Session 3E: Learning with Humans and Robots

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

GANterfactual-RL: Understanding Reinforcement Learning
Agents’ Strategies through Visual Counterfactual Explanations

Tobias Huber
University of Augsburg
Augsburg, Germany
tobias.huber@uni-a.de

Matthew L. Olson
Oregon State University
Corvallis, OR, United States
olsomatt@oregonstate.edu

ABSTRACT

Counterfactual explanations are a common tool to explain artificial
intelligence models. For Reinforcement Learning (RL) agents, they
answer "Why not?" or "What if?" questions by illustrating what
minimal change to a state is needed such that an agent chooses
a different action. Generating counterfactual explanations for RL
agents with visual input is especially challenging because of their
large state spaces and because their decisions are part of an overar-
ching policy, which includes long-term decision-making. However,
research focusing on counterfactual explanations, specifically for
RL agents with visual input, is scarce and does not go beyond
identifying defective agents. It is unclear whether counterfactual
explanations are still helpful for more complex tasks like analyz-
ing the learned strategies of different agents or choosing a fitting
agent for a specific task. We propose a novel but simple method to
generate counterfactual explanations for RL agents by formulating
the problem as a domain transfer problem which allows the use
of adversarial learning techniques like StarGAN. Our method is
fully model-agnostic and we demonstrate that it outperforms the
only previous method in several computational metrics. Further-
more, we show in a user study that our method performs best when
analyzing which strategies different agents pursue.
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1 INTRODUCTION

Modern Reinforcement Learning (RL) agents use increasingly com-
plex state spaces and deep learning algorithms, making the deci-
sions and strategies of such agents hard to understand [13]. At the
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(b) Counterfactual state
where Pacman goes right.

(a) Original state where
Pacman goes left.

Figure 1: Example for a counterfactual explanation: In the
original situation (a), the agent does not take the fastest path
to the pill in the top right corner. It is unclear if the agent is
afraid of the ghost or does not recognize the shortest path.
The counterfactual state (b) shows that the agent would have
taken the fastest path to the pill if the ghost was not there.
This indicates that the agent is afraid of the ghost.

same time, these deep RL agents are being deployed into increas-
ingly high-risk domains like healthcare, autonomous driving, and
robotic navigation [11, 21, 43]. In such domains, it is crucial to be
able to understand the agents to enable appropriate use of them
and to facilitate human-agent cooperation [37]. One prominent
paradigm to make the decisions of intelligent agents transparent
and comprehensible are so-called Counterfactual Explanations. By
providing an alternative reality where the agent would have made
a different decision, these explanations follow a rather human way
of describing decisions [4, 27]. For example, if a person would have
to explain why a warehouse robot took a detour instead of directly
moving to its desired target, they would probably give an expla-
nation similar to If there was no production worker in the way, the
robot would have moved straight to its target - and, by doing so, give
a counterfactual explanation of the warehouse robot’s behavior.
Figure 1 shows a similar situation from the Atari game Pacman.
In other machine learning domains, such as image classification,
counterfactual explanations are already frequently used. However,
this is not the case for RL, as several factors make explaining the
decisions of RL agents more challenging. For one, RL agents are
used for sequential decision-making tasks: their actions are not
isolated. These actions are part of a long-term strategy that might
be influenced by delayed rewards. Secondly, RL agents are not
trained on a given ground truth strategy. The reward function only
indirectly specifies the agent’s goals [10]. The emerging strategies
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might not be what humans would expect, even if the strategy is
optimal for the reward function. Finally, for RL agents, there is
no direct counterpart to the training datasets used by supervised
models. Therefore, counterfactual explanation approaches for su-
pervised models that utilize the training data cannot be applied to
RL agents without adjustment [41].

Due to the difficulties mentioned above, there is only one ap-
proach that focuses on creating counterfactual explanations for
deep RL agents with visual input [32]. This approach utilizes a
complex combination of models where the final generator is only
indirectly trained to change the action. Olson et al. [32] show that
their approach can be applied to a variety of RL environments and
helps users identify a flawed agent. With the help of their coun-
terfactual explanations, users were able to differentiate between a
normal RL agent for the Atari game Space Invaders and a flawed
agent that did not see a specific in-game object. For this task, it
is sufficient for the counterfactual explanation to not change the
particular object at all while other objects frequently change. This
clearly communicates that the unchanged object is irrelevant and
ignored by the agent, implying that it is not seen at all.

But for counterfactual explanations to be employed more widely,
they also have to be useful for more complex tasks. According to
Hoffman et al. [14], one of the main goals of a good explanation
is to refine the user’s mental model of the agent. For RL agents,
this includes understanding what strategy and intentions an agent
pursues. Another critical goal for explanations is that they should
help users to calibrate their trust in different agents [14]. For RL
agents, this entails that users should be able to choose fitting agents
for specific problems, which is more complex than simply identify-
ing defective agents. The two aforementioned challenges require
counterfactual explanations to not only convey what objects need
to change but also how the objects need to be altered to change the
agents’ policy.

