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ABSTRACT
Planning under uncertainty requires complex reasoning about fu-
ture events, and this complexity increases with the addition of
multiple agents. One problem faced when considering multi-agent
systems under uncertainty is the handling of shared resources.
Adding a resource constraint limits the actions that agents can take,
forcing collaborative decision making on who gets to use what
resources. Prior work has considered different formulations, such
as satisfying a resource constraint in expectation or ensuring that
a resource constraint is met some percent of the time. However,
these formulations of constrained planning ignore important dis-
tributional information about resource usage. Namely, they do not
consider how bad the worst cases can get. In this paper, we formu-
late a risk-constrained shared resource problem and aim to limit the
risk of excessive use of such resources. We focus on optimising for
reward while constraining the Conditional Value-at-Risk (CVaR) of
the shared resource. While CVaR is well studied in the single-agent
setting, we consider the challenges that arise from the state and
action space explosion in the multi-agent setting. In particular, we
exploit risk contributions, a measure introduced in finance research
which quantifies how much individual agents affect the joint risk.
We present an algorithm that uses risk contributions to iteratively
update single-agent policies until the joint risk constraint is satis-
fied. We evaluate our algorithm on two synthetic domains.
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1 INTRODUCTION
Markov Decision Processes (MDPs) are a common model for single-
agent planning and decision making under uncertainty. An agent
models the current state of the environment and reasons over how
their actions will affect the next state of the environment. A key
feature of MDPs is that the outcomes of actions are stochastic. The
problem of policy synthesis in MDPs considers how an agent should
act given a) the current state of the environment and b) their future
cumulative expected reward. Agents must reason over not only
the reward they gain from their current action, but also how their
current action will affect the environment and therefore their future
ability to gain more reward. In this paper, we consider the problem
of offline policy synthesis, where agents plan ahead of time what
actions they will take in any given situation. The class of MDPs
with constraints extends MDPs such that actions also incur a cost
that corresponds to the consumption of a resource. In an MDP with
a constraint, the agent still wants to maximise their future expected
reward, but they also need to constrain their resource usage.

There are a variety of ways an agent can choose to constrain
their resource usage. Consider that every fixed offline policy has a
corresponding distribution over possible costs that the agent will
incur when executing that policy. This occurs as a results of the un-
certainty within the system; pre-set actions may result in different
outcomes due to the stochasticity of the environment, and these
differing outcomes may require different future resource usage. The
resulting distribution over possible costs can be handled in differ-
ent ways when an agent tries to constrain their resource usage.
In one setting, the entire distribution must be bounded by some
resource limit 𝐿. In other words, a policy satisfying a worst-case
constraint must always use less than 𝐿 resources, no matter how
the uncertainty is resolved. This is a restrictive constraint, and in
some settings may be impossible to achieve. Another option is an
expected constraint, where the agent considers the expectation of
the cost distribution and bounds that value by some resource limit
𝐿, as in [3]. This allows the agent more flexibility when planning,
but provides no formal guarantees or information on the distribu-
tion of the cost accumulated. Because it disregards the variability
of resource usage between possible outcomes, there may be a high
probability that the resource limit is violated on any given run.
Another common approach is planning with a chance-constraint
[5, 15, 27], which limits the percent of cases which exceed some
resource consumption limit 𝐿. In other words, a chance-constraint
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ensures that everything except the 𝛿-tail of the cost distribution is
bounded by 𝐿. However this approach provides no understanding
over how bad the worst-cases get because it ignores the distribution
within the 𝛿-tail. Finally, the constraint on resource consumption
can be formulated to bound the risk within the cost distribution.
Risk-constraints reason over how bad the worst-cases of the distri-
bution are, and one such example of a risk constraint is Conditional
Value-At-Risk (CVaR) [6]. When considering CVaR, the agent con-
strains the expected cost within the 𝛿-tail of the distribution and
bounds that value by some resource consumption limit 𝐿. This al-
lows for a formal analysis of the worst-cases of the cost distribution.

Multi-agent planning under uncertainty can be modelled with
a Multi-Agent MDP (MMDP) which considers the joint states and
actions of all the participating agents [7]. In such cases, the goal of
policy synthesis is to maximise the sum of the expected rewards
across all agents. This model can be extended to MMDPs with
constraints, where all agents use a shared resource. In this case,
the distribution over resource usage is described by the possible
outcomes of the sum of the agents’ cost functions under a given
policy. Any of the methods described above can be directly applied
to MMDP with constraints, but this approach scales poorly, as the
state and action spaces of an MMDP are exponential in the number
of agents. A large body of work aims to mitigate this problem by
instead focusing onweakly coupledMMDPs with constraints [21]
which reason over individual agent models separately and consider
only the shared resource jointly. The problem of planning for reward
in weakly coupled MMDPs with constraints has been considered
for a variety of constraint formulations, including constraining the
worst-case cost [1, 32], constraining the expected cost [31, 35], and
a chance-constraint [12, 14]. See [13] for a taxonomy of multi-agent
constrained planning problems along with current algorithms. To
our knowledge, there is no work studying risk-constraints in multi-
agent MDPs.

This paper addresses this gap by tackling the problem of max-
imising for joint reward while constraining the CVaR of joint cost
in a multi-agent system. Our main contributions are:

(1) formally defining the risk-constrained, multi-agent planning
problem; and

(2) presenting an algorithm that solves the risk-constrained,
multi-agent planning problem by using the notion of risk
contribution to decompose a multi-agent planning problem
into a series of single-agent planning problems.

This is, to the best of our knowledge, the first work to use risk
contributions out of quantitative finance in the context of multi-
agent decision making under uncertainty. Using the notion of risk
contribution, our algorithm identifies agents who contribute propor-
tionally more risk and incrementally updates their policies. Policy
updates are carried out using a modification of the single-agent
risk-constrained planning problem from [6]. Our empirical work
shows that this substantially improves scalability, allowing us to
solve problem instances that are out of reach for the current state-
of-the-art of planning over the joint model.

