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ABSTRACT
CraftEnv is a flexible Collective Robotic Construction (CRC) envi-
ronment for Multi-Agent Reinforcement Learning (MARL) research.
CraftEnv can be used to study how artificial intelligent agents may
learn to cooperate and solve complex real world tasks, such as col-
lective construction and intelligent warehousing. The environment
contains a set of collective construction tasks, which require a group
of robotic vehicles to cooperate and learn to build different con-
structions efficiently. There are different elements in the CraftEnv,
such as smartcars, blocks, and slopes. The smartcars can use the
blocks and slopes to build different structures. The CraftEnv is
highly flexible and simple to use, which enables creative and quick
task-designs. The environment is written in python and can be ren-
dered using PyBullet. The simulation is built based on real world
robotic systems, designed with real-world constraints in mind. The
learned policy can be transferred to the real world robotic system.
CraftEnv is tailored for effective use by the research community
and pushing forward collective intelligence and swarm technology.
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1 INTRODUCTION
In the research of evolutionary robotics, Collective Robotic Con-
struction (CRC) is one of the biggest applications in industry world-
wide [9], due to the considerable productivity and sustainability
challenges in the industry field. Considering that most construc-
tion robots are not fully automated and often require guidance and
instructions from the operators, Multi-Agent Reinforcement Learn-
ing (MARL), as a possible solution, has become one of the most
popular methods for CRC systems [18][1][20]. Casting CRC tasks
into the MARL framework is a very difficult game with sparse and
delayed rewards, as robots often need to build scaffolding to reach
the higher levels of the structure to complete the construction task.
Despise the high difficulty, with proper design of the simulator,
MARL algorithms could help the construction robots to establish a
learning process based on the feedback from the construction site
and lead to a near-optimal policy to realize the goal [26].

However, compared with other application fields of MARL, there
is no comprehensive evaluation environment in CRC tasks, which
greatly limits the evaluation and development of MARL research
in CRC. Usually the evaluation of MARL algorithms are focusing
on the game environments or simulator of simple tasks, such as
SMAC [16], MPE [13] and RWARE [14]. Currently, in the field of
CRC, however, the evaluation of MARL methods mainly focus on
some over-simplified tasks, such as constructing some goal struc-
ture with only blocks [18], or only considers planar construction,
where agents are encouraged to move the points into some pro-
jected scalar field with given shape [20]. Such a design is not only
too simplified to fully consider a large number of physical con-
straints in real scenarios, but also difficult to deploy in practical ap-
plications. In this way, even though MARL has made great progress
in the field of swarm intelligence [2], there is a clear gap to apply it
to the field of CRC.

Therefore, in order to further promote the application of MARL
in CRC environment and also to further promote the practice of
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MARL in some complex real-world application scenarios such as
collective construction and intelligent warehousing, we introduce
CraftEnv, the first comprehensive CRC environment in the MARL
domain, and compare 6 MARL algorithms in a diverse set of co-
operative multi-agent tasks, including independent learning algo-
rithms [23], centralizedmulti-agent policy gradient algorithms [7][27]
and value decomposition algorithms [22][15]. The algorithms are
evaluated in four goal-conditioned building tasks, a free building
task, and a breaking barrier task. These tasks are designed as com-
prehensive modelings for real-world scenarios such as collective
construction, smart warehousing. Besides, to further demonstrate
the challenges that the flexible environmental design of CraftEnv
can bring to various MARL algorithms, and to further test its de-
ployment ability on physical machines, we configured CraftEnv
with physical machines and successfully deployed the CraftEnv
trained model on the real robots. Besides, we also trained high-
complexity tasks of CraftEnv on the cluster with large-scale dis-
tributed training [6, 8, 21], which shows that the high flexibility
of CraftEnv brings creativity and new possibilities to MARL algo-
rithms. CraftEnv aims to combine the best MARL algorithms with
real-world CRC environments, providing inspirations for the future
research of MARL from the perspective of application, and promot-
ing the application of reinforcement learning related technology in
the field of collective intelligence and swarm technology.

