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ABSTRACT

Focusing on Stable Roommates (SR), we contribute to the toolbox
for conducting experiments for stable matching problems. We intro-
duce the polynomial-time computable mutual attraction distance
to measure the similarity of SR instances, analyze its properties,
and use it to create a map of SR instances. This map visualizes
460 synthetic SR instances (each sampled from one of ten differ-
ent statistical cultures) as follows: Each instance is a point in the
plane, and two points are close on the map if the corresponding
SR instances are similar to each other. Subsequently, we conduct
several exemplary experiments and depict their results on the map,
illustrating the map’s usefulness as a non-aggregate visualization
tool, the diversity of our generated dataset, and the need to use
instances sampled from different statistical cultures.
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1 INTRODUCTION

Since their introduction by Gale and Shapley [22], stable matching
problems have been extensively studied, both from a theoretical
and a practical viewpoint. Numerous practical applications have
been identified, and theoretical research has influenced the design
of real-world matching systems [26, 31, 33]. In addition to the
rich theoretical literature, there are also several works containing
empirical investigations of stable matching problems (see [1, 8, 12–
14, 16, 19, 23, 24, 27, 32, 34–38, 40, 43, 44] as a certainly incomplete
list). Although these examples indicate that experimental works
regularly occur, many papers on stable matchings do not include
an experimental part and instead solely focus on the computational
or axiomatic aspects of some mechanism or problem. However, to
understand the properties of problems and mechanisms in practice,
experiments are vital.

One reason for the lack of experimental work might be the rarity
of real-world data (exceptions can be found in [16, 27, 34]). Conse-
quently, researchers typically resort to some synthetic distribution,
known as a statistical culture, for generating synthetic data. Remark-
ably, the vast majority of works simply use random preferences,
where all possible valid preferences are sampled with the same
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probability (out of the nineteen works listed above, thirteen use
this model, most of them as a single data source). However, as we
will see later, instances with random preferences have very simi-
lar properties. Accordingly, conclusions drawn from experiments
using only such instances (or, generally speaking, only instances
sampled from one model) should be treated with caution, as it is
unclear whether their results generalize.

With our work, we want to lay the foundation for more exper-
imental work around stable matchings by introducing a measure
for the similarity of instances and by creating a diverse synthetic
dataset for testing together with a convenient framework to visual-
ize and analyze it as a map (see Figure 1a for an example). We focus
on instances of the Stable Roommates (SR) problem, where we
have a set of agents, and each agent has strict preferences over all
other agents. We selected the SR problem for this first, exemplary
study because it is the mathematically most natural stable matching
problem (agents’ preferences do not contain ties and are complete,
and there are no different “types" of agents). Consequently, statis-
tical cultures for SR instances are relatively simple. Nevertheless,
our general approach and several of our ideas and techniques can
also be used to carry out similar studies for other stable matching
problems, as demonstrated in Section 6, where we describe how to
adapt our results to Stable Marriage (SM) instances (SM is the
bipartite analogue of SR).

As part of our agenda to empower experimental work on stable
matchings, we carry out the following steps:

Distances Between SR Instances (Section 3). To judge the diversity
of a dataset for testing and to compare different statistical cultures
to each other, a similarity measure is needed. We introduce the no-
tion of isomorphism between SR instances and show how distances
between preference orders naturally extend to distances between
SR instances. Most importantly, we propose the polynomial-time
computable mutual attraction distance1, which we use in the follow-
ing. To better understand the space of SR instances induced by our
mutual attraction distance, we introduce four canonical “extreme"
instances which are far away from each other.

AMap of Synthetic SR Instances (Section 4). We define a variety of
statistical cultures to generate SR instances. From them, we generate
a diverse test set for experimental work and picture it as a map of
SR instances, a convenient framework to visualize non-aggregate
experimental results. Moreover, we give intuitive interpretations
of the different areas on the map. We also analyze how different
statistical cultures relate to each other.

Using the Map of SR Instances (Section 5). To demonstrate possible
use cases for the map, we perform exemplary experimental studies.
1Note that we use the terms “distance (measure)” in an informal sense to refer to some
function mapping pairs of instances to a positive real number; in particular, all our
distance measures are pseudometrics but not all are metrics.
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We analyze different quality measures for stable matchings, the
number of blocking pairs for random matchings, and the running
time to compute an “optimal" stable matching using an ILP. In
sum, the instance-based view on experimental results provided by
the map allows us to identify several interesting phenomena, for
example, that instances sampled from the same culture all behave
very similarly in our experiments.We further observe that instances
from the same area of the map exhibit a similar behavior.

From a methodological perspective, our work follows a series of
recent papers on (ordinal) elections [4, 6, 7, 20, 41]: Faliszewski et al.
[20] introduced the problem of computing the distance between
elections, focusing on isomorphic distances. Following up on this,
Szufa et al. [41] created a dataset of synthetic elections sampled
from a variety of different cultures and visualized them as a map of
elections. Subsequently, Boehmer et al. [6] added several canonical
elections to the map to give absolute positions a clearer meaning
and added some real-world elections. Recently, Szufa et al. [42]
created and analyzed a map of approval elections. The usefulness
of the maps has already been demonstrated in different contexts.
For example, Szufa et al. [41] identified that for elections from a
certain region of the map, election winners are particularly hard to
compute, Boehmer et al. [6] and Boehmer and Schaar [10] analyzed
the nature and relationship of real-world elections by placing them
on the map, and Boehmer et al. [5] evaluated the robustness of
election winners using the map. Although our general agenda and
approach are similar to the works of Faliszewski et al. [20], Szufa
et al. [41] and Boehmer et al. [6], the intermediate steps, used
distance measures, cultures, experiments, and technical details are
naturally quite different.