To tackle these challenges, this paper proposes a novel method
for generating counterfactual explanations for RL agents with visual
input. We do so by formulating the generation problem as a domain
transfer problem where the domains are represented by sets of
states that lead the agent to different actions. Our approach is fully
model-agnostic, easier to train than the approach presented by
Olson et al., and includes the counterfactual actions more directly
into the training routine by solving an action-to-action domain
transfer problem. We evaluate our approach with computational
metrics (e.g., how often do the counterfactuals change the agent’s
decision) and a user study using the Atari Learning Environment
(ALE) [3], a common benchmark for RL agents with visual input.
In our user study, we present participants with different kinds of
counterfactual explanations and investigate whether this helps
them to understand the strategies of Pacman agents. Furthermore,
we investigate if the counterfactuals help them to calibrate their
trust, so they can choose fitting agents for specific tasks (surviving
or receiving points).

As such, the contributions of this paper are as follows: We formu-
late a novel, model-agnostic approach for generating counterfactual
explanations for RL agents. We demonstrate that our approach out-
performs the previous method in several computational metrics.
Furthermore, we conduct a user study that shows, for the first time,
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that counterfactual explanations can help to understand the strate-
gies of RL agents. This user study also identifies current deficiencies
of counterfactual explanations for RL agents that point the way for
future work.

2 RELATED WORK

Our work deals with post-hoc explanations that are generated for
fully trained black-box agents. Recent years saw a plethora of work
on such explanations for (deep) RL agents. The literature often
divides them by scope into global and local explanations. Global
explanations try to explain the agent’s overall strategy. This can be
done by picking a subset of important state-action pairs that sum-
marize the agent’s strategy [1, 15] or by distilling the agent’s policy
into a simpler model like a finite state machine [8] or a soft decision
tree [7]. In this paper, we focus on local explanations that explain a
specific decision of an agent. The most common approach to local
explanations for RL agents are Feature Attribution or Saliency Map
methods [18, 34, 44]. These methods try to identify the most impor-
tant input features for a specific decision and highlight them, for
example in a heatmap. However, recent work questioned whether
one can rely on post-hoc feature attribution to faithfully represent
the agent’s internal reasoning [2, 17]. Furthermore, previous studies
showed that saliency maps for visual RL agents are hard to under-
stand for end-users [19]. Counterfactual explanations are another
type of local explanation. Since they follow the human thinking
paradigm of counterfactual reasoning, it is often argued that they
are easier to interpret than feature attribution methods [4, 27].

For classification models, there is a growing body of work on
counterfactual explanations. In 2017, Wachter et al. [39] were the
first to introduce counterfactual explanations into the XAI domain
by defining them as an optimization problem. Since then, various
approaches to generate such counterfactuals were proposed, e.g.,
van Looveren and Klaise [23], and [12].

As various research has observed that generating counterfactual
explanations is, at its core, a generative problem, the use of genera-
tive models like Generative Adversarial Networks (GANSs) quickly
became prevailing in state-of-the-art counterfactual explanation
generation algorithms. E.g., Nemirovsky et al. [31] proposed Coun-
terGAN, a framework to build highly realistic and actionable coun-
terfactual explanations. Zhao et al. [45] propose an approach for
generating counterfactual image explanations by using text descrip-
tions of relevant features of an image to be explained. Furthermore,
various specialized GAN-based algorithms were introduced to gen-
erate counterfactual explanations in the medical domain [24, 25, 38].
More recent frameworks for counterfactual explanation generation
make use of the StyleGAN architecture, which implicitly models
style-related aspects of an image, which makes it perfectly suitable
for a whole range of image classification tasks [22, 35]. As for a
broad range of use cases, it is essential to be able to provide ex-
planations for multiple counter-classes, various approaches have
focused on that particular capability by using architectures based
on StarGAN, an adversarial framework that was specifically de-
signed for image translation between multiple domains [42, 46].
One drawback of the aforementioned approaches for supervised
learning is that their GANSs are trained to transfer between domains
given by the labeled classes from the classifier’s training dataset.
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Then they add additional measures (e.g., loss functions [25, 46]), to
ensure that the generated counterfactuals are actually classified as
the desired class by the classifier that is to be explained. This is not
possible for RL agents that do not have a training set. Furthermore,
the additional measures are often not model-agnostic.