2 PRELIMINARIES
Multi-Agent MDPs. We consider 𝑛 agents, where each agent

𝑖 ∈ [𝑛] = {1, . . . , 𝑛} has their own independent finite-horizon MDP

M𝑖 := ⟨𝑆𝑖 , 𝐴𝑖 ,𝑇𝑖 , 𝑅𝑖 ,𝐶𝑖 , ℎ⟩, where 𝑆𝑖 is the agent’s state space, 𝐴𝑖 is
the agent’s action set, and 𝑇𝑖 : 𝑆𝑖 ×𝐴𝑖 × 𝑆𝑖 → [0, 1] is the agent’s
transition function. Agents have a reward function 𝑅𝑖 : 𝑆𝑖×𝐴𝑖 → R,
which describes how much reward is accrued after an action, and
a cost function 𝐶𝑖 : 𝑆𝑖 × 𝐴𝑖 → N+, which describes how much
resource is consumed after an action. All agents have knowledge of
their own MDP and share the same global time horizon ℎ. A policy
𝜋𝑖 : 𝑆𝑖 × [ℎ] → 𝐴𝑖 with 𝜋𝑖 (𝑠𝑖 , 𝑡) = 𝑎 means that agent 𝑖 should
take action 𝑎 at state 𝑠𝑖 and timestep 𝑡 . We denote the probability
of an event 𝐷 under 𝜋 as 𝑃𝜋 [𝐷] and the expectation of a random
variable 𝑌 under 𝜋 as 𝐸𝜋 [𝑌 ]. We define the random variable R𝑖,𝜋𝑖

to describe the cumulative reward agent 𝑖 receives when executing
policy 𝜋𝑖 over the entire time horizon ℎ. Similarly, we define the
random variable C𝑖,𝜋𝑖 to describe the cumulative cost agent 𝑖 incurs
when executing policy 𝜋𝑖 over the entire time horizon ℎ.

The joint weakly-coupled MMDP over all 𝑛 agents is represented
byM := ⟨𝑆,𝐴,𝑇 , 𝑅,𝐶, ℎ⟩ and has joint state space 𝑆 = 𝑆1 × · · · × 𝑆𝑛
and joint action space 𝐴 = 𝐴1 × · · · × 𝐴𝑛 . Let 𝑠 = (𝑠1, . . . , 𝑠𝑛), 𝑎 =

(𝑎1, . . . , 𝑎𝑛) and 𝑠′ = (𝑠′1, . . . , 𝑠
′
𝑛). Then, the joint transition function

𝑇 : 𝑆 × 𝐴 × 𝑆 → [0, 1] is defined by 𝑇 (𝑠, 𝑎, 𝑠′) =
∏

𝑖 𝑇𝑖 (𝑠𝑖 , 𝑎𝑖 , 𝑠′𝑖 ),
the joint reward function 𝑅 : 𝑆 × 𝐴 → R is defined by 𝑅(𝑠, 𝑎) =∑
𝑖 𝑅𝑖 (𝑠𝑖 , 𝑎𝑖 ), and the joint cost function 𝐶 : 𝑆 ×𝐴 → N+ is defined

by 𝐶 (𝑠, 𝑎) = ∑
𝑖 𝐶𝑖 (𝑠𝑖 , 𝑎𝑖 ). ℎ is the shared time horizon. A policy 𝜋

for a weakly-coupled MMDP is defined by 𝜋 = {𝜋𝑖 }𝑖∈[𝑛] for a set
of single-agent polices 𝜋𝑖 .

We define the random variable R𝜋 to describe the cumulative
reward from the MMDP when executing policy 𝜋 over the entire
time horizon ℎ. Similarly, we define the random variable C𝜋 to
describe the cumulative cost from theMMDPwhen executing policy
𝜋 over the entire time horizon ℎ.

Conditional Value-at-Risk. CVaR originally emerged as a way
of analysing the tails of a given probability distribution in finance [4,
26]. Given a random variable 𝑍 with cumulative distribution func-
tion 𝐹 (𝑧), the Value-at-Risk (VaR) of 𝑍 for a given confidence level
𝛿 ∈ (0, 1] is defined as:

VaR𝛿 (𝑍 ) = min{𝑧 |𝐹 (𝑧) > 1 − 𝛿}. (1)

VaR can be interpreted as the value at which the 1 − 𝛿 quantile of
a distribution begins. Then, the CVaR of 𝑍 for a given confidence
level 𝛿 ∈ (0, 1] is defined as:

CVaR𝛿 (𝑍 ) =
1
𝛿

∫ 1

1−𝛿
VaR1−𝛾 (𝑍 )𝑑𝛾, (2)

or equivalently as:

CVaR𝛿 (𝑍 ) = 𝐸 [𝑍 |𝑍 ≥ VaR𝛿 (𝑍 )] . (3)

CVaR is then the expected value of𝑍 in the cases at which𝑍 exceeds
the 1− 𝛿 quantile. In other words, CVaR represents the expectation
of 𝑍 in the worst 𝛿 ∗ 100% of cases.

We now focus our attention on a specific type of random variable,
𝑍 =

∑𝑛
𝑖=1 𝑍𝑖 , where each 𝑍𝑖 is an independent random variable. In

this context, it can be useful to define the risk contribution of each
random variable𝑍𝑖 to CVaR𝛿 (𝑍 ) [30, 33]. The risk contribution (RC)
of variable 𝑍𝑖 is defined as:

RC𝛿,𝑍 (𝑍𝑖 ) = 𝐸 [𝑍𝑖 |𝑍 ≥ VaR𝛿 (𝑍 )] . (4)
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Algorithm 1 iRMDP [6]

Require: A single-agent MDP M𝑖 := ⟨𝑆𝑖 , ℎ, 𝐴𝑖 ,𝑇𝑖 , 𝑅𝑖 ,𝐶𝑖 ⟩, an initial state 𝑠0, a risk constraint 𝐿, and a confidence bound 𝛿 ∈ (0, 1]
1: 𝜆0 = 0
2: for w=1,2,...,until converged do
3: 𝛽𝑤,0 = 0
4: for v=1,2,...,until converged do
5: 𝐽ℎ+1 [𝑠,𝑦] = 𝜆𝑤 (𝐿 − 𝑦

𝛿
1(𝑦>𝛽𝑤,𝑣 ) )

6: 𝑉ℎ+1 [𝑠,𝑦] = 1(𝑦>𝛽𝑤,𝑣 )
7: 𝑄ℎ+1 [𝑠,𝑦] =

𝑦

𝛿
1(𝑦>𝛽𝑤,𝑣 )