The full version of this paper containing all proofs and addi-
tional discussions and experiments is available at arxiv.org/pdf/
2208.04041.pdf [9]. The code for generating the map and conduct-
ing our experiments is available at https://github.com/szufix/mapel.
The generated datasets of SR and SM instances are available at
https://github.com/szufix/mapel_data.

2 PRELIMINARIES

LetA be a finite set of agents. We denote by L(A) the set of all strict,
total orders over A which we call preference orders. We usually
denote elements of L(A) as ≻ and for three agents a, b, and c , we
say that a is preferred to b is preferred to c if a ≻ b ≻ c . Moreover,
for a preference order ≻ ∈ L(A) and an agent a ∈ A, let pos≻(a)
denote the position of a in ≻, i.e., the number of agents that are
preferred to a in ≻ plus one. Furthermore, for i ∈ [|A|], let ag≻(i)
be the agent ranked in i-th position in ≻, i.e., the agent b ∈ A such
that i = pos≻(b).

For two preference orders ≻,≻′ ∈ L(A), their swap distance
swap(≻,≻′) is the number of agent pairs on whose ordering ≻

and ≻′ disagree. For two preference orders ≻,≻′ ∈ L(A), their
Spearman distance spear(≻,≻′) is

∑
a∈A |pos≻(a) − pos≻′(a)|. As

proven by Diaconis and Graham [17], it holds that swap(≻,≻′) ≤

spear(≻,≻′) ≤ 2 · swap(≻,≻′).
A Stable Roommates (SR) instance I consists of a set A of

agents, with each agent a ∈ A having a preference order ≻a ∈

L(A \ {a}) over all other agents. For simplicity, we will focus on
instances with an even number of agents.

A matching of agents A is a subset of agent pairs {a,a′} with
a , a′ ∈ A where each agent appears in at most one pair. We say
that an agent is unmatched in a matchingM if a does not appear
in any pair from M ; otherwise, we say that a is matched. For a
matched agent a ∈ A and a matchingM , we writeM(a) to denote
the partner of a inM , i.e.,M(a) = a′ if {a,a′} ∈ M . A pair {a,a′} of
agents blocks a matchingM if a is unmatched or prefers a′ toM(a)
and a′ is unmatched or prefers a toM(a′). A matching that is not
blocked by any agent pair is called a stable matching.

For two sets X and Y with |X | = |Y |, we denote by Π(X ,Y ) the
set of all bijections σ : X → Y between X and Y . Let A and A′

be two sets of agents with |A| = |A′ | and let σ ∈ Π(A,A′). Then,
for an agent a ∈ A and a preference order ≻a ∈ L(A \ {a}), we
write σ (≻a ) to denote the preference order over A′ \ {σ (a)} arising
from ≻a by replacing each agent b ∈ A \ {a} by σ (b) ∈ A′ \ {σ (a)}.

3 DISTANCE MEASURES

This section is devoted to measuring the distance between two SR
instances, a key ingredient of our map. Other use cases include
meaningful selecting test instances, comparing different statistical
cultures, and analyzing real-world instances. Specifically, in Sec-
tion 3.1, we define an isomorphism between two SR instances, show
how distance measures over preference orders can be generalized
to distance measures over SR instances, and prove that computing
the Spearman distance between SR instances is computationally
intractable. In Section 3.2, we introduce our mutual attraction dis-
tance and make some observations concerning its properties and
the associated mutual attraction matrices.

3.1 Isomorphism and Isomorphic Distances

Two SR instances are isomorphic if renaming the agents in one
instance can produce the other. For this, as each agent is associated
with a preference order defined over other agents, a single mapping
suffices. Accordingly, we define an isomorphism on SR instances:

Definition 1. Two SR instances (A, (≻a )a∈A) and (A′,

(≻a′)a′∈A′) with |A| = |A′ | are isomorphic if there is a bijection

σ : A → A′
such that ≻σ (a)= σ (≻a ) for all a ∈ A.

We give an example for two isomorphic SR instances:

Example 2. Let I with agents a,b, c , and d and I ′
with agents

x ,y, z, andw be two SR instances with the following preferences:

a : b ≻ c ≻ d, b : c ≻ a ≻ d, c : b ≻ d ≻ a, d : a ≻ c ≻ b,

x : y ≻ w ≻ z, y : z ≻ w ≻ x , z : w ≻ y ≻ x , w : z ≻ x ≻ y.

I and I ′
are isomorphic as witnessed by the mapping σ (a) = y,

σ (b) = z, σ (c) = w , and σ (d) = x .

One can easily check whether two SR instances (A, (≻a )a∈A) and
(A′, (≻a′)a′∈A′) are isomorphic: Assuming that an isomorphism σa′

maps a ∈ A to a′ ∈ A′, then this already completely character-
izes σa′ , as for any b ∈ A \ {a} with pos≻a (b) = i , we must have
σa′(b) = ag≻′

a′
(i). Thus, it suffices to fix an arbitrary agent a ∈ A

and then check for each a′ ∈ A′ whether σa′ is an isomorphism.

Observation 3. Decidingwhether two SR instances with 2n agents
are isomorphic can be done in O(n3) time.
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For any distance measure p between preference orders, our no-
tion of isomorphism can be easily used to extend p to a distance
measure over SR instances: The resulting distance between two SR
instances is the minimum (over all bijections σ between the agent
sets) sum (over all agents) of the distance between the preferences
of a and the preferences of σ (a) (measured by p):

Definition 4. Let p be a distance measure between preference

orders. Let I = (A, (≻a )a∈A) and I ′ = (A′, (≻a′)a′∈A′) be two

SR instances with |A| = |A′ |. Their dp distance is: dp (I,I
′) :=

minσ ∈Π(A,A′)

∑
a∈A p(σ (≻a ),≻σ (a)).