RL is often used to create counterfactual explanations for other
models (for example in [5]). However, to the best of the authors’
knowledge, there is only one previous work on generating visual
counterfactual explanations for RL agents [32]. Olson et al. [32]
train an encoder E that creates an action-invariant latent represen-
tation of the agent’s latent space. This is achieved by adversarially
training E in tandem with a discriminator D, where D tries to pre-
dict the agent’s action and E aims to make the decision of D as
uncertain as possible. In addition, they train a generative model G
to replicate states s based on the action-invariant latent represen-
tation E(s) and the agent’s action probability distribution 7(s) for
this state. By providing G with a counterfactual action distribution
7(s)’, they obtain a state that is similar to s but brings the agent’s
action distribution closer to the desired counterfactual distribution.
However, Olson et al. argue that an arbitrary counterfactual ac-
tion distribution does not represent a realistic agent output and
thus leads to unrealistic counterfactual states. To avoid this, they
train an additional Wasserstein Auto Encoder and use it to perform
gradient descent in the latent space of the agent towards an agent
output that resembles the desired counterfactual action. Olson et al.
refer to their approach as Counterfactual State Explanations (CSE),
therefore we will also refer to it as CSE in this paper.

The CSE approach is fairly complex and requires extensive access
to the agent’s inner workings. Furthermore, as Olson et al. mention
themselves, the loss function of the generator G does not directly
force the resulting state G(E(s), 7(s)") to be classified as the coun-
terfactual action distribution 7 (s)’. This is only learned indirectly
by replicating states based on the action-invariant latent space and
the desired action distribution 7 (s)’. As we show in Section 4, this
does not seem to be enough to change the agent’s decision correctly.
To solve those problems, we formulate a simpler counterfactual
generation method that uses the counterfactual actions in a more
direct way.

3 APPROACH
3.1 GANterfactual-RL

RL agents are usually employed in a Markov Decision Process
(MDP) which consists of states s € S, actions a € A, and rewards
r. Given a state s, the goal of an RL agent 7 : S — A is to choose
an action 7(s) that maximizes its cumulative future rewards. To
explain such an agent, the objective of a counterfactual explanation
approach for RL agents is defined as follows. Given an original state
s and a desired counterfactual action a’, we want a counterfactual
state s’ that makes the agent choose the desired action 7 (s”) = a’.
Hereby, the original state s should be altered as little as possible. On
an abstract level, the action 7 (s) that the agent chooses for a state
s can be seen as a top-level feature that describes a combination
of several underlying features which the agent considers to be
relevant for its decision. Thus, the counterfactual state s’ should
only change the features that are relevant to the agent’s decision,
while maintaining all other features not relevant to the decision.
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Agent:
“Do nothing!“

Figure 2: Schematic of our counterfactual generation ap-
proach. We formulate the problem as domain transfer where
each domain represents an action. States are assigned to do-
mains based on the action that the agent chooses for them.

This is similar to image-to-image translation, where features that
are relevant for a certain image domain should be transformed
into features leading to another image domain, while all other
features have to be maintained (e.g., the background should remain
constant when transforming horses to zebras). Taken together,
we can formulate the generation of counterfactual states for RL
agents as a domain transfer problem similar to image-to-image
translation: The agent’s action space A defines the different domains
A; = {s € S|n(s) = a;}, where each state belongs to the domain
that corresponds to the action that the agent chooses for this state
(see Figure 2).

To solve the reformulated domain transfer problem, we base our
system on the StarGAN architecture [6], since RL agents usually
use more than two actions. The StarGAN architecture incorporates
multiple loss components that can be reformulated to be applicable
to the RL domain. The first component, the so-called adversarial
loss, leads the network to produce highly realistic states that look
like states from the original environment. Reformulated for the task
of generating RL states, we define it as follows (following Choi et al.
[6] we use a Wasserstein objective with gradient penalty):

Lado = Es [Dsre(s)] - Eso [Dsrc(G(s, a’))]
- Ang§ [(||V§Dsrc(§)||2 - 1)2] s

where Dy is the StarGAN’s discriminator network and G its gener-
ator network. The second loss component, which is specific to the
StarGAN architecture, guides the generator network to produce
states that lead to the desired counterfactual actions. It consists of
two sub-objectives, one that is applied while the network is fed
with original (real) states from the training set (Eq. 1), and the other
while the network is generating counterfactual states (Eq. 2):

L8 = Esal-log Dys(als)], 1)
a/

ols = Bs.ar [~log Deys(a’|G(s,a"))], @
where D¢ refers to the StarGAN discriminator’s classification
output, which learns to approximate the action that the agent is
performing in a particular state. Further, as counterfactual states
should be as close to the original states as possible, a Reconstruction
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Loss is used. This loss forces the network to only change features
that are relevant to the agent’s choice of action:

Lrec = Esqa [lls — G(G(s, a), a)ll1]

Taken together, the whole loss of the StarGAN architecture, refor-
mulated for RL counterfactual explanations, is defined as follows:

Lp =—Lagy + Acts L?lsa
Lo = Ladgo + Aeis Lfls + Arec Lrec

where A.;; and Ayec are weights controlling the corresponding
loss component’s relevance. Since our approach utilizes a GAN
architecture to generate counterfactuals for RL agents, we refer to
it as GANterfactual-RL.

3.2 Dataset Generation

As described above, our GANterfactual-RL approach relies on train-
ing data in the form of state-action pairs. Olson et al. [32] train
their CSE approach on state-action pairs generated by concurrently
running an MDP with a trained agent. This strategy is simple but
allows for little control over the training data, which can lead to
the following complications:

¢ Frames extracted from a running MDP contain a temporal
pattern since consecutive states typically have a high corre-
lation. Such correlations and patterns can lead to bias and
sub-optimal convergence during training.