8: for 𝑡 = ℎ,ℎ − 1, ..., 0 do
9: 𝐺

𝑤,𝑣
𝑡 [𝑠,𝑦, 𝑎] = 𝑅𝑖 (𝑠, 𝑎) +

∑
𝑠′ 𝑇𝑖 (𝑠, 𝑎, 𝑠′) 𝐽𝑤,𝑣

𝑡+1 [𝑠
′, 𝑦𝐶𝑖 (𝑠, 𝑎)]

10: 𝐽
𝑤,𝑣
𝑡 [𝑠,𝑦] = max𝑎∈𝐴𝐺

𝑤,𝑣
𝑡 [𝑠,𝑦, 𝑎]

11: 𝜋
𝑤,𝑣
𝑡 [𝑠,𝑦] = argmax𝑎∈𝐴𝐺

𝑤,𝑣
𝑡 [𝑠,𝑦, 𝑎]

12: 𝑉
𝑤,𝑣
𝑡 [𝑠,𝑦] = ∑

𝑠′ 𝑇𝑖 (𝑠, 𝜋𝑤,𝑣
𝑡 [𝑠,𝑦], 𝑠′)𝑉𝑤,𝑣

𝑡+1 [𝑠′, 𝑦 +𝐶𝑖 (𝑠, 𝜋𝑤,𝑣
𝑡 [𝑠,𝑦])]

13: 𝑄
𝑤,𝑣
𝑡 [𝑠,𝑦] = 𝐶𝑖 (𝑠,𝜋𝑤,𝑣

𝑡 [𝑠,𝑦 ] )𝑉𝑤,𝑣
𝑡 [𝑠,𝑦 ]

𝛿
+∑

𝑠′ 𝑇𝑖 (𝑠, 𝜋𝑤,𝑣
𝑡 [𝑠,𝑦], 𝑠′)𝑄𝑤,𝑣

𝑡+1 [𝑠
′, 𝑦 +𝐶𝑖 (𝑠, 𝜋𝑤,𝑣

𝑡 [𝑠,𝑦])]
14: end for
15: 𝛽𝑤,𝑣+1 = 𝛽𝑤,𝑣 − 1

𝑣 (𝛿 −𝑉
𝑤,𝑣
0 [𝑠0, 0])

16: end for
17: 𝜆𝑤+1 = (𝜆𝑤 − 1

𝑤 (𝐿 −𝑄
𝑤,𝑣
0 [𝑠0, 0]))+

18: end for

Figure 1: Two random variables, 𝑍1 ∼ N(𝜇 = 0, 𝜎2 = 2) and
𝑍2 ∼ N(𝜇 = 3, 𝜎2 = 2), along with their sum 𝑍 ∼ 𝑍1 + 𝑍2.
Included is the VaR0.05 (𝑍 ) and CVaR0.05 (𝑍 ) of Z.

Intuitively, risk contribution is the expected value of variable 𝑍𝑖
in the cases where the joint variable 𝑍 exceeds the VaR of 𝑍 . It
measures howmuch of the CVaR (i.e., the expected value of random
variable 𝑍 in the cases where the joint variable 𝑍 exceeds the VaR
of 𝑍 ) is due to variable 𝑍𝑖 . As such, risk contribution is defined so
that it decomposes the joint CVaR, i.e.:

CVaR𝛿 (𝑍 ) =
𝑛∑︁
𝑖=1

𝑅𝐶𝛿,𝑍 (𝑍𝑖 ) . (5)

Example 1. In Figure 1, we illustrate these concepts with the PDFs
of distributions 𝑍1 ∼ N(𝜇 = 0, 𝜎2 = 2), 𝑍2 ∼ N(𝜇 = 3, 𝜎2 =

2), and 𝑍 ∼ 𝑍1 + 𝑍2 with 𝛿 = .05. VaR = 7.7 corresponds to the
minimum cumulative value within the 𝛿-tail of 𝑍 . CVaR = 𝐸 [𝑍 |𝑍 ≥
VaR𝛿 (𝑍 )] = 8.8 corresponds to the average cumulative value within

the 𝛿-tail of 𝑍 . The risk contribution of variable 𝑍1 is described by:

RC𝛿,𝑍 (𝑍1) = 𝐸 [𝑍1 |𝑍 ≥ VaR𝛿 (𝑍 )] = 2.9,

and the risk contribution of variable 𝑍2 is described by:

RC𝛿,𝑍 (𝑍2) = 𝐸 [𝑍2 |𝑍 ≥ VaR𝛿 (𝑍 )] = 5.9.

We can see that variable 𝑍2 contributes more risk, which we would
expect given its higher mean and equivalent standard deviation.

In this paper, the random variables under consideration are C𝑖,𝜋𝑖
for 𝑖 ∈ [𝑛], i.e., the cost distribution that results from agent 𝑖 exe-
cuting policy 𝜋𝑖 . Recall that C𝜋 =

∑C𝑖,𝜋𝑖 represents the joint cost
distribution over all agents. RC𝛿,𝐶𝜋

(𝐶𝑖,𝜋𝑖 ) can then be interpreted
as the risk that agent 𝑖 contributes to the system.

iRMDP. iRMDP is an algorithm introduced in [6] which solves
the single-agent risk-constrained planning problem. Given an MDP
M, a confidence level 𝛿 ∈ (0, 1], and a risk-bound 𝐿 ∈ N+ over the
resource constraint, the goal of the risk-constrained MDP is to find
a policy 𝜋★ that maximises the cumulative reward, subject to the
risk constraint:

𝜋★ = argmax
𝜋

𝐸𝜋 [R𝜋 ] , (6)

s.t. CVaR𝛿 [C𝜋 ] < 𝐿. (7)

Because our single-agent policy update algorithm in Section 3.3.1
modifies iRMDP,we include for the reader a summary of themethod.
Note that, unlike [6], we describe iRMDP specifically for discrete
state-space MDPs. The iRMDP algorithm solves the single-agent
risk-constrained planning problem using a Lagrangian relaxation:

min
𝜆≥0

max
𝜋

𝐸𝜋 [R𝜋 ]

+ 𝜆 [𝐿 − CVaR𝛿 [C𝜋 ]] . (8)
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The algorithm to optimise for Equation 8 is described in Algo-
rithm 1. The procedure has an outer loop that iteratively updates 𝜆
until the constraint is satisfied (lines 2-18).