For all distance measures p between preference orders where
p(x ,y) = 0 if and only if x = y, for any two SR instances I and I ′

it holds that dp (I,I ′) = 0 if and only if I and I ′ are isomorphic.
We will also call such a distance an isomorphic distance.

Example 5. Applying Definition 4, the Spearman distance

spear(·, ·) and the swap distance swap(·, ·) between preference or-

ders (as defined in Section 2) can be lifted to distance measures dspear
and dswap between SR instances. Let I with agents a,b, c , and d and

I ′
with agents x ,y, z, andw be two SR instances with the following

preferences:

a : b ≻ c ≻ d, b : a ≻ c ≻ d, c : a ≻ b ≻ d, d : a ≻ b ≻ c,

x : y ≻ z ≻ w, y : x ≻ z ≻ w, z : w ≻ y ≻ x , w : z ≻ y ≻ x .

Then, for the mapping σ (a) = x , σ (b) = y, σ (c) = z, and σ (d) = w ,

the Spearman distance of I and I ′
is 8 and the swap distance is 6.

While for the Spearman distance this is the optimal mapping (so

dspear(I,I ′) = 8) for the swap distance the mapping σ (a) = y,
σ (b) = x , σ (c) = z, and σ (d) = w results in a smaller distance of 4.
Indeed, we have dswap(I,I ′) = 4.

We consider the Spearman distance dspear and the swap distance
dswap as "ideal" distances, as they are quite fine-grained and iso-

morphic distances. Unfortunately, both are hard to compute. For
dswap, this follows from the NP-hardness of computing the Kemeny
score of an election [18]. Moreover, we show that computing the
Spearman distance between two SR instances is at least as hard as
deciding whether two graphs are isomorphic, which is a famous
candidate for the complexity class NP-intermediate.

Proposition 6. There is no polynomial-time algorithm to compute

dspear, unless Graph Isomorphism is in P.

3.2 Mutual Attraction Distance

In this section, we introduce and discuss our main distance measure,
which we call mutual attraction distance.

3.2.1 Intuition. One characteristic of SR instances is that each
agent is associated with a preference order and also appears in
the preference order of other agents. Thus, when considering, for
instance, stable matchings, for an agent a it is not only important
which agents a likes, but also whether they like a as well. Accord-
ingly, our mutual attraction distance focuses on how pairs of agents
rank each other. In particular, each agent a is characterized by a
mutual attraction vector whose i-th entry contains the position in
which a appears in the preferences of the agent who a ranks in i-th
position. In the mutual attraction distance, we match the agents

from two different instances such that the ℓ1 distance between the
mutual attraction vectors of matched agents is minimized.

3.2.2 Notation. For p,q ∈ N, some i ∈ [p], and a matrixM ∈ Np×q ,
let Mi denote the i-th row of M . For an SR instance I = (A =
{a1, . . . a2n }, (≻a )a∈A), an agent a ∈ A, and some i ∈ [2n − 1],
let MAI (a, i) be the position of a in the preference order of the
agent a′ which is ranked in position i by a, i.e., MAI (a, i) :=
pos≻a′ (a) where a′ := ag≻a (i). The mutual attraction vector of
agent a is MAI (a) =

(
MAI (a, 1), . . . ,MAI (a, 2n − 1)

)
. Lastly,

the mutual attraction matrixMAI of I is the matrix whose i-th
row is the vector MA(ai )

I .

Definition 7. For two mutual attraction matrices of SR in-

stances I and I ′
on 2n agents, we define their mutual attraction

distance as
dMAD(MAI, MAI′

) B min
σ ∈Π([2n], [2n])

∑
i∈[2n]

ℓ1
(
MAI

i , MAI′

σ (i )
)
.

The mutual attraction distance dMAD(I,I ′) between two SR in-

stances I with agents A and I ′
with agents A′

with |A| = |A′ | is the

mutual attraction distance of their mutual attraction matrices.

Example 8. Consider the two SR instances I and I ′
defined in

Example 5. Their mutual attraction matrices are:

MAI =


1 2 3

a 1 1 1
b 1 2 2
c 2 2 3
d 3 3 3

 , MAI′

=


1 2 3

x 1 3 3
y 1 2 2
z 1 2 2
w 1 3 3


Their mutual attraction distance is 2 + 0 + 2 + 2 = 6 as witnessed by
the mapping σ (a) = z, σ (b) = y, σ (c) = x , and σ (d) = w .

3.2.3 Computation. Given two SR instances I over agents A and
I ′ over agentsA′with |A| = |A′ |, computing theirmutual attraction
distance reduces to finding a minimum-weight perfect matching in
a complete bipartite graph G = (A ∪· A′,E) where edge {a,a′} ∈ E

has weight ℓ1(MAI (a),MAI′

(a′)).

Observation 9. Given two SR instances I and I ′
with 2n agents

each, dMAD(I,I ′) can be computed in O(n3) time.

3.2.4 Realizable Mutual Attraction Matrices. Not every (2n) ×
(2n − 1)-matrix is the mutual attraction matrix of some SR instance.
Accordingly, we call a matrix M realizable if there is an SR in-
stance I with MAI = M . Realizable matrices exhibit certain
characteristics. For example, since each agent ranks exactly one
agent at position j for every j ∈ [2n − 1], every realizable ma-
trixM ∈ N(2n)×(2n−1) contains each number from [2n − 1] exactly
2n times. Unfortunately, checking whether a matrix is realizable
is NP-hard.