Our main contributions are as follows: (1)We introduce CraftEnv,
the first comprehensive MARL CRC environment. CraftEnv is
highly flexible and is able to simulate various real-world scenar-
ios, such as collective construction and intelligent warehousing;
(2) We design multiple tasks of various difficulties, including goal-
conditioned building tasks, free building tasks and breaking barrier
tasks. With the comparison of 6 benchmarking algorithms, we
provide detailed analysis of their properties from practical perspec-
tive; (3) In order to simulate the real application scenarios more
accurately, We conduct additional experiments with large-scale dis-
tributed training. Besides, physical machines are built for CraftEnv,
demonstrating the flexibility of transferring the policy learned by
CraftEnv to real-world robotic systems.

2 PRELIMINARY
2.1 Markov Game
Similar to the setting of single-agent reinforcement learning, MARL
also addresses sequential decision-making problems, but with mul-
tiple agents involved. Specifically, both the transition of the system
state and the reward received by each agent are now affected by the
joint action of all agents. In the most general setting, each agent can
have its own long-term reward to optimize, making the problem
considerably more intractable.

Markov Games (MGs) has been widely used in the literature
for developing MARL algorithms. Specifically, a Markov game G
is defined as a tuple G =

(
N,S,

{
Ai }

i ∈N ,P,
{
Ri }

i ∈N ,γ
)
, in

which N = {2, . . . ,N } denotes the set of all agents, S denotes
the finite state space, Ai denotes the finite action space of agent i .
P : S × A 7→ ∆(S)1 denotes the transition probability from state
s ∈ S to any state s ′ ∈ S for any joint action a ∈ A, and denote

1Let A B A1 × · · · AN for clarity.

Ri : S × A × S 7→ R as the reward function that determines the
immediate reward for agent i after a transition from (s,a) to s ′.
γ ∈ [0, 1) is the discount factor.

The interactive process of the agents and the environment is
modeled as follows. At each time step t , each agent i ∈ N choose
an action ait ∈ Ai from state st , and the system will then transi-
tion to the next state st+1, and the reward of agent i is given by
Ri (st ,at , st+1). The ultimate goal of each agent is to optimize its
own long-term reward by following the policy π i : S 7→ ∆

(
Ai ) .

Therefore, with the joint policy of all agents π : S 7→ ∆(A) defined
as π (a |s) B

∏
i ∈N π i

(
ai
��s ) , we can define the value function for

agent i:

V i (s) B E

[∑
t ≥0

γ tRi (st ,at , st+1)

�����ait ∼ π i (·|st ) , s0 = s

]
(1)

and the corresponding Q-function:

Qi (s,a) B

E

[∑
t ≥0

γ tRi (st ,at , st+1)

�����ait ∼ π i (·|st ) , s0 = s,a0 = a

]
.

(2)

The setting of CraftEnv mainly focus on cooperative MARL,
where all agents share a common reward function, i.e., R1 = R2 =
· · · = RN = R. The model is often referred as multi-agent MDPs
(MMDPs) or Markov teams. With this setting in mind, the value
functions and Q-functions of each agent are identical, which enables
many single-agent RL algorithms to be applied.

2.2 Benchmarking Algorithms
Currently, there are three paradigms forMARL: centralized learning,
independent learning, and centralized training with decentralized
execution (CTDE). Centralized learning treats the whole system as a
whole and adopts single-agent reinforcement learning algorithm for
training, which solves the problem of non-stationary environment,
but cannot solve the problems of no communication, large scale
and large action space. Independent learning allows each agent to
train its own strategy independently, but it neglects the connection
between multiple agents, which sometimes aggravates the learning
instability. By contrast, CTDE can not only improve the learning
efficiency, but also allow each agent to make independent decisions,
which solves the problem of multi-agent learning to a certain ex-
tent. However, as the number of agents increases, the solution of
the optimal joint value function may become more complicated.
Therefore, among the popular MARL algorithms, we choose IQL
as a representative of the independent learning MARL algorithms,
and COMA [7], VDN [22], QMIX [15], QTRAN [19], MAPPO [27]
as the representatives of the CTDE MARL algorithms. The details
of our consideration are listed in Appendix F.