For episodic MDPs, there is a high probability of reaching
the same state throughout several episodes. This is amplified
by the fact that RL agents often learn to execute only a few
optimal trajectories. This results in duplicate samples that
are effectively over-sampled during training.

RL agents generally do not execute each action equally fre-
quently, since most environments contain actions that are
useful more often than others. This leads to an imbalanced
amount of training samples per domain.

To mitigate the aforementioned issues, we propose to generate
datasets as follows: Data is gathered by running a trained agent
in an MDP. Each state corresponds to one dataset sample and is
labeled with the action that the agent chooses to execute in this
state. An e-greedy policy (¢=0.2 in our case) is used to increase the
diversity of states reached over multiple episodes. State-action pairs
with an explored (randomly chosen) action are not added to the
dataset. After the data is gathered, duplicates are removed. Then, a
class balancing technique (under-sampling in our case) is used to
account for over- or underrepresented actions. Finally, the dataset
is split into a training set, a test set, and potentially a validation set.

Most of these techniques are commonly used in other application
domains of machine learning. However, to our best knowledge, this
is the first work to generate and preprocess datasets for generating
counterfactual explanations for RL agents.

3.3 Application to Atari Domain

Environment. The environments we use for our experiments are
the Atari 2600 games MsPacman (henceforth referred to as Pacman)
and Space Invaders, included in the Arcade Learning Environment
(ALE) [3]. The ALE states are based on the raw pixel values of the
game. Each input frame is cropped so that only the actual playing
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field remains. This removes components such as the score and life
indicators which would allow participants to easily see which agent
receives higher scores. After that, we use the same preprocessing as
Mnih et al. [29]. Two steps from this preprocessing are particularly
important for us. First, the frames are gray-scaled and downsized.
Second, in addition to the current frame, the agent receives the last
three preprocessed frames as input. This allows the agent to detect
temporal relations. The ALE actions normally correspond to the
meaningful actions achieved with an Atari 2600 controller (e.g. six
actions for Space Invaders). Since we wanted to use our Pacman
agents in a user study we removed 4 redundant actions (e.g., Up &
Right) whose effect differs between situations and is therefore hard
to convey to participants. This left us with 5 actions for Pacman
(Do nothing, Up, Down, Left, Right).

Agent Training. To evaluate participants’ ability to differentiate
between alternative agents and analyze their strategies, we modified
the reward function of three Pacman agents. This is a more natural
method of obtaining different agents compared to withholding
information from the agent as Olson et al. [32] did. Furthermore,
it results in agents that behave qualitatively differently. Therefore
participants have to actually analyze the agents’ strategies instead
of simply looking for objects that the agents ignore.

€ Blue-Ghost Agent: This agent was trained using the de-
fault reward function of the ALE, where blue ghosts get the
highest reward.

€ Power Pill Agent: This agent only received positive rewards
for eating power pills.

€ Fear-Ghost Agent: This agent got a small positive reward
of 1 for every step in which it did not die to ghosts.

For training the first two Pacman agents, we use the DQN algorithm
[29]. Each agent was trained for 5 Million steps. The fear-ghosts
agent was trained using the ACER algorithm [40] for 10M steps.
At the end of the training period, the best-performing policy is
restored. For all three agents, we build upon the OpenAl baselines
[9] repository. For Space Invaders, we used the two Asynchronous
Advantage Actor-Critic (A3C) agents trained by Olson et al. [32].
For training details, we refer to their paper. One agent is trained
normally, while the other agent is flawed and does not see the laser
cannon at the bottom of the screen.

GANterfactual-RL on Atari. To generate human-understandable
counterfactual explanations for our Atari agents, the generated
counterfactual states should represent the frames that humans see
during gameplay. That means we cannot train our GANterfactual-
RL model on the preprocessed and stacked frames that the Atari
agents use. Instead, we train it on the cropped RGB frames before
preprocessing. The only preprocessing we still use on those frames
is a countermeasure against flickering objects in Atari games, which
was proposed by Mnih et al. [29]. While generating the dataset,
we only save the most recent of the four stacked frames for each
state s. This frame generally influences the agent’s decision the
most. For feeding the counterfactual frame back into the agent (e.g.,
to evaluate the approach), we stack it four times and then apply
preprocessing.

Implementation details are described in the appendix (to be found
in the authors’ version [16]). The full code is available online.

Uhttps://github.com/hcmlab/GANterfactual-RL
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4 COMPUTATIONAL EVALUATION
4.1 Used Metrics

We evaluate our approach using the metrics validity (or success
rate), proximity (or cost), sparsity, and generation time. We consider
these metrics to be the most suitable and widely used metrics for
image-based counterfactual explanations [5, 20, 30, 33].