Theorem 10. Given a (2n) × (2n − 1) matrixM , deciding if there

is an SR instance I with MAI = M is NP-complete.

3.2.5 Isomorphism Property. Unfortunately, in contrast to the swap
and Spearman distance, the mutual attraction distance is not iso-
morphic (see our full version [9] for formal statements and proofs).2

2Note that the positionwise distance used in the ”map of elections“ framework is also
not isomorphic [4, 6, 7, 20, 41].
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In fact, there even exist mutual attraction matrices realized by two
non-isomorphic SR instances I1 and I2 where I1 admits a stable
matching but I2 does not. This indicates that the mutual attrac-
tion distance between two instances has only a limited predictive
value for their relationship in terms of their (distance to) stability,
which not too surprising given that stability is dependent on local
configurations. However, our synthetically generated instances are
anyway close to admitting a stable matching in the sense that in
all instances there is a matching blocked by only a few pairs.

3.2.6 Correlation With Spearman Distance. Next, we consider the
correlation between the mutual attraction distance and the ap-
pealing yet hard to compute Spearman distance. While we prove
that the ratio between the two can be unbounded, in practice the
two are highly correlated: On the test dataset of 460 instances
described in Section 4.1 for twelve agents (which is the largest
number of agents for which we could compute the Spearman dis-
tance via a brute-force approach in weeks), the Pearson Correlation
Coefficient (PCC) between the mutual attraction and Spearman
distances is 0.801, which is typically regarded as a strong correla-
tion [39]. In particular, for 95% of instance pairs (I,I ′) we have
that 0.82 · dMAD(I,I ′) ≤ dspear(I,I ′) ≤ 1.48 · dMAD(I,I ′).

3.2.7 Navigating the Space of SR Instances. Interpreting a map of
SR instances, it will be useful to give different regions on the map
an intuitive meaning. This is why we now identify four somewhat
“canonical" extrememutual attractionmatrices falling into four very
different parts of the map.

Identity. Our first extreme case is that all agents have the same
preferences (also called master list), a setting which has already
attracted significant attention in the literature [11, 15, 28, 30]. For
n ∈ N, for each i ∈ [2n] and j ∈ [2n − 1], the identity matrix is
ID2n [i, j] = i if j ≥ i and ID2n [i, j] = i − 1 if j < i .

Mutual Agreement. Our second extreme case is mutual agree-
ment: For each pair a and a′ of agents, a and a′ evaluate each other
identically, i.e., a ranks a′ on the i-th position if and only if a′ ranks
a on the i-th position. For n ∈ N, this is captured in the mutual
agreement matrix MA2n where we have MA2n [i, j] = j for each
i ∈ [2n] and j ∈ [2n − 1].

Mutual Disagreement. Our third extreme case is mutual disagree-
ment. For each pair a and a′ of agents, their evaluations for each
other are diametrical, i.e., a ranks a′ in the i-th position if and
only if a′ ranks a in the (2n − i)-th position. For n ∈ N, this is
captured in the mutual disagreement matrix MD2n where we have
MD2n [i, j] = 2n − j for each i ∈ [2n] and j ∈ [2n − 1].

Chaos. Our fourth extreme mutual attraction matrix is the chaos
matrix CH2n , which is defined for each i ∈ [2n] and j ∈ [2n − 1] as
CH2n [i, j] = j if i = 1 and CH2n [i, j] = i + nj − n − 1 mod 2n − 1
if i > 1. We have no natural interpretation of the chaos matrix.
We added this matrix because it is far away from the other three
and thus falls into an otherwise vacant part of the map. Its name
“chaos" stems from the fact that this matrix is close on the map to
instances with uniformly at random sampled preferences.
In our full version [9], we prove that the first three matrices are
always realizable, while CH2n is realizable for all n where 2n − 1 is

not divisible by 3. Moreover, we show that the maximum mutual
attraction distance between two SR instances with 2n agents is
D(2n) := 4 · (n−1) ·n2. We further prove that the mutual agreement
matrix and themutual disagreementmatrix match this bound, there-
fore forming a diameter of our space. For each twomatricesX andY
among ID, MA, CH, andMD, we define their asymptotic normalized
distance as ndMAD(X ,Y ) := limn→∞ dMAD(X 2n,Y 2n )/D(2n). We fur-
ther prove that for all pairs of matrices X ,Y ∈ {ID,MA,MD,CH}

with {X ,Y } , {MA,MD} we have ndMAD(X ,Y ) =
2
3 . This implies

that our extreme matrices are indeed far from each other. In the
following, all mentioned values of the mutual attraction distance
are normalized values, i.e., they are divided by D(2n).

4 A MAP OF SYNTHETIC SR INSTANCES

We present a map of synthetic SR instances. In Section 4.1, we
describe how we create the map and how we generate the instances.
In Section 4.2, we explain the map by giving the horizontal and
vertical axis a natural interpretation and analyzing where different
statistical cultures land.

4.1 Creating the Map

We first describe our dataset of 460 SR instances.

4.1.1 Points on the Map – Statistical Cultures. We use the following
statistical cultures. To the best of our knowledge, only the Impar-
tial Culture, Attributes, Mallows, and Euclidean models have been
previously considered.

Impartial Culture (IC). Agent a ∈ A draws its preferences
uniformly at random from L(A \ {a}).