3 ENVIRONMENT
Now,we specifically elaborate on the structural features of CraftEnv,
including the main components of the environment, the specifi-
cation of the MDP, and the cooperative tasks available based on
the environment. The structure of CraftEnv is shown in Figure 1.
The MatrixEnv in CraftEnv provides the basic elements and mul-
tiple interactive interfaces, such as task specification, Gym-style
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RL and rendering. CraftEnv inherits from MatrixEnv and provides
a comprehensive interface for a number of MARL algorithms and
the rendering result.

3.1 Basic Elements
In order to better simulate the logistics and transportation scenarios
in the real world and improve the flexibility of the environment,
CraftEnv sets the environment itself as a m × n × z map, which
serves as the working environment for agents. Considering the
map as a storage space or a building site, blocks and slopes are
designed as basic elements, where blocks can be thought as the
packages for transportation, and the combination of blocks and
slopes can be viewed as basic units for the construction of buildings.
Similar to the game setting of the Minecraft game, agents are free
to manipulate these components, including picking up, moving and
placing them. Besides, the slopes can be folded and unfolded for
the agents to construct complex buildings. This flexibility allows
agents to explore a variety of ways to cooperate, allowing for more
freedom in the design of tasks and further testing the ability of
agents to cooperate.

3.2 States, Actions and Rewards
3.2.1 State Space. In the process of logistics transportation, the
current position of each object to be transported is very important
to the worker’s decision of action. According to the decision of
transport location, the worker can choose an object as the target,
plan out the path to the object, and move it to the destination. There-
fore, it is also critical for the agents in CraftEnv to make decisions
on what to carry, where the destination is, how to reach the object
and how to carry it to the destination. Since the interactions among
agents and the elements of the environment are operated on a 3D
map, the position of agents and elements can be represented as
coordinates in the map. Therefore, we construct the observation of
an agent from:

(1) Self-awareness: the agent’s current position in the map. This
is consistent with our common sense: the first thing a porter
or construction worker needs to know in a work scene is his
position, and then he can make a decision;

(2) Position of other agents. In CRC systems, agents are required
to cooperate efficiently to complete tasks, but different agents
may interfere with each other. For example, during the con-
struction of a building, two agents may want to move a
building material to different locations, or two agents may
have conflicting paths on their way to move objects. There-
fore, it is critical for one agent to be aware of the position of
other agents, by which different agents can cooperate with
each other to complete harder tasks.

3.2.2 Action Space. The actions of an agent in CraftEnv are de-
signed based on the properties of the real-world smartcar models.
We have not only built a complete simulationmodel for smartcars in
CraftEnv, but also the corresponding physical machines to support
all the available actions available in the simulated environment.
Concretely speaking, the available actions designed for smartcars
includes:

(1) Moving in horizontal and vertical directions. A total of 4
directions of moving options ensure the freedom of agent
movement. The design not only makes it easier for agents
to move around flexibly, but also makes it convenient to
incorporate various physical constraints when designing
action masks and to prohibit dangerous behaviors such as
blocking agents from traveling backward uphill;

(2) Interactions with different objects in the environment. The
smartcar is designed to possess the ability to interact with
objects in the environment in various ways, which are de-
signed to easily simulate the process of cargo handling and
building construction in real-life environments. The details
about the interactions are introduced in Appendix B.

As we can see, the actions in CraftEnv are designed with discrete
settings in mind. This strategy can not only further enhance the
stability of the agent training, but also further ensure the flexi-
bility of the environment. CraftEnv provides rich interfaces that
make it possible to design richer action spaces beyond the actions
mentioned above.

