if 𝜈 is an MFNE.

6.2 Evaluation games
The four games we use to evaluate convergence include atwo com-

plex games available in OpenSpiel [21], Predator-Prey [32] and

Crowd Modeling [33], and two new small normal-form mean-field

games, Coop / Betray / Punish and mean-field biased indirect Rock-
Paper-Scissors, which are described in detail and motivated in Ap-

pendix G.1. Summarily, Coop / Betray / Punish is a 3-action normal-

form game where agents can choose to either Cooperate, and all

get a good reward; betray and take advantage of others; or punish

the betrayers. But punishing agents also take some reward away

from cooperators (they must support the punishers). Payoffs are

non-linear (quadratic) in distributions. mean-field biased indirect
Rock-Paper-Scissors is a classic biased Rock-Paper-Scissors game -

except playing Rock yields the reward of playing Paper; Paper, that

of Scissors, and so on, hence the Indirect of the name.

6.3 Evaluation Methods
The regret minimizer used by mean-field PSRO((C)CE) is Regret

Matching [36], and the Black-Box Optimization method used by

mean-field PSRO(Nash) is CMA-ES [15]. As per Remark 11, we

use Algorithm 6 for both mean-field PSRO((C)CE) and mean-field

PSRO(Nash), since the Nash solver CMA-ES is iterative.

Regarding convergence to MF(C)CE, since there exists, to the

best of our knowledge, no other algorithm known to converge

towards these weaker equilibria we investigate the convergence

behavior of mean-field PSRO((C)CE) with additional payoff noise.

Regarding convergence towards MFNE, we compare mean-field

PSRO to Online Mirror Descent (OMD) with several different learn-

ing rates, and Fictitious Play, both algorithms available on Open-

Spiel.

6.4 Evaluation Results
Figure 3 presents the CCE-Gap of mean-field PSRO(CCE), 4, the

CE-Gap of mean-field PSRO(CE), while Figure 5 exposes the Ex-

ploitability of mean-field PSRO(Nash) on the four mean-field game

environments described above. We note that in both normal-form

games, mean-field PSRO converges within numerical precision to-

wards mean-field correlated, coarse correlated and Nash equilibria

after only a few iterations.

Nash-wise, OMD seems capable to follow PSRO at a similar

speed on Coop / Betray / Punish, but fails utterly to converge on

mean-field biased indirect Rock-Paper-Scissors. We note that OMD’s

convergence is strongly affected by its learning rate. Fictitious

play does not manage to find good equilibria in these games. We

note that Mean-Field Biased Indirect Rock-Paper-Scissors is a non-

monotonic game, and see here one of the strengths of our approach:

Where traditional approaches such as OMD or FP do require such
properties to converge, Mean-Field PSROmanages to find equilibria

even in their absence.

On more complex games, mean-field PSRO quickly converges

towards very good correlated (CCE Gap ≈ 10
−1
), coarse correlated

equilibria (CE Gap ≈ 10
−1
), and mean-field PSRO(Nash) seems to

quickly minimize exploitability - but it does much more slowly

(time-wise) than both OMD and FP. This hints at a strong potential
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Figure 3: CCE Gap of mean-field PSRO(CCE).

Figure 4: CE Gap of mean-field PSRO(CE).

direction of improvement for mean-field PSRO. We note that in

this zoomed-in plot, FP seems to outperform OMD. We provide a

zoomed-out version in Appendix G.3 where we see that OMD, with

the correct learning rate, outperforms Fictitious Play as expected.

7 DISCUSSION
Despite its modularity, several improvements on our approach are

envisioned for further research. First, our approach cannot effi-

ciently select higher-welfare (C)CEs over lower ones. This problem

Figure 5: Exploitability of mean-field PSRO(Nash).

is known to be NP-Hard in general but learning approaches could

hold the key to unlocking these possibilities (see the more detailed

discussion in Appendix I.3). Second, mean-field PSRO(Nash) relies

on a black-box algorithm, whose characteristics strongly impacts

the speed and equilibrium accuracy of the algorithm. Finding a prin-

cipled, general and fast Nash solver in complex restricted games,

like we have for mean-field (C)CEs, could yield great improvements,

both theoretically and performance-wise. Finally, our method is

much slower than OMD or Fictitious Play on large games. This

is largely due to a combination of slow payoff evaluation (be it

sampled payoff or exact payoff) and relatively large amounts of

steps needed to find a restricted equilibrium.

However, Mean-Field PSRO also shines in several ways: it is

for now the only algorithm capable of finding Mean-Field (coarse)

correlated equilibria, is not overly sensitive to hyperparameters,

and finally, it is able to converge towards equilibria even in the

absence of monotonicity.

8 CONCLUSION
We have introduced a new mean-field Multi-Agent Reinforcement

Learning algorithm, Mean-Field PSRO, and demonstrated its ability

to converge to Nash, correlated and coarse correlated equilibria

both theoretically and empirically in various benchmark games.

Additionally, the approach was successfully sped up using a new

method named bandit compression, which is motivated by noise

robustness and empirical speed. The approach has only been tested

so far using the computation of exact best-responses. We expect

Reinforcement-Learning algorithms to work out of the box, and

answering this question would unlock (C)CE convergence in very

large and complex games.
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