2-IC.Given somep ∈ [0, 0.5], we partitionA into two setsA1∪·A2
with |A1 | = ⌊p · |A|⌋. Each agent a ∈ A samples a preference order
≻ from L(A1 \ {a}) and ≻′ from L(A2 \ {a}). If a ∈ A1, then a’s
preferences start with all agents from A1 ordered according to ≻

and then all agents from A2 ordered according to ≻′. If a ∈ A2,
then it is the other way around, i.e., the preferences start with ≻′

and end with ≻. The intuition is that there are two groups of differ-
ent sizes (e.g., representing demographic groups), and each agent
prefers all agents from its group to agents from the other group,
but preferences within the group are random.

Mallows. For a dispersion parameter ϕ ∈ [0, 1] and a preference
order ≻∗∈ L(A), the Mallows distribution D

≻∗,ϕ
Mallows assigns pref-

erence order ≻ ∈ L(A) a probability proportional to ϕswap(≻
∗,≻)

(for ϕ = 1, we get IC).3 To sample an SR instance, given a dispersion
parameter ϕ ∈ [0, 1], we draw ≻∗ uniformly at random from L(A).
For each agent a ∈ A, we then obtain its preferences by drawing
a preference order from D

≻∗,ϕ
Mallows and deleting a. The intuition is

that there is a ground truth and agents have a given likelihood to
deviate from it.

Euclidean. [2]. Given some d ∈ N, for each agent a ∈ A, we
uniformly at random sample a point pa from [0, 1]d . Agent a ranks
other agents increasingly by the Euclidean distance between their
points, i.e., by ℓ2(pa , pb ) for b ∈ A \ {a}. The intuition is that each
3In fact, we use a normalized variant ofMallowsmodel [6] with a normalized dispersion
parameter norm-ϕ , which is internally converted to a value of ϕ . The higher norm-ϕ ,
the higher is the expected swap distance of a sampled preference order to ≻∗ . Due to
the normalization, for orders sampled for norm-ϕ = 0.5, the expected swap distance
from ≻∗ is half of the expected distance for orders sampled for norm-ϕ = 1.
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dimension represents some continuous property of the agents, and
agents prefer similar agents.

Reverse-Euclidean. Given some p ∈ [0, 1] and d ∈ N, we par-
tition A into two sets A1 ∪· A2 with |A1 | = ⌊p · |A|⌋. Again, each
agent corresponds to some uniformly at random sampled point pa
from [0, 1]d and ranks other agents according to their Euclidean
distance. However, here an agent a ∈ A1 ranks agents decreasingly
by their Euclidean distance to pa and an agent a ∈ A2 ranks agents
increasingly by their Euclidean distance to pa . The intuition is sim-
ilar to Euclidean, but a p-fraction of agents prefer agents that are
different from them.

Mallows-Euclidean. Given a normalized dispersion parameter
norm-ϕ ∈ [0, 1] and some d ∈ N, we start by generating agents’
intermediate preferences (≻a )a∈A according to the Euclideanmodel
with d dimensions. Subsequently, for each a ∈ A, we obtain its final
preferences by sampling a preference order from D

≻a,norm-ϕ
Mallows . The

resulting instances are perturbed Euclidean instances.
Expectations-Euclidean. Given some d ∈ N and σ ∈ R+, for

each agent a ∈ A, we sample one point pa uniformly at random
from [0, 1]d . Subsequently, we sample a second point qa from [0, 1]d
using a d-dimensional Gaussian function with mean pa and stan-
dard deviation σ . Agent a ranks the agents increasingly according
to ℓ2(pa , qb ) for b ∈ A\ {a}. Again, agents are characterized by con-
tinuous attributes; however, their "ideal" points are not necessarily
where they are.

Fame-Euclidean. Given some d ∈ N and f ∈ [0, 1], we sample
for each agent a ∈ A uniformly at random a point pa ∈ [0, 1]d and
a number f a ∈ [0, f ]. Agent a ranks the other agents increasingly
by ℓ2(pa , pb ) − f b for b ∈ A \ {a}. The intuition is similar as for
Euclidean, but some agents have a higher quality/fame f a and are
thus more attractive to everyone.

Attributes. [3]. Given some d ∈ N, for each agent a ∈ A we
uniformly at random sample pa ∈ [0, 1]d andwa ∈ [0, 1]d . Agent a
ranks the other agents decreasingly by the inner product of wa

and pb , i.e., by
∑
i ∈[d ]wa

i ·p
b
i . The intuition is that there are different

objective evaluation criteria and agents assign different importance
to them.

Mallows-MD. Given a normalized dispersion parameter
norm-ϕ ∈ [0, 1], we start with an instance that realizes the mu-
tual disagreement matrix MD2n where for each i ∈ [2n] agent ai
has preferences ai+1 ≻ai ai+2 ≻ai · · · ≻ai an ≻ai a1 ≻ai a2 ≻ai
· · · ≻ai ai−1. Subsequently, for each ai ∈ A, we obtain its final
preferences by sampling a preference order fromD

≻ai ,norm-ϕ
Mallows . The

reason we consider this model is that it covers a part of the map
that would otherwise remain uncovered.

Our dataset consists of 460 instances sampled from the above-
described statistical cultures. That is, we sampled 20 instances for
each of the following cultures: Impartial Culture, 2-IC with p ∈

{0.25, 0.5}, Mallows with norm-ϕ ∈ {0.2, 0.4, 0.6, 0.8}, 1D and 2D
Euclidean, Reverse-Euclidean with d = 2 and p ∈ {0.05, 0.15, 0.25},
Mallows-Euclidean with d = 2 and norm-ϕ ∈ {0.2, 0.4},
Expectations-Euclidean with d = 2 and σ ∈ {0.2, 0.4}, Fame-
Euclidean with d = 2 and f ∈ {0.2, 0.4}, Attributes with d ∈ {2, 5},
and Mallows-MD with norm-ϕ ∈ {0.2, 0.4, 0.6}. In addition, on
our maps, we include the four extreme matrices described in Sec-
tion 3.2.7.