3.2.3 Reward Setting. As described above, CraftEnv is a highly
flexible MARL environment for CRC systems. Therefore, in order to
deploy different simulation tasks such as transportation of packages
and construction of buildings, various settings of the specific task
is needed for the environment. Therefore, CraftEnv provides an
easy-to-use interface for specifying the reward function. As some
more concrete examples, here we consider three different kinds of
tasks: (1) building with specified shape requirement; (2) building
with high complexity; (3) carrying a flag to the goal with breaking
barriers. In the first kind of tasks, it is natural to use discrete reward,
where some numerical reward is given when the agents success
in building part of the blueprint. However, in the second scenario,
instead of fixed blueprint, the reward function should encourage the
construction of buildingswith high complexity, making the function
more flexible and requiring customization under different level of
complexity. As will be shown later, various reward functions can be
designed for different intentions, such as encouraging connecting
more blocks together or encouraging constructing higher buildings.

4 EXPERIMENT
As a cooperative MARL environment for CRC systems, CraftEnv
has an environment design similar to Minecraft and can support
rich task designs. Specifically, after designing the components and
tasks of the environment elaborately, our primary goal is to test
the cooperation ability among agents in this highly flexible envi-
ronment under different kinds of tasks. Furthermore, as CraftEnv
can be conveniently deployed to real-world hardware systems (the
results in the deployment step is shown as a video in the supple-
mental materials), we hope that this new environment can promote
the real-world application of MARL and swarm intelligence in sce-
narios such as CRC systems and smart warehousing. The code is
available at https://github.com/Tencent-RoboticsX/CraftEnv.

4.1 Task Design
As described before, the task of CraftEnv is constructed in terms of
the building scenario and the breaking barrier scenario. Specifically,
in the building task, possible bottlenecks of MARL algorithm in
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Figure 1: The Structure of CraftEnv.

cooperative building will be analyzed by designing various kinds
of goal conditioned tasks with different difficulties. The flexibil-
ity of CraftEnv ensures the feasibility of the implementation of
goal conditioned tasks with free difficulty. In our experiment, we
design four kinds of goals with different difficulties – including
strip buildings, block buildings and two two-story buildings with
different difficulty. With tasks of different difficulty, current SOTA
MARL algorithms will show different performances, and specific
analysis on this result will be discussed. Besides, the free building
tasks without specific blueprint are also designed to encourage the
agents to freely explore and construct complex structures.

As a simulation of the obstacles that can arise in CRC tasks,
CraftEnv designs tasks for breaking barriers: with the target of
carrying the flag to the goal position, CraftEnv supports obstacles
of various shapes and difficulties, enabling agents to explore freely,
and break down obstacles and complete the goal under cooperation.
With such sparse reward, the breaking barrier task not only further
improves the difficulty of the simulation environment, but also fur-
ther stimulates the cooperation ability between agents – otherwise,
it will be impossible to complete the transportation task in limited
time steps.

4.1.1 Goal-conditioned Building Tasks. In goal conditioned build-
ing tasks, we encourage agents to cooperate to achieve the goal
building process by specifying the design drawings of the target
buildings. It can be seen that the reward in this process is discrete,
that is, we can give different rewards for the completion of the
construction. In order to test the performance of MARL algorithms
at different levels, we designed a variety of experimental tasks, as
shown in Figure 2.

In addition, in the goal conditioned building task, we consider
sparse reward, that is, we give some rewards based on the comple-
tion of some building goals. In order to encourage more complex
building processes, we have made some specific settings for the
rewards of different components of building. The specific settings
are shown in Table 1.

Table 1: Reward for goal-conditioned building tasks.

Local Task Reward Value

Contribute a first-layer block 1
Contribute a folded slope 1
Unfold a slope correctly 1

Contribute a (simple) second-layer block 1
Contribute a (complex) second-layer block 3

Complete the building task 4

4.1.2 Free Building Tasks. Aside from goal conditioned building
task, we also choose a more free building task, that is, we do not
give a specific building blueprint, but encourage agents to explore
more possibilities freely. Specifically, by specifying rewards for dif-
ferent complex architectural forms, CraftEnv can encourage agents
to cooperate extensively to build complex buildings. This goal is
similar to the attraction of Minecraft itself: encourage players to
play their creativity, and use simple basic modules to build buildings
with rich shapes.