For a given 𝜆𝑤 , the following procedure is used to calculate the
optimal value function 𝐽𝑡 (𝑠,𝑦). Here, 𝑦 corresponds to the cost that
has been accumulated so far. Thus, 𝐽𝑡 (𝑠,𝑦) is defined as:

𝐽𝑡 (𝑠,𝑦) = max
𝜋

𝐸𝜋


ℎ∑︁
𝑡=𝑡

𝑅𝜋 (𝑠, 𝑐, 𝑡)


+ 𝜆𝑤
𝐿 − CVaR𝛿

𝑦 +
ℎ∑︁
𝑡=𝑡

𝐶𝜋 (𝑠, 𝑐, 𝑡)

 . (9)

𝐽𝑡 (𝑠,𝑦) is the sum of the future payoffs received by Equation 8
when executing the optimal policy between time 𝑡 and ℎ, starting
at state 𝑠 and having already accumulated 𝑦 cost. Then, 𝐽0 (𝑠0, 0)
describes the value of the optimal policy. Note that the policies
returned by iRMDP depend on both time and cumulative cost.

Because the optimal value function 𝐽𝑡 (𝑠,𝑦) contains the CVaR of
a policy, it cannot be calculated directly via value iteration. CVaR
corresponds to the expected value in the 𝛿-tail, which is dependent
on VaR. CVaR cannot be calculated without knowing VaR, and the
two cannot be calculated concurrently in a single-iteration of value
iteration. So, in order to correctly solve for the terms which include
CVaR, VaR must be calculated first in the middle loop (lines 3-16).
VaR is guessed with an initial 𝛽𝑤,0 = 0, which is iteratively updated
until it accurately reflects the VaR of the synthesised policy.

Finally, the inner loop (lines 8-14) conducts value iteration to syn-
thesis a policy 𝜋 along with policy evaluation on 𝑃𝜋 [C𝜋 ≥ 𝛽𝑤,𝑣]
and 𝐸𝜋 [C𝜋 |C𝜋 ≥ 𝛽𝑤,𝑣]. Line 9-10 calculates 𝐽𝑡 (𝑠,𝑦) with value
iteration for a fixed VaR defined by 𝛽𝑤,𝑣 , and line 11 extracts a time
dependent policy 𝜋𝑡 from 𝐽𝑡 (𝑠,𝑦), Line 12 uses policy evaluation to
calculate 𝑉𝑡 (𝑠,𝑦) where 𝑉𝑡 (𝑠,𝑦) is the probability that the cumula-
tive resource between timestep (𝑡, ℎ), plus the already accumulated
𝑦 cost, is at least 𝛽𝑤,𝑣 when executing 𝜋 starting in state 𝑠 . Then,
𝑉0 (𝑠0, 0) = 𝑃𝜋 [C𝜋 ≥ 𝛽𝑤,𝑣]. Line 13 uses policy evaluation to calcu-
late 𝑄𝑡 (𝑠,𝑦) where 𝑄𝑡 (𝑠,𝑦) is the expected value of the cumulative
resource between timestep (𝑡, ℎ), plus the already accumulated 𝑦
cost, when the that same value is at least 𝛽𝑤,𝑣 when executing 𝜋

starting in state 𝑠 . Then 𝑄0 (𝑠0, 0) = 𝐸𝜋 [C𝜋 |C𝜋 ≥ 𝛽𝑤,𝑣].
Line 15 then iteratively updates 𝛽𝑤,𝑣 until it converges to to

the VaR, which occurs when 𝛿 = 𝑃𝜋 [C𝜋 ≥ 𝛽𝑤,𝑣] = 𝑉𝑡=0 (𝑠,𝑦 = 0).
Once this occurs,𝑄0 (𝑠0, 0) becomes equal to the CVaR of the current
policy 𝜋 . Then, the line 17 iteratively updates 𝜆𝑤 until convergence
ensures that risk constraint is met exactly.

3 RCA
3.1 Problem Description
ARisk-ConstrainedMMDP (RCMMDP) consists of aweakly-coupled
MMDPM, a confidence level 𝛿 ∈ (0, 1], and a risk-bound 𝐿 ∈ N+
over the resource constraint. The goal of the RCMMDP is to find a
joint policy 𝜋★ = {𝜋★

𝑖
}𝑖∈[𝑛] that maximises the cumulative reward,

subject to the risk constraint:

𝜋★ = argmax
𝜋 :={𝜋𝑖 }𝑖∈ [𝑛]

𝐸𝜋


∑︁
𝑖∈[𝑛]

R𝑖,𝜋𝑖

 , (10)

s.t. CVaR𝛿


∑︁
𝑖∈[𝑛]

C𝑖,𝜋𝑖
 < 𝐿. (11)

Example 2. Consider the problem of running an advertising cam-
paign over time through 1000 automated agents, as described in [8].
Each agent is in charge of planning one personalised campaign, which
attempts to get a single consumer to purchase their product. This
problem can be modelled as a multi-agent sequential decision making
problem under uncertainty: for each agent 15 states represent different
interest levels of their customer, ranging from uninterested to purchas-
ing a product. When a customer reaches the state of buying a product,
the agent gets a reward. Towards this purpose, each agent has 5 action
choices to make about what marketing strategy to employ at each time
based on their customer’s current interest level. Action choices which
are more effective at moving the customer toward purchasing the
agent’s product are also most monetarily costly. The goal of the firm
would be to convert as many potential customers to paying customers
as possible. But there is also a monetary constraint on how much
money the agents can spend jointly on converting customers which
needs to be handled. Because the same action could result in a differ-
ent future interest level, which may in turn require a different cost
action, the monetary cost for any given advertising strategy results in
a distribution over possible final monetary costs. In this setting, the
risk-constrained multi-agent planning problem asks: What strategy
should each automated agent take, such that as many customers as
possible are converted to purchase the project, subject to the constraint
that in the worst 5% of cases the money spent is on average less than
$100.