4.1.2 Drawing the Map. To draw a map of our dataset, we compute
for each pair of instances their mutual attraction distance. Subse-
quently, we embed the instances as points in the two-dimensional
Euclidean space. Our goal is that the Euclidean distance of two
points reflects the mutual attraction distance between the two re-
spective instances. To obtain the embedding, we use a variant of
the force-directed algorithm of Kamada and Kawai [29].4 We depict
the map visualizing our dataset of 460 instances for 200 agents
in Figure 1a. 5

To correctly interpret the map, we stress that our embedding
algorithm does not optimize some global objective function. In-
stead, the algorithm works in a decentralized fashion also aiming at
producing a visually pleasing image. Consequently, the position of
instances on the map can be different in different runs and certainly
depend on which other instances are part of the map. To verify the
quality of the embedding, we computed the embedding’s distortion
and find that while the embedding is certainly not perfect, most
of the distances are represented adequately. We want to remark
that some error is to be expected here as the space of SR instances
under the mutual attraction distance is highly complex; however,
the general picture the map provides is indeed correct and helpful
to get an intuitive interpretation of experimental results.

4.2 Understanding the Map

We now take a closer look at the map of SR instances shown in
Figure 1a. Examining themap, what stands out is that for all cultures,
instances sampled from this culture are placed close to each other
on the map, resulting in an island-like structure. In fact, instances
sampled from the same culture are usually close to each other
under the mutual attraction distance (or at least closer to each
other than to instances sampled from other cultures). While this
is to be expected to a certain extent, this observation validates our
approach in that the mutual attraction distance is seemingly able
to identify the shared structure of instances sampled from the same
statistical culture and in that our embedding algorithm is able to
detect these clusters.

Moreover, interestingly, the different statistical cultures have a
different "variation", i.e., the average mutual attraction distance of
two instances sampled from the same culture substantially differs
for the different cultures. The Impartial Culture model has with
0.59 the highest variation, while the Euclidean model for d = 1 has
with 0.07 the lowest variation. The value for Impartial Culture is
quite remarkable, as it means that Impartial Culture instances are
on average almost as far away from each other as, for example, ID
from the other extreme points. Because of the limitations of two-
dimensional Euclidean space, this is not adequately represented
on the map, as Impartial Culture instances are still placed close to
each other. The reason for this is that they are all at a similar (even
larger) distance to the other instances. In the following experiments,

4The algorithm starts with an arbitrary embedding of the instances. Then, it adds an
attractive force between each pair of instances whose strength reflects their mutual
attraction distance and a repulsive force between each pair ensuring that there is a
certain minimum distance between each two points. Subsequently, the instances move
based on the applied forces until a minimal energy state is reached. Szufa et al. [41]
and Boehmer et al. [6] used the closely related Fruchterman–Reingold algorithm.
5We focus on 200 agents. Maps for different numbers of agents are available in the
full version [9] and look quite similar.
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(a) Colors indicate the statistical culture points were sampled from (b) Mutuality (c) Rank distortion

(d) Average number of blocking pairs for a

perfect matching

(e) Minimum summed rank of all agents for

their partner in any stable matching

(f) Seconds needed to compute summed rank

minimal stable matching

Figure 1: Map of 460 SR instances for 200 agents visualizing different quantities for each instance. Each instance is represented

by a point. Roughly speaking, the closer two points are on the map, the more similar are the respective SR instances under

the mutual attraction distance. Transparent points have no stable matching.

we observe that Impartial Culture instances nevertheless behave
quite similarly.

Taking a closer look at the map, we observe that our four ex-
treme points fall into four different parts. On the right, we have
the mutual agreement matrix MA. Accordingly, models for which
mutual agreement is likely to appear all land in the right part of the
map, namely, Euclidean instances (where intuitively speaking agent
a likes agent b if they are close to each other making it also likely
that b likes a), the Fame-Euclidean model for f = 0.2, the Mallows-
Euclidean model for norm-ϕ = 0.2, the Reverse-Euclidean model
for p = 0.05 (these three are all basically differently perturbed vari-
ants of Euclidean models and consequently also on average slightly
further away from MA than Euclidean instances), and the 2-IC
model for p = 0.5 (where we have some guaranteed level of mutual
agreement because there are two groups of agents and agents from
one group prefer each other to the agents from the other group).

On the left, we have the mutual disagreement matrix MD with
only instances from the Mallows-MD model being close to it (in

general, it is to be expected that if we apply the Mallows model on
top of some other model X, then for small values of norm-ϕ the
sampled instances are close to the ones fromX butmove further and
further away towards Impartial Culture instances as norm-ϕ grows).
That the mutual (dis)agreement matrices are at the two ends of the
horizontal axis raises the question whether the horizontal axis can
be indeed interpreted as an indicator for the degree of mutuality in
SR instances. This hypothesis gets strongly confirmed in Figure 1b
where we color the points on the map according to their mutuality
value, which we define as the total difference between the mutual
evaluations of agent pairs, i.e.,