Validity captures the rate of CounterFactuals (CFs) that actually
evoke the targeted action when fed to the agent. With Nt being
true CFs (correctly changing the agent’s action), Nr being false CFs,
and N the total amount of evaluated CFs, this metric is defined as:

Nr Nr

V(llldlty = m = W
T F

Proximity measures the similarity between an original state
image and its CF via the L1-norm. We normalize the metric to
measure the proximity in the range [0, 1].

1
2558

Proximity(s,G) =1 — [Is = G(s,a)||1
where s is the original state image, G(s, a) is the generated CF for
an arbitrary target action domain a and S is the domain of color
values of s (S = 3 - Width - Height for RGB-encoded images). The
normalization with 255 - S assumes an 8-bit color encoding with
color values in range [0, 255]. High proximity values are desirable
since they indicate small adjustments to the original state.
Sparsity quantifies the number of unmodified pixel values be-
tween an original state image and its CF via the L0-norm (a pseudo-
norm that counts the number of non-zero entries of a vector/matrix).
The sparsity is normalized to the range [0, 1] as well.

Sparsity(s,G) =1 - glls = G(s.a)lo

A completely altered image has a sparsity of 0, an unmodified image

has a sparsity of 1. High sparsity values are thus desirable.
Generation Time determines the time it takes to generate one

CF with a trained generator, not including pre- or post-processing.

4.2 Computational Results

The computational results for the three Pacman agents are shown
in Table 1 and the results for the two Space Invaders agents in
Table 2. For the Pacman agents, we generated fully cleaned datasets
(Section 3.2) and sampled 10% of each action for the evaluation test
set. To show the contribution of our proposed dataset generation,
we additionally trained a GANterfactual-RL model for the blue-
ghost agent without the steps proposed in Section 3.2 and evaluated
it on the test set from the clean dataset. This dropped the validity
to 0.45 and sparsity to 0.50 + 0.01 while the other values stayed
comparable. To be more comparable to the results by Olson et al.
[32], we do not remove duplicates from the Space Invaders datasets
and do not apply class balancing. Here we create the test set by
sampling 500 states for each action and removing all duplicates of
these states from the training set. Our GANterfactual-RL approach
outperforms the CSE counterfactuals in every single metric.
Figure 3 shows example counterfactuals generated for the Pac-
man fear-ghosts agent and the two Space Invaders agents. Additional
examples for all our agents can be seen in the appendix [16].
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Table 1: Computational evaluation results for the Pacman
agents. Proximity, sparsity and generation time are specified
by mean + standard deviation.

Approach  Validity (T)  Proximity (T)  Sparsity (T)  Gen. Time [s] (])
Blue-Ghost Agent

Ours 0.59 0.997 £ 0.001  0.73 £ 0.02 0.011 + 0.012
CSE 0.28 0.992 £0.002  0.33 £ 0.03 0.085 + 0.021
Power-Pill Agent

Ours 0.49 0.997 £0.001  0.70 £ 0.02 0.011 + 0.008
CSE 0.20 0.993 £0.002 0.32 £ 0.02 0.566 + 0.731
Fear-Ghost Agent

Ours 0.46 0.995 £ 0.001  0.45 £ 0.01 0.013 + 0.014
CSE 0.20 0.992 £0.002  0.32 £ 0.04 0.020 £ 0.017

Table 2: Computational evaluation results for the Space In-
vaders agents. Proximity, sparsity and generation time are
specified by mean + standard deviation.

Approach  Validity (T)  Proximity (1)  Sparsity (T)  Gen. Time [s] (])
Normal Agent
Ours 0.70 0.998 £0.002  0.97 £ 0.02 0.011 £ 0.013
CSE 0.18 0.995 £ 0.003  0.89 £ 0.05 6.180 + 9.727
Flawed Agent
Ours 0.53 0.998 £ 0.002  0.96 + 0.01 0.011 + 0.015
CSE 0.17 0.995 £ 0.004 0.94 £ 0.01 0.020 £ 0.035
Agent: Pacman Space Invader  Space Invader
Fear Ghosts Flawed Normal
Original Action: Move Down Right & Fire Right & Fire

Original State:

Target Action: Move Move Left Move Left

CSE Counterfac-
tual State:

GANterfactual-
RL Counterfac-
tual State:

Figure 3: Example counterfactual states. Our approach does
not change the Laser Cannon (marked in blue) for the flawed
agent, who does not see it, but changes it for the normal
agent.

5 USER STUDY

5.1 Study Design

5.1.1 Research Question and Hypothesis. The research question for
our study was which counterfactual explanations help users to un-
derstand the strategies of RL agents and help them to choose fitting
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agents for a specific task. We hypothesized that our GANterfactual-
RL method is more useful than the CSE method and is more useful
than a presentation of the original states without counterfactuals.
Further, we thought that the counterfactuals generated by the CSE
approach might mislead participants due to the low validity of the
generated counterfactual explanations (see Section 4). Therefore,
we hypothesized that only providing the original states is more
useful than adding CSE counterfactuals.