3.2 A Naive Approach
The naive approach to solving this problem would be to treat M
as a strongly-coupled MMDP and directly apply the single-agent
algorithm iRMDP toM. This approach has two downsides. First,
the planning via iRMDP happens over the joint state and action
space. This can be prohibitively time consuming, particularly for
large numbers of agents. This is exacerbated by the fact that iRMDP
runs value iteration on the state space and the cost accumulated so
far. Having to consider the joint cumulative cost further expands
the computation that is needed. Second, the polices returned will
also be strongly-coupled, meaning that agents’ actions will depend
on the joint state space. This means that when agents execute their
offline polices, agents must be able to communicate, or have full
observability over the joint state space.

3.3 A Risk Contribution Approach
To solve the RCMMDP problem defined in Equations (10-11), we
present the Risk Contribution Approach (RCA) algorithm. RCA is
an iterative algorithm that starts with a risk-neutral set of single-
agent policies, and then iteratively updates one policy at a time
based on the agents’ risk contributions, until a set of single-agent
policies that satisfies Equation (11) is synthesised. We define the
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iterative updates and describe how single agents update their policy.
This approach is described in Algorithm 2.

Algorithm 2 RCA: An approximate RCMMDP Planner

Require: an MMDP M = M1 × · · · × M𝑛 , an intial state 𝑠0, a
confidence level 𝛿 ∈ (0, 1], and a risk-bound 𝐿 ∈ N+, a stepsize
𝛾 ∈ N+

1: for 𝑖 ∈ [𝑛] do
2: 𝜋𝑖 = RiskNeutralPolicy(M𝑖 )
3: end for
4: 𝑣𝑎𝑟0, 𝑐𝑣𝑎𝑟0, {𝑟𝑐0,𝑖 }𝑖∈[𝑛] = CalcRisk(M, {𝜋𝑖 }𝑖∈[𝑛] , 𝛿)
5: for u=1,2,...,until 𝑐𝑣𝑎𝑟𝑢−1 < 𝐿 do
6: 𝑗 = argmax{ 𝑟𝑐𝑢−1,𝑖

𝐸 [R𝑖,𝜋𝑖
] |𝑖 ∈ [𝑛]}

7: ˜𝑟𝑐 𝑗 = 𝑟𝑐𝑢−1, 𝑗 − 𝛾

8: 𝛽 = 𝑣𝑎𝑟𝑢−1 −
∑
𝑖≠𝑗

𝑟𝑐𝑢−1,𝑖

9: 𝜋 𝑗 = RCConstrainedPolicy(M 𝑗 , ˜𝑟𝑐 𝑗 , 𝛽)
10: 𝑣𝑎𝑟𝑢 , 𝑐𝑣𝑎𝑟𝑢 , {𝑟𝑐𝑢,𝑖 }𝑖∈[𝑛] = CalcRisk(M, {𝜋𝑖 }𝑖∈[𝑛] , 𝛿)
11: end for
12: return {𝜋𝑖 }𝑖∈[𝑛]

Lines 1-3 initialise policies for each agent. These initial poli-
cies are risk neutral, meaning they maximise for the reward func-
tion (𝑅𝑖 ) without taking into account the cost function (𝐶𝑖 ). These
can be found with any single-agent MDP solver, e.g., value iter-
ation. Line 4 calculates the risk associated with the initial poli-
cies using Monte Carlo trials. This yields the VaR of the joint cost,
𝑉𝑎𝑅𝛿 (

∑
𝑖∈[𝑛] C𝑖,𝜋𝑖 ), the CVaR of the joint cost,

𝐶𝑉𝑎𝑅𝛿 (
∑
𝑖∈[𝑛] C𝑖,𝜋𝑖 ), and each agent’s risk contribution RC𝛿,𝑖 . An

implementation of the risk calculation in line 4 based on rejection
sampling is detailed in Section 4.

Then, we proceed to the main part of the algorithm, which
chooses an agent and iteratively updates that agent’s policy until
the global constraint is met.

First, in line 5 we check if the CVaR of the current set of policies
meets the risk-bound 𝐿. If so, we continue to the end.

Line 6 identifies the agent 𝑗 with the worst reward-to-risk trade-
off, by comparing each agent’s risk contribution with their current
policy to their expected reward with that policy. We then set agent
𝑗 with a new risk contribution goal. This seeks to reduce agent
𝑗 ’s current risk contribution, 𝑟𝑐𝑢,𝑗 , by some step size 𝛾 , to ˜𝑟𝑐 𝑗 :=
𝑟𝑐𝑢−1, 𝑗 − 𝛾 (line 7).

By definition, the optimal best response reduction in agent 𝑗 ’s
risk contribution (to ˜𝑟𝑐 𝑗 ) is to find a new policy 𝜋 𝑗 which optimises
for reward (𝐸𝜋 𝑗

[R 𝑗,𝜋 𝑗
]) while constraining by:

𝐸𝜋

C𝑗,𝜋 𝑗
|
∑︁
𝑖∈[𝑛]

C𝑖,𝜋𝑖 ≥ 𝑉𝑎𝑅𝛿 (
∑︁
𝑖∈[𝑛]

C𝑖,𝜋𝑖 )
 ≤ ˜𝑟𝑐 𝑗 . (12)

Exactly optimising for Equation 12 would still require reason-
ing over the joint state space, as the joint resource use would be
necessary to successfully calculate which outcomes are counted
within the conditional expectation. To avoid reasoning over the
joint state space, we approximate the distributional information
that corresponds to the other agents’ state spaces and action choices
under their policies {𝜋𝑖 }𝑖≠𝑗 .

First, we approximate the true VaR (VaR𝛿 (
∑
𝑖∈[𝑛] C𝑖,𝜋𝑖 )) with

the VaR from the previous iteration’s set of policies (denoted by
𝑣𝑎𝑟𝑢−1). This yields:

𝐸𝜋

C𝑗,𝜋 𝑗
|
∑︁
𝑖∈[𝑛]

C𝑖,𝜋𝑖 ≥ 𝑣𝑎𝑟𝑢−1

 ≤ ˜𝑟𝑐 𝑗 . (13)

We argue this is a reasonable assumption given a small choice of
step size: consider the optimal policy 𝜋★

𝑗
(with respect to satisfying

Equation 12). VaR𝛿 (
∑
𝑖∈[𝑛] C𝑖,𝜋𝑖 ) will be similar to VaR𝛿 (C𝑗,𝜋★

𝑗
+∑

𝑖≠𝑗 C𝑖,𝜋𝑖 ) because {𝜋𝑖 }𝑖≠𝑗 remain consistent and 𝜋★
𝑗
and 𝜋 𝑗 are

are the optimal policies for only slightly different optimisation
criteria.