∑
a∈A

∑
i ∈[ |A |−1] |MA(a, i)−i |. The

nicely continuous shading in Figure 1b indicates a strong correlation
between the mutuality value of an instance and its x-coordinate
on the map. Moreover, instances that are close on the map have
indeed similar mutuality values. Moreover, the continuous coloring
indicates that our dataset provides a good and almost uniform
coverage of the space of SR instances (at least in terms of their
mutuality value).
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Turning to the middle part of the map, the identity matrix ID
can be found at the bottom. Close to identity are instances from cul-
tures where agent’s quality is “objective". Namely, Mallows model
with norm-ϕ = 0.2 (where the preferences of agents are still often
close to the central order) and the Attributes model with d = 2
(where each agent has two quality scores and the preferences of
agents only differ in how they weight the quality scores). The chaos
matrix CH is placed in the top part of the map together with the
“chaotic" Impartial Culture instances. Mallows instances naturally
form a continuous spectrum between identity and chaos. These
observations give rise to the hypothesis that in instances placed at
the bottom of the map most agents have similar preferences, while
in instances placed at the top all agents have roughly the same
quality and few agents are particularly (un)popular. To quantify
whether agents agree or disagree on the quality of the agents, we
measure the rank distortion of an instance, i.e., for each agent we
sum up the absolute difference between all pairs of entries in its
mutual attraction vector

∑
a∈A

∑
i, j ∈[ |A |−1] |MA(a, i)−MA(a, j)|.

Note that, for example, for an agent that is always ranked in the
same position by all other agents this absolute difference is zero.
We show in Figure 1c a map colored by the rank distortion of in-
stances. The picture here is slightly different than for the horizontal
axis in that instances with the same y coordinate might still have
a very different rank distortion. In fact, what we rather see here
is that the further a point is from ID on the map, the larger is its
rank distortion and thus the higher is the disagreement concerning
agents quality (which is quite intuitive recalling that for both MA
and MD the rank distortion is maximal).

5 USING THE MAP

To illustrate the usefulness of the map to evaluate experiments and
to confirm our previous observation that instances that are close to
each other on the map have similar properties, we perform some
exemplary experiments.

Expected Number of Blocking Pairs. Motivated by the fundamen-
tal importance of blocking pairs for stable matchings, we mea-
sure the expected number of blocking pairs for an arbitrary per-
fect matching. For this, for each instance, we sampled 100 perfect
matchings uniformly at random and for each counted the number
of blocking pairs. The results are depicted in Figure 1d. As for the
mutuality value, we get a nicely continuous shading along the hor-
izontal axis. This clear correlation with the mutuality value is quite
intuitive as in case there is a high mutual agreement agents are
also more likely to form blocking pairs (if an agent a prefers an
agent b to its current partner, then because the mutuality is high
b also tends to like a and tends to prefer a to its current partner);
if there is mutual disagreement, the picture is reversed (an agent
prefers the agents to its current partner that tend to dislike it). This
is also clearly visible in Figure 1d, as instances close to MD have a
low expected number of blocking pairs, whereas for instances close
to MA the expected number is much higher.

Existence of a Stable Matching. A fundamental question is which
of our 460 instances admit a stable matching. In Figures 1e and 1f,
if an instance admits a stable matching, it is drawn as a solid point
and otherwise as a transparent point. Examining the map, we do

not see a clear correlation between whether instances admit a stable
matching and their position on the map. This is also quite intuitive,
given that the existence of a stable matching might depend on
some local configuration. However, what is clearly visible is that
for different cultures the probability of admitting a stable matching
is quite different: On the one hand, instances sampled from the
Euclidean, Fame-Euclidean, and Reverse-Euclidean models almost
always admit a stable matching (for the Euclidean model this is
even guaranteed). On the other hand, instances sampled from the
Mallows-Euclidean and Expectations-Euclidean model only very
rarely admit a stable matching. The drastic contrast between the
Euclidean model and the Mallows-Euclidean model with norm-ϕ =
0.2 and between the Reverse-Euclidean and Expectations-Euclidean
model here is quite remarkable, as they are conceptually similar. We
also computed for each instance the minimum possible number of
blocking pairs in a matching. Interestingly, this value has a stronger
correlation with instances’ position on the map and is at most four
for all our instances, indicating that they are all “close to stability”.

Summed Rank Minimal Stable Matchings. We analyze summed
rank minimal stable matchings, i.e., stable matchings M mini-
mizing

∑
a∈A pos≻a

(
M(a)

)
(these matchings are also sometimes

called egalitarian stable matchings). Such matchings maximize the
summed satisfaction of agents and are thus natural candidates to
pick if multiple stable matchings exist. However, computing them
is NP-hard [21] and thus we resorted to an ILP. For instances with a
stable matching, we visualize the quality of summed rank minimal
stable matchings in Figure 1e. Observe that instances sampled from
one culture again behave remarkably similarly. In addition, there
is some but certainly not a perfect correlation between the results
and instances’ position on the map: Ignoring Reverse-Euclidean
instances which are a clear outlier here, if we move from chaos
to mutual agreement the minimal summed rank decreases (as for
perfect mutual agreement every agent can be matched to its top-
choice); in contrast, if we move from chaos to mutual disagreement
or from chaos to identity, then the minimal summed rank con-
stantly increases.

Further Types of Stable Matchings. Complementing the results
from the previous paragraph, we also examine the stable match-
ing minimizing the summed satisfaction of agents. Interestingly,
for almost all instances the lowest and highest possible summed
satisfaction is similar, indicating that the space of stable matching
is in some sense not very rich in these instances. We also study the
stable matching maximizing the satisfaction of the agent worst off.
Interestingly, here, models producing (close to) Euclidean instances
show a diverse behavior, whereas for other models in all sampled
instances the maximum satisfaction of the worst off agent is similar.
Moreover, it is again possible to identify different regions on the
corresponding maps (e.g., for instances close to identity, it is not
possible to satisfy all agents adequately) as well as a continuously
changing behavior when moving from some of the extreme points
to others (e.g., moving from identity to mutual disagreement or
chaos the situation of the worst-off agent constantly improves).