5.1.2  Dependent Variables and Main Tasks.

Agent Understanding Task. To measure whether participants un-
derstand the strategies of different agents and build a correct mental
model of them, we used an agent understanding task inspired by
Hoffman et al. [14] and Huber et al. [19]. Here, participants were
presented with five states and the actions that the agent chooses in
these states. This was done for each of the three Pacman agents de-
scribed in Section 3.3 (one agent at a time). The states were selected
by the HIGHLIGHTS-Div algorithm [1]. To this end, we let each
trained agent play for additional 50 episodes and chose the most im-
portant states according to HIGHLIGHTS-Div. The resulting states
show gameplay that is typical for the agent, without the need to
manually select states that might be biased toward our approach.
Based on these states (and additional explanations depending on
the condition), participants had to select up to two in-game objects
that were most important for the agent’s strategy from a list of
objects (Pacman, normal pills, power pills, ghosts, blue ghosts, or
cherries). As described in Section 3.3, each agent, strongly focuses
on a different single in-game object depending on their reward
function (e.g., the fear-ghosts agent focuses on normal ghosts). If
the participants select this object and none of the other objects,
they receive a point. The only exception is Pacman. Every agent
heavily relies on the position of Pacman as a source of informa-
tion. Therefore, participants receive the point whether they select
Pacman or not.

Agent Comparison Task. To measure how well the participants’
trust is calibrated, we used an agent comparison task inspired by
Amir and Amir [1] and Miller [28]. Here, we implicitly measure
if the participants’ trust is appropriate by asking them, for each
possible pair of the three Pacman agents, which agent they would
like to play on their behalf to obtain certain goals. Since a single
agent can be good for one goal but bad for another, this requires
a deeper analysis than the distinction between a normal and a
defective agent. For each pair, the participants are shown their own
descriptions of each agent from the agent understanding task and
the same states and explanations that they saw during the agent
understanding task. Then they have to decide which agent should
play on their behalf to achieve more points and which agent should
play on their behalf to survive longer. We know the ground truth
for this by measuring the agents’ average score and amount of
steps for the 50 episodes used to find the HIGHLIGHTS states. The
amount of steps that the blue-ghost agent and the power pill agent
survive is so close that we do not include this specific comparison
in the evaluation.

Explanation Satisfaction. To measure the participant’s subjective
satisfaction, we use statements adapted from the Explanation Satis-
faction Scale by Hoffman et al. [14]. Participants have to rate their
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Task Description

Based on the images below, select the objects that you think were
most important for the strategy of this particular Al agent.
Q Pacman

Q Normal pills
Q.. a

Original action: Move Up
Counterfactual action: Move Right

Figure 4: A simplified scheme of the beginning of our agent
understanding task with a single example state.

agreement with each statement on a 5-point Likert scale. Partici-
pants’ final rating was averaged over all those ratings, reversing
the rating of negative statements. We do this once after the agent
understanding task and once after the agent comparison task in
case there are satisfaction differences between the tasks.

5.1.3 Conditions and Explanation Presentation. We used three in-
dependent conditions, one Control condition without explanations
and two conditions where the states during the agent understand-
ing task and the agent comparison task are accompanied by coun-
terfactual explanations. In the CSE condition, the counterfactuals
are generated by the approach from Olson et al. [32], and in the
GANTterfactual-RL condition the counterfactuals are generated by
our proposed method. The presentation of the counterfactual ex-
planations is designed as follows. For each state, we generate a
single counterfactual state. We were concerned that too many coun-
terfactual states would cause too much cognitive load. The way
that MsPacman is implemented, actions that do nothing or move
directly into a wall are ignored. To generate meaningful counterfac-
tual states, we limited the counterfactual action to turning around
in a corridor and randomly selecting a new direction at an intersec-
tion (do not turn around). The counterfactual states are presented
by a slider under each state. Moving the slider from left to right
linearly interpolates the original state to the counterfactual state
(per-pixel interpolation). The original and counterfactual actions are
written above the state. Figure 4 shows a simplified version of the
beginning of our agent understanding task.

5.1.4  Procedure and Compensation. After completing a consent
form, participants were asked to answer demographic questions
(age and gender) and questions regarding their experience with
Pacman and their views on Al Then, they were shown a tutorial
explaining the rules of the game Pacman and were asked to play
the game to familiarize themselves with it. To verify that partic-
ipants understood the rules, they were asked to complete a quiz
and were only allowed to proceed with the survey after answering
all questions correctly. Afterward, participants in the counterfac-
tual conditions received additional information and another quiz
regarding the counterfactual explanations. Then, they proceeded to
the agent understanding task which was repeated three times, once
for each agent. The order of the agents was randomized. After that,
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participants filled the explanation satisfaction scale and continued
to the agent comparison task. Again, this task was repeated three
times, once for each possible agent pair, and the order was random-
ized. Finally, participants had to complete another satisfaction scale
for the agent comparison task. Participants got a compensation of
5$ for participating in the study. As an incentive to do the tasks
properly, they received a bonus payment of 10 cents for each point
they get in the agent understanding task and 5 cents for each point
in the agent comparison task. The complete questionnaire can be
seen in the appendix [16]. We preregistered our study online.?