Next, we approximate the other agents’ resource usages in the
left-hand side of the constraint:

𝐸𝜋 [C𝑗,𝜋 𝑗
|
∑︁
𝑖∈[𝑛]

C𝑖,𝜋𝑖 ≥ 𝑣𝑎𝑟𝑢−1] (14)

= 𝐸𝜋 [C𝑗,𝜋 𝑗
|C𝑗,𝜋 𝑗

+
∑︁
𝑖≠𝑗

C𝑖,𝜋𝑖 ≥ 𝑣𝑎𝑟𝑢−1] (15)

≈ 𝐸𝜋 [C𝑗,𝜋 𝑗
|C𝑗,𝜋 𝑗

+
∑︁
𝑖≠𝑗

𝐸𝜋𝑖 [C𝑖,𝜋𝑖 |
∑︁
𝑖≠𝑗

C𝑖,𝜋𝑖 ≥ 𝑣𝑎𝑟𝑢−1] ≥ 𝑣𝑎𝑟𝑢−1]

(16)

= 𝐸𝜋 𝑗
[C𝑗,𝜋 𝑗

|C𝑗,𝜋 𝑗
≥ 𝑣𝑎𝑟𝑢−1 −

∑︁
𝑖≠𝑗

𝐸𝜋𝑖 [C𝑖,𝜋𝑖 |
∑︁
𝑖≠𝑗

C𝑖,𝜋𝑖 ≥ 𝑣𝑎𝑟𝑢−1]]

(17)

Because 𝐸𝜋𝑖 [C𝑖,𝜋𝑖 |
∑
𝑖≠𝑗 C𝑖,𝜋𝑖 ≥ 𝑣𝑎𝑟𝑢−1] = 𝑟𝑐𝑢−1,𝑖 , this is results

in our final constraint:

𝐸𝜋 𝑗

C𝑗,𝜋 𝑗
|C𝑗,𝜋 𝑗

≥ 𝑣𝑎𝑟𝑢−1 −
∑︁
𝑖≠𝑗

𝑟𝑐𝑢−1,𝑖

 ≤ ˜𝑟𝑐 𝑗 . (18)

Using this approximation we set 𝛽 := 𝑣𝑎𝑟𝑢−1 − ∑
𝑖≠𝑗 𝑟𝑐𝑢−1,𝑖 ,

which becomes the point on the x-axis of agent 𝑗 ’s distribution
at which outcomes are considered part of their risk contribution.
This approximation allows us to plan only on agent 𝑗 ’s MDP as it
represents the actions of the other agents in the system as constants.

Then, in line 9 we find a policy 𝜋 𝑗 that satisfies the new risk
contribution constraint (i.e. maximising for reward while satisfying
Constraint 18) with RCConstrainedPolicy, described in Section 3.3.1,
which is a modification of the single-agent iRMDP. Finally, line 10
calculates the risk associated with the current policies in the same
method as line 4. This process is repeated until the risk constraint
is met, at which point the current policies are returned.

3.3.1 Risk-Contribution-Constrained Policy Planner. The
RCConstrainedPolicy algorithm (Algorithm 3) solves the single-
agent risk-contribution reduction problem. Given a desired risk-
contribution ˜𝑟𝑐 𝑗 and a quantile 𝛽 , the RCConstrainedPolicy algo-
rithm optimises for a risk-contribution constraint:

𝜋★ = argmax
𝜋

𝐸𝜋 𝑗

[
R 𝑗,𝜋 𝑗

]
, (19)

s.t. 𝐸𝜋 𝑗

[
C𝑗,𝜋 𝑗

|C𝑗,𝜋 𝑗
≥ 𝛽

]
≤ ˜𝑟𝑐 𝑗 . (20)

Algorithm 3 accomplishes this by modifying iRMDP, and those
modifications are noted with a ★.
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Algorithm 3 RCConstrainedPolicy

Require: A single-agent MDP M𝑖 := ⟨𝑆𝑖 , 𝐴𝑖 ,𝑇𝑖 , 𝑅𝑖 ,𝐶𝑖 , ℎ⟩, a risk contribution limit ˜𝑟𝑐 𝑗 , a tail bound 𝛽 .
1: 𝜆0 = 0
2: for w=1,2,...,until converged do
3: 𝛿𝑤,0 near 0 ⊲ ★

4: for v=1,2,...,until converged do
5: 𝐽ℎ+1 [𝑠,𝑦] = 𝜆𝑤 ( ˜𝑟𝑐 𝑗 − 𝑦

𝛿𝑤,𝑣 1(𝑦>𝛽 ) ) ⊲ ★

6: 𝑉ℎ+1 [𝑠,𝑦] = 1(𝑦>𝛽 ) ⊲ ★

7: 𝑄ℎ+1 [𝑠,𝑦] =
𝑦

𝛿𝑤,𝑣 1(𝑦>𝛽 ) ⊲ ★

8: for 𝑡 = ℎ,ℎ − 1, ..., 0 do
9: 𝐺

𝑤,𝑣
𝑡 [𝑠,𝑦, 𝑎] = 𝑅𝑖 (𝑠, 𝑎) +

∑
𝑠′ 𝑇𝑖 (𝑠, 𝑎, 𝑠′) 𝐽𝑤,𝑣

𝑡+1 [𝑠
′, 𝑦 +𝐶𝑖 (𝑠, 𝑎)]

10: 𝐽
𝑤,𝑣
𝑡 [𝑠,𝑦] = max𝑎∈𝐴𝐺

𝑤,𝑣
𝑡 [𝑠,𝑦, 𝑎]

11: 𝜋
𝑤,𝑣
𝑡 [𝑠,𝑦] = argmax𝑎∈𝐴𝐺

𝑤,𝑣
𝑡 [𝑠,𝑦, 𝑎]

12: 𝑉
𝑤,𝑣
𝑡 [𝑠,𝑦] = ∑

𝑠′ 𝑇𝑖 (𝑠, 𝜋𝑤,𝑣
𝑡 [𝑠,𝑦], 𝑠′)𝑉𝑤,𝑣

𝑡+1 [𝑠′, 𝑦 +𝐶𝑖 (𝑠, 𝜋𝑤,𝑣
𝑡 [𝑠,𝑦])]