Running Time Analysis. Lastly, to illustrate another possible ap-
plication of the map, in Figure 1f we visualize the time our ILP,
which we solved using Gurobi Optimization, LLC [25], needed to
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find a summed rank minimal stable matching. Analyzing the results,
again instances from the same culture behave quite similarly to
each other. Moreover, the results are clearly connected to instances’
position on the map. More specifically, instances from the Euclidean
and Fame-Euclidean model seem to be particularly easy to solve,
whereas instances close to ID and close to MD seem to be partic-
ularly challenging, maybe because here the achievable minimum
summed rank is quite high. This is in contrast to election-related
problems, where typically Impartial Culture elections are most chal-
lenging and the more structure there is in an election, the easier it
is to solve [41].

6 A MAP OF STABLE MARRIAGE INSTANCES

So far we focused on the Stable Roommates problem. However,
the developed framework can also be applied to other types of
stable matching problems. To showcase this, we repeat parts of our
studies for the Stable Marriage (SM) problem. Instances of SM
differ from those of SR in that there is a bipartition of the agents
into two size-n sets (typically referred to as men and women) such
that agents from one set have preferences over the agents from the
other set and vice versa. In a matching, each pair then contains a
man and a woman.

We extend the mutual attraction distance to SM instances as
follows: Each instance now corresponds to two separate mutual
attraction matricesMAI,U andMAI,W , one (MAI,U ) for men
and one (MAI,W ) for women (as for SR, each row corresponds to
an agent and contains entriesMAI (a, 1), . . . ,MAI (a,n)). When
computing the distance between two SM instances I and I ′, we
compute the summed distance between the matrices MAI,U

and MAI′,U and the matrices MAI,W and MAI′,W , and the
summed distance between the matrices MAI,U and MAI′,W

and the matricesMAI,W andMAI′,U . The distance between I

and I ′ is then the minimum of these two values. This in particular
implies that we do not fix that “women” in one instance correspond
to “women” in the other instances (as in one-to-one applications
the two sides are often in some sense exchangeable), but instead
map the two sides to each other such that the resulting distance
is minimized.

To create a map of SM instances, we again sample 460 instances
from canonical extensions of the statistical cultures used for SR to
the SM setting. The resultingmap of SM instances looks very similar
to the one for SR instances depicted in Figure 1a. Moreover, we
repeat the experiments that we conducted for SR, observing in most
cases very similar results.6 In particular, instances sampled from
one model perform very similarly in most experiments, instances
that are close according to the mutual attraction distance share
similar characteristics, and the map groups close instances together,
enabling us to identify regions on the map with distinct behaviors.

7 DISCUSSION

Contributing to the toolbox for experiments for stable matching
problems, we have introduced the polynomial-time computable

6One main contrast concerns the difference between the maximum and minimum
summed satisfaction of agents in a stable matching. For SR, this difference was usually
very small. For some SM instances this difference is larger, indicating that the space of
stable matchings for some of the sampled SM instances is “richer”.

mutual attraction distance and analyzed its properties as well as the
space it induces. As a second step, we have described a variety of sta-
tistical cultures for generating synthetic stable matching instances,
which allow one to create diverse easily customizable test datasets.
One specific application of these two contributions is our map of
stable matching instances. We have verified that the produced map
is meaningful in the sense that it groups instances with similar
properties together, and have provided intuitive interpretations of
the different regions on the map.

To demonstrate the capabilities of the map and our test dataset,
we have conducted various exemplary experiments. Overall, our
experimental results underline the importance of using diverse test
data. Among others, we have observed that sampling preferences
uniformly at random results in instances that behave very similarly
(and often quite different than instances sampled from other mod-
els) and that such instances only cover a small part of the space of
instances. Overall, this questions the common practice to only ex-
amine preferences sampled uniformly at random in an experimental
analysis, as it is quite unclear whether the results of these experi-
ments generalize.7 Specifically, our results presented in Section 5
demonstrate the insufficiency of only using uniformly at random
sampled preferences in SM and SR instances when analyzing prop-
erties of specific stable matchings and performances of algorithms.
This is slightly worrisome given that in the past several papers have
analyzed properties of different types of stable matchings [13, 14]
and conducted performance evaluations of algorithms [14, 19, 23]
in SM and SR instances only using random preferences.

Moreover, our experiments and analysis of the map also reveal
that instances which have a small mutual attraction distance (and
thus are close to each other on the map) tend to have similar prop-
erties. This underlines the usefulness of this distance measure to
assess the similarity of instances. Furthermore, it highlights the ca-
pabilities of the map as a non-aggregate visualization tool: Instead
of presenting experimental results by listing different (sometimes
non-robust) statistical quantities, on the map, we can depict the
results on an instance level, thereby showing the full picture. Using
this, it is often possible to identify general high-level trends and
typical behavior of instances from different parts of the space. In a
similar vein, the map also supports the informed planning of more
focused follow-up experiments, by looking for parts on the map
that show an interesting behavior and analyzing the respective
cultures in more detail. To use the map for these purposes, a mean-
ingful placement of the instances on the map which groups similar
instances together is vital. The maps shown in Figure 1 provide
some first clear evidence that this is indeed the case, which also
justifies the usage of the mutual attraction distance as a practically
useful and sufficient distance measure.

7Further, it is also unclear why instances with uniformly at random sampled prefer-
ences are particularly practically useful. Quite the contrary, there is some evidence
that preferences in reality are often not drawn uniformly at random: In the general
setting of agents ranking different alternatives, Boehmer et al. [6] and Boehmer and
Schaar [10] analyzed real-world preference data from a variety of sources observing
that only few of these match a random preference sampling.
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