In addition, this design approach is more accurately in line with
the real-world CRC scenario: for a variety of transportation and
construction jobs, it is not realistic to fully specify all the details
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(a) The Strip-shaped Building (b) The Block-shaped Building (c) The Simple Two-Story Building

(d) The Complex Two-Story Building (e) The Breaking Barrier Task (f) The Free Building Task

Figure 2: Example of different designs of the buildings tasks. The building difficulty is arranged in increasing order.

of the target each time. On the other hand, by giving a specific
definition of the complexity of the building and training agents, it
is not only widely applicable, but also more in line with the require-
ments of the field of swarm intelligence: agents can autonomously
discover the knowledge needed in the environment through collab-
oration, and achieve the goals through efficient understanding and
collaboration.

In this task, the design of the reward function plays the most
important role in training, and the complexity evaluation of the
building itself takes a variety of forms. For the training on a single
machine, we encourage the construction of large-scale platforms.
Concretely speaking, we construct the reward function using deep-
first graph search [24] for discovering the connected components
in the map. Denote the set of all connected components as C =
{c1, . . . , cn }, and f (ci ) = di is the number of blocks connected in
ci . The reward function is designed as

R(C) = max {di = f (ci ) : ci ∈ C} − 1. (3)

Besides, for the training on the cluster with large-scale dis-
tributed training, a more complex reward function is designed,
where multiple aspects in the construction tasks are considered.
The details about the hard tasks are introduced in Appendix C.

4.1.3 Breaking Barrier Tasks. As an challenging simulation in the
smart warehousing scenarios where the agents may meet unex-
pected obstacles when interacting with the environment, We design
the implementation of the breaking barrier task as the case shown
in Figure 2e. The task specified for the agents is to cooperate in
carrying the flag to the goal. The wall-shaped barriers on the flag
side and embracing-shaped barriers on the goal side are the main
obstacles for the task. It is required for the agents to cooperate to
break the barriers and find an available path to carry the flag to the
goal. However, the skill of clearing the blocks along the way are
completely reward-free, thus requiring effective exploration for the
agents to achieve the task.

Besides, in the breaking barrier task, since our main goal is to
carry the flag to the goal, we choose not to assign explicit reward
for removing the barriers, but let the agents explore freely to learn
the policy of removing the barriers and reach the goal. Therefore,
the setting of reward for the breaking barrier task is designed as:

Rt = d(pt−1,pд) − d(pt ,pд) + αI(pt = pд) − β,

where pt is the position of the flag at time t , pд is the position of
the goal, d is a distance metric, and I is the indicator function for
measuring where we have successfully carried the flag to the goal,
α is the reward for completing the task, and β is the time penalty.
In our experiment, we set α = 10 and β = 1.

4.2 Computational Requirements
All local experiments presented in this work were executed on one
Tesla M40 GPU with 12GB video memory. The main types of CPU
models that were used for this work is Intel(R) Xeon(R) Platinum
8255C CPU @ 2.50GHz processor. Some of the benchmarking algo-
rithms are implemented with reference to the PyMARL [17] and
ExtendedPyMARL [14]. All the experiments can be executed within
12 hours.

Additionally, in order to exploit the flexibility of CraftEnv, we
also design experiment with large-scale distributed training with
hundreds of CPUs. As the case of RLLib [10] and TLeague [21], being
able to train largemodels can dramatically improve the performance
of the model, making the model capable of solving larger, more
difficult problems [5].

4.3 Result on Predefined Tasks
Based on the fully-cooperative CraftEnv and the various tasks built
on it, here we compare the performance of current benchmark-
ing MARL algorithms, including IQL [23], VDN [22], COMA [7],
QMIX [15], QTRAN [19] and MAPPO [27], and analyze the reason
behind the experiment result.
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Figure 3: Averaged return for the benchmarking algorithms under 6 tasks. The X axis represents the time step of the environment, and the
Y axis is the averaged return. All the results are averaged under 5 independent runs with random seed.