13: 𝑄
𝑤,𝑣
𝑡 [𝑠,𝑦] = 𝐶𝑖 (𝑠,𝜋𝑤,𝑣

𝑡 [𝑠,𝑦 ] )𝑉𝑤,𝑣
𝑡 [𝑠,𝑦 ]

𝛿𝑤,𝑣 +∑
𝑠′ 𝑇𝑖 (𝑠, 𝜋𝑤,𝑣

𝑡 [𝑠,𝑦], 𝑠′)𝑄𝑤,𝑣
𝑡+1 [𝑠

′, 𝑦 +𝐶𝑖 (𝑠, 𝜋𝑤,𝑣
𝑡 [𝑠,𝑦])] ⊲ ★

14: end for
15: 𝛿𝑤,𝑣+1 = 𝛿𝑤,𝑣 − 1

𝑣 (𝛿
𝑤,𝑣 −𝑉

𝑤,𝑣
0 [𝑠0, 0]) ⊲ ★

16: end for
17: 𝜆𝑤+1 = (𝜆𝑤 − 1

𝑤 ( ˜𝑟𝑐 𝑗 −𝑄
𝑤,𝑣
0 [𝑠0, 0]))+

18: end for

Like iRMDP we solve the Lagrangian relaxation:

min
𝜆≥0

max
𝜋 𝑗

𝐸𝜋 𝑗

[
R 𝑗,𝜋 𝑗

]
+ 𝜆

[
˜𝑟𝑐 𝑗 − 𝐸𝜋 𝑗

[
C𝑗,𝜋 𝑗

|C𝑗,𝜋 𝑗
≥ 𝛽

] ]
, (21)

Recall that in iRMDP, in order to calculate and bound CVaR, 𝛿
(i.e the percent of the tail to evaluate) is given as an input, the outer
loop iterates over 𝜆, the middle loop iterates over 𝛽 (i.e the value at
which the tail begins), and the inner loop conducts value iteration
and policy evaluation.

In our case, the goal is to calculate a bound the risk contribution
and so 𝛽 (i.e. the joint value at which the tail begins) is given as
an input. Since we also need to solve a Lagrangian relaxation, the
outer loop (lines 2-18) still iterates over 𝜆. But the middle loop (lines
3-16) instead needs to iterate over 𝛿 (i.e the percent of the tail to
evaluate) in order to successfully calculate Q via policy evaluation.
Note that the initial condition of 𝛿 , 𝛿𝑤,0 needs to be some real
number sufficiently close to 0, but not 0, to avoid division by 0 in
line 7. Then, like in iRMDP the inner loop (8-14) conducts value
iteration and policy evaluation.

4 EVALUATION
We evaluated the performance of our multi-agent algorithm against
iRMDP on two benchmark domains: Maze from [32] and advertising
budgets from [8].

4.1 Implementation Details
For our baseline, we use iRDMP as described in Algorithm 2. To
do this, we treat the weakly-coupled MMDP as a strongly-coupled
MMDP, which can then be treated as any other MDP by iRMDP. The
convergence condition for both loops is set to .01. We also compare
to a Risk Neutral algorithm, label as RN, which only optimises for
reward. Policy synthesis for this method is done with the PRISM

model checker [18]. Our implementation of Algorithm 2 is referred
to as RCA. RiskNeutralPolicy is implemented via value iteration.
Computations of 𝐸 [R𝑖,𝜋𝑖 ] and 𝐸 [C𝑖,𝜋𝑖 ] are computed with 1000
Monte Carlo trials. CalcRisk is done by first calculating the VaRwith
1000 Monte Carlo trials. Then the CVaR and risk contributions are
calculated via rejection sampling: first 1000 Monte Carlo trials are
run continuously until there are 1000 satisfying trials that exceed
the VaR, then these 1000 trials are used to estimate the CVaR and risk
contributions. Stepsize 𝛾 for both algorithms is set proportionally
to 𝐶 . The iRMDP details are the same as for the baseline usage.
The Joint Reward and Joint VaR displayed in the results graphs are
also calculated with 1000 Monte Carlo trials, and the Joint CVaR is
calculated in the same way as the CalcRisk method, though over
the joint state space. All methods were implemented in Python. All
experiments were conducted on an AWS R5a.large EC2 instance,
with 2 CPUs and 16GB of memory.

4.2 The Maze Domain
4.2.1 Domain Description. We first modified the Maze domain
from [32] to use a multi-unit resource. Agents operate in a grid
world that represents the surface of Mars, with 40% of grid cells
chosen at random to represent untraversable terrain, and 10% of
cells chosen at random to represent places at which reward can be
obtained by completing a task. Tasks further away from the start
position result in a higher reward. Agents have two types of actions:
regular actions, which consume no resource, but only move to their
intended location 40% of the time; and safe actions, which consume
one resource and move to their intended locations 95% of the time.
An example of a safe action is a movement action coupled with a
localisation subroutine, which greatly improves a robot’s chances
of moving in the correct direction, but also consumes additional
battery power [19]. Once an agent is in a task location, they can
choose to perform a task action, at which point their execution
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Figure 2: An analysis of RCA and iRMDP on increasing large
instances of the Maze domain for 2 agents. Each data point
corresponds 50 trials.

ends. Agents’ only interaction with each other comes in the form
of a global resource constraint. The global time horizon ℎ is 2 times
the width of the grid. We set the confidence interval to 𝛿 = 0.05 in
all experiments. The limit on the joint CVaR is 𝐿 = ℎ𝑛

4 , where ℎ is
the global time horizon and 𝑛 is the number of agents in the system.
This limit was chosen to strike a balance between being higher and
thus effectively unconstrained and lower and thus too restrictive
for interesting action choices. All methods timeout at 5000 seconds.
This domain contains many possible configurations of start and
end locations; as such each data point represents the average re-
sults from 50 possible configurations. Distributional information
on experiments can be found in the Appendix.