5.1.5 Participants. We recruited participants through Amazon Me-
chanical Turk. Participation was limited to Mechanical Turk Mas-
ters from the US, UK, or Canada (to ensure a sufficient English level)
with a task approval rate greater than 95% and without color vision
impairment. We conducted a power analysis with an estimated
medium effect size of 0.7 based on previous similar experiments
[19, 25, 26]. This determined that we need 28 participants per con-
dition to achieve a power of 0.8. and a significance level of 0.05. To
account for participant exclusions, we recruited 30 participants per
condition. Participants were excluded if they did not look at any of
the counterfactual explanations for any of the agents during the
agent understanding task, if their textual answers were nonsensical
or if they took considerably less time than the average. This left us
with 30 participants in the Control condition, 28 participants in the
CSE condition, and 23 in the GANterfactual-RL condition.

The distribution of age, Al experience, and Pacman experience
was similar between the conditions (see the appendix Huber et al.
[16]). There was a difference in the gender distribution and the
attitude towards Al between the conditions. The Control condition
had 40% female participants, the CSE condition had 32% and the
GANTterfactual-RL condition had 26%. The mean attitude towards Al
was the highest in the GANterfactual-RL condition and the lowest
in the Control condition (see the appendix [16]).

5.2 Results

The results for the participants’ scores during the main tasks can
be seen in Figure 5, while their explanation satisfaction values are
shown in Figure 6. In the following, we will summarize the results
of our main hypotheses, which we analyzed using non-parametric
one-tailed Mann-Whitney U tests.

Counterfactuals helped participants to understand the
agents’ strategies. In the agent understanding task, there was
a significant difference between the Control condition (M=0.8)
and the GANterfactual-RL condition (M=1.65), U=181, p=0.001,
r=0.477.3 Contrary to our hypothesis, the Control condition got
lower scores than the CSE condition (M=0.8 vs M=1.18), p=0.953.

Our GANterfactual-RL explanations were significantly
more useful than the CSE approach for understanding the
agents’ strategies. In the agent understanding task, the CSE condi-
tion got a mean score of 1.18, while the GANterfactual-RL condition
got a mean score of 1.65 (U=232, p=0.038, r=0.2795).

The increased understanding of the agents’ strategies did
not result in a more calibrated trust. Contrary to our hypothesis,
there were no significant differences in the trust task (Control

Zhttps://aspredicted.org/mofi5.pdf
3M is the mean and r is rank biserial correlation.
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Figure 5: Comparison of participants’ average performance
in each task, by condition. Error bars show the 95% CI.
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Figure 6: Comparison of participants’ average explanation
satisfaction in each task, by condition.

vs CSE: p=0.536, Control vs. GANterfactual-RL: p=0.852, CSE vs
GANterfactual-RL: p=0.876).

Counterfactuals did not increase explanation satisfaction.
Even though participants objectively had a better understanding of
the agents’ strategies, they did not feel more satisfied with them.
Participants in the Control condition were significantly more satis-
fied than participants in the CSE condition in both the agent un-
derstanding task (Control: M=3.77, CSE: M=3.20; U=249, p=0.004,
r=0.4071) and the agent comparison task (Control: M=3.75, CSE:
M=3.14; U=267, p=0.008, r=0.3643). Contrary to our expectations,
the participants in the GANterfactual-RL condition were not more
satisfied than the participants in the Control condition or the
CSE condition in both the agent understanding task (Control vs.
GANTterfactual-RL: p=0.996, CSE vs GANterfactual-RL: p=0.546) or
the agent comparison task (Control vs. GANterfactual-RL: p=0.967,
CSE vs GANterfactual-RL: p=0.334).

6 DISCUSSION

6.1 Computational Evaluation

Our computational evaluation shows that our proposed approach is
correctly changing the agents’ actions in 46% to 70% of the cases de-
pending on the agent. While this is not perfect, one has to consider
that this is not a binary task but that the agents have 5 or 6 different
actions. Furthermore, CSE [32], the only previous method that fo-
cuses on generating counterfactual explanations for RL agents, only
successfully changed the agent’s decision in 17% to 28% of the cases.
We can think of two reasons for the low validity values for the CSE
approach. First, they only incorporate the agent’s action in their


https://aspredicted.org/m9fi5.pdf

Session 3E: Learning with Humans and Robots

loss functions related to the latent space (where their discriminator
and WAE were trained). The generation of the final pixels did not
include constraints to faithfully ensure that a specific action was
taken by the agent. Second, their loss functions for the latent space
focus on creating action-invariant states. Olson et al. [32] showed
that their CSE approach was useful for differentiating between a
normal agent and a flawed agent. We think this is due to the fact
that CSE is good at generating action-invariant states. This can
help to identify the object that the flawed agent did not see since
irrelevant objects are not changed for action-invariant states. We
found that our approach also does not change the irrelevant object
for the flawed agent (illustrated in Figure 3). This demonstrates
that the counterfactuals generated by our approach are similarly
effective for identifying the flawed agent. Looking at the distance
between the original and the counterfactual states in pixel-space,
we see that counterfactual states generated by our GANterfactual-
RL approach on average have less distance to the original states
and change fewer pixel values compared to the counterfactuals
generated by the previous CSE method by Olson et al. [32]. This
indicates that our GANterfactual-RL method is better at achieving
the goal of finding the smallest possible modification of the original
state to change the agent’s decision. Since our method only requires
a single forward pass to generate a counterfactual state, it is faster
than the CSE method, which relies on potentially time-consuming
gradient descent for the counterfactual generation.

6.2 User Study

Our user study showed that counterfactual explanations help users
to understand which strategies different agents pursue. In particu-
lar, our method was significantly more useful than both the CSE
method and not providing counterfactuals. Contrary to our hy-
pothesis, even the counterfactuals generated by the CSE method
resulted in a better understanding of the agents than not provid-
ing counterfactual explanations. This demonstrates the usefulness
of counterfactual explanations for RL agents even in more com-
plex tasks than identifying defective agents. Two recent studies
evaluated the usefulness of other explanation techniques for under-
standing the strategies of RL agents in a similar way to our study.
Huber et al. [19] looked at saliency map explanations and found
that they did not help more than showing HIGHLIGHTS states
without saliency maps. Their participants achieved 37% of the max-
imum possible score in their agent understanding task, while the
participants with our counterfactual explanations obtained 50%.
Septon et al. [36] investigated so-called reward decomposition ex-
planations and found that they helped participants to achieve 60%
of the maximum score in their agent understanding task. However,
reward decomposition is an intrinsic explanation method which
the agent and the reward function have to be specifically designed
for. Our counterfactual explanations resulted in only 10% less aver-
age score even though they are post-hoc explanations that can be
generated for already trained black-box agents.

Our agent comparison task showed that the increased under-
standing of the agent’s strategies through both counterfactual expla-
nation methods did not help participants choose fitting agents for
specific tasks. For choosing the correct agent for a given problem, it
is not enough to identify the strategies of the agents. It also requires
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enough expertise in the environment (e.g., Pacman) to judge which
strategy is better suited for the problem at hand. For example, in
Pacman, humans often assume that an agent that survives longer
will accumulate more points in the long run. However, this is not
necessarily the case since an aggressive agent can better exploit
the very high rewards of eating blue ghosts. Our results for this
task are in line with the results of the agent comparison task for
saliency maps by Huber et al. [19].

Finally, our study showed that participants subjectively were not
satisfied with the counterfactual explanations even though they
objectively helped them to understand the agents. This might be
due to the additional cognitive load of interpreting the explana-
tions. The two aforementioned studies [19, 36] also did not find a
significant difference in user satisfaction for their local explana-
tion techniques. Only the choice of states, which does not provide
additional information, influenced the satisfaction in [19]. How-
ever, our study is the first to see significantly higher satisfaction
for the no-explanation condition than one of the two explanation
conditions. This indicates that counterfactuals are subjectively less
satisfying than saliency maps or reward decomposition. One possi-
ble explanation for this is the visual quality of the counterfactuals.
Some participants from both counterfactual conditions commented
that the counterfactuals had too many artifacts. One participant
from the GANterfactual-RL condition for example wrote that "the
counterfactuals were somewhat helpful, but they would have worked
better if there were fewer or no artifacts". Another possible reason
for the low satisfaction is the presentation of the explanation. Be-
cause our study primarily aimed at investigating the benefits and
drawbacks of our specific counterfactual approach, we did not use
a user-friendly explanatory system where different types of expla-
nations are provided according to the requests of the explainee.

7 CONCLUSION AND FUTURE WORK

In this work, we formulated a novel method for generating counter-
factual explanations for RL agents. This GANterfactual-RL method
is fully model-agnostic, which we demonstrate by applying it to
three RL algorithms, two actor-critic methods, and one deep Q-
learning method. Using computational metrics, we show that our
proposed method is better at correctly changing the agent’s deci-
sion while modifying less of the original input and taking less time
than the only previous method that focuses on generating visual
counterfactuals for RL. Furthermore, it significantly improved users’
understanding of the strategies of different agents in a user study.
Our user study also identified two remaining deficiencies of coun-
terfactual explanations. First, participants were subjectively not
satisfied with the explanations, which might be due to unnatural ar-
tifacts in some counterfactuals. Second, the counterfactuals did not
help them to calibrate their trust in the agents. Future work should
try to improve counterfactual explanations in these directions.
While there is still room for improvement, we can confidently
say that our approach can be considered the current state of the art
for counterfactual explanations for RL agents with visual input.
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