4.2.2 Results. As expected, iRMDP scales poorly with respect to
planning time, as seen in both Figure 2, which varies the size of the
single-agent state space, and Figure 3, which varies the number of
agents. Both these variables have the effect of increasing the joint
multi-agent state space. In both cases, iRMDP is unable to solve
instances larger than 2 agents and a 5 by 5 gridsize. Note that for
Figure 3 this is only a single point on the graph. Because the time
horizon is set to ℎ = 10 for this gridsize, this is equivalent to 500
states. The solution value from iRMDP is also slightly less than RCA.
This is due to the convergence settings for iRMDP, 0.01 for both
the middle and outer loop, whereas RCA’s RCConstrainedPolicy
has convergence settings of 0.001 for both the middle and outer
loop. While a finer condition would improve the solution value,
it will also increase the planning time, and thus we choose the
current condition to trade off between the two. Note that despite
the approximation RCA makes, RCA still achieves close-to-optimal
performance in problem instances where the optimal can be evalu-
ated. The CVaR is constrained by 𝐿 as expected for iRMDP and RCA
methods, in both Figures 2 and 3. In both Figures, RN outperforms

Figure 3: An analysis of RCA and iRMDP on increasing num-
bers of agents in the Maze domain of gridsize 5 by 5. Each
data point corresponds 50 trials.

both iRMDP and RCA in terms of time and joint reward, but only
because it ignores the CVaR constraint.

4.3 The Advertising Domain
4.3.1 Domain Description. Recall the advertising budget allocation
domain in Example 2, originally from [8], with 1000 agents, 15 states,
and 5 actions per state. The advertiser is rewarded only when an
agent purchases their product, and pays a monetary cost that is
action dependent. This MDP contains only one configuration (as
in [8]), and as such results are over a single execution of RCA. All

Figure 4: Algorithm performance on the Advertising domain
with increasing numbers of agents.
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Figure 5: Algorithm performance on the Advertising domain
with increasing budgets.

agents’ MDPs are identical but independent, so the advertiser can
pursue different strategies for different agents. We slightly modify
the domain by setting a time horizon of ℎ = 30 to make the risk-
constrained problem feasible to solve, and we modify the objective
to undiscounted reward to match our setting. In all experiments,
𝛿 = 0.05. In Figure 4 the joint CVaR is limited by 𝐿 = 10𝑛. In Figure 5,
𝐿 is varied along the x-axis.

4.3.2 Results. As in the Maze domain, in Figure 4 the planning
time increases with the number of agents (and the increased CVaR
requirements). The CVaR is successfully constrained through all
numbers of agents in Figure 4. In Figure 5, we see how the results
of RCA vary for a consistent number of agents as the constraint on
CVaR (L) changes. Because RCA starts with a risk-neutral policy
and then iteratively decreases the joint CVaR, RCA plans faster as
the budget increases. As expected, the solution value increases as
the budget increases because agents are allowed more flexibility in
their action choices. The CVaR is successfully constrained through
all numbers of budgets in Figure 5. In both Figures, RN once again
outperforms RCA in terms of time and joint reward, but again only
does so because it ignores the CVaR constraint.

5 RELATEDWORK
There is a wealth of literature that studies the risk associated with
sequential decision making under uncertainty, and in particular
risk through the lens CVaR. We classify it into four categories:
approaches which (1) minimise the CVaR of a cost function and
contain no constraint, (2) minimise the expectation of a cost func-
tion and constrain the CVaR of that same function, (3) maximise
the CVaR of a reward function and constrain the CVaR of a cost
function, and (4) maximise the expectation of a reward function
and constrain the CVaR of a cost function. Though our goal is to
achieve (4) in a multi-agent setting, we include other categories

for completeness. Most of the current literature is focused on cate-
gory (1), minimising CVaR directly, with no additional constraints.
This category is well studied in both classical planning [11, 20, 36]
and reinforcement learning [17, 23, 25, 28, 29]. These approaches
differ from our approach (and the previous MDP with constraints
literature) in that the primary goal is to manage some cost, in-
stead of optimising for reward while managing a cost. Category
(2), minimising the expectation of a cost function while also con-
straining the CVaR of that same cost function, has been studied
in classical planning [9, 24] and reinforcement learning [16, 34].
These methods cannot be adapted to use different functions in the
optimisation and constraint, e.g., maximising for a reward func-
tion while constraining the CVaR of a cost function as we require.
In the resource allocation domain, it is important to have both a
reward function that models the agents’ goals and a constrained
cost function that models agents’ resource usage. In category (3),
maximising the CVaR of a reward function and constraining the
CVaR of a cost function, [2] does consider both a reward function
and a cost function, but consider the CVaR of both the reward
and cost constraint, which allows for similar solution methods to
category (2). Category (4) maximises the expectation of a reward
function and constrains the CVaR of a cost function; we call this
the risk-constrained MDP (RCMDP) planning problem. Recently,
[6] devised an algorithm to solve the RCMDP planning problem for
a single-agent. The methodology of this approach is discussed in
Section 2. One could extend their method to MMDPs as we describe
in Section 3.2, but as we show in our evaluation, this scales poorly.
[10] and [22] solve a similar problem with single-agent reinforce-
ment learning. To our knowledge, our work is the first to study the
risk-constrained MMDP (RCMMDP) problem in classical planning
or multi-agent reinforcement learning.

6 CONCLUSIONS AND FUTUREWORK
Constrained planning problems in multi-agent systems under un-
certainty require unique solutions to handle the state space ex-
plosion that arises from MMDPs. In this paper, we tackled the
Risk-Constrained MMDP problem, i.e., the problem of optimising
for expected reward while constraining the joint CVaR of a shared
resource. This constraint can be interpreted as limiting the expected
value of a shared resource in the worst cases. To do this, we intro-
duced a concept from finance called risk contribution, which allows
us to identify agents who contribute proportionally more risk to
reward. We then update the worse performing agent’s policy to
iteratively lower their risk contribution, and thus the joint CVaR.
With this method, we avoid the the state and action space explo-
sion of solving a joint model by instead iteratively updating only
one agent’s policy. We evaluated RCA against a single-agent risk-
constrained solver iRMDP on two benchmarks, the Maze domain
from [32] and an advertising domain from [7]. We demonstrate
that not only can RCA successfully solve the RCMMDP problem,
but also it significantly outperforms iRMDP in terms of planning
time. Future work includes warm-starting successive calls to the
RCConstrainedPolicy and evaluating RCA on real-world data. Ad-
ditionally, we hope to expand our approach to constraining other
coherent risk measures, a category that includes CVaR.
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