4.3.1 Performance on Goal-Conditioned Building Tasks. The perfor-
mance of different MARL algorithms on the four goal-conditioned
building tasks is shown in Figure 3, where the performance of
different algorithms varies among tasks. Specifically, in the two
first-layer tasks, the performance of COMA is apparently lower
than other algorithms. By analyzing the parameters in the training
of the model, it can be seen that the variance of counterfactual
advantages of COMA is significantly higher than other algorithms,
leading to its poor performance in these tasks with sparse reward.
Besides, since COMA has the assumption that each agent will fol-
low the current policy while fixing the action of other agents, the
cooperation of agents in these cooperative tasks will be harmed.
This disadvantage has also been observed in other experiments. In
the learning process of COMA, different agents often compete for
limited blocks and try to transport them to the destination they
want to reach, or move the blocks moved by other agents to the
desired location. This problem leads to a lot of useless competi-
tion in the training process, which harms the performance of the
algorithm.

In addition, it can be seen that all the algorithms shows different
degrees of instability, which is particularly obvious in the tasks of
higher difficulties. This phenomenon is mainly due to the ε-greedy
strategy introduced in the training process (detailed discussions are
provided in Appendix E). Therefore, comparing the success rates
of different algorithms on the same task will be more significant

than simply comparing the numerical result of the reward, which
is shown in Table 2.

4.3.2 Performance on Free Building Tasks. Different from previous
environments, for the free building tasks, we do not specify the
specific blueprint of the building, but encourage agents to cooperate
freely to construct structures with high complexity.

In the task shown in Figure 2, the agents are encouraged to con-
struct a large-scale interconnection branch with blocks. As shown
by the cumulative reward in the training procedure (Figure 3) and
the comparison of success rates (Table 2), QMIX and VDN performs
observably better than other algorithms, which benefits by their
simple yet effective decomposition of the value function. Concretely
speaking, in the given free building task, the most effective way for
the agents to cooperative is to establish an effective collaborative
strategy that can allocate a low overhead handling strategy for each
agent so that different blocks can be connected quickly. Besides, this
strategy should ensure that there is no or as little conflict between
paths of different agents as possible. Therefore, both the value de-
composition of QMIX according to the monotonicity assumption
and the additive decomposition of VDN can find the strategy that
maximizes the reward of each agent while ensuring the optimal
global reward, thus beneficial for the learning of the agents.

4.3.3 Performance on Breaking Barrier Tasks. From the comparison
of returns (Figure 3), it can be seen that different algorithms have
significant gap in this task. To be specific, the performance of QMIX
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Table 2: The average success rate of the benchmarking algorithms in the tasks.

Task COMA IQL MAPPO QMIX QTRAN VDN

Strip-shaped building 0.30 0.88 0.91 0.86 0.92 0.35
Block-shaped building 0.00 0.85 0.90 0.86 0.89 0.63

Simple two-story building 0.00 0.49 0.35 0.44 0.30 0.71
Complex two-story building 0.00 0.00 0.02 0.28 0.00 0.00

Free building2 0.00 0.32 0.44 0.95 0.77 0.90
Breaking Barrier 0.00 0.02 0.00 0.57 0.00 0.29

Average 0.05 0.43 0.44 0.66 0.48 0.48

algorithm is significantly higher than that of other algorithms, and
reaches the highest reward level. In addition, the VDN algorithm
has achieved good performance and can complete tasks to some
extent. In contrast, algorithms such as QTRAN and MAPPO can
only achieve some progress (such as moving the flag to make it
closer to the goal), but cannot complete the task. By analyzing the
learning procedure of the algorithms, we can draw a conclusion
that the reason why QMIX and VDN can complete the task is
due to their property of value function decomposition. Under an
efficient strategy to complete the task, most of the agents should
act as a facilitator: they need to denote themselves in clearing
an convenient path for other agents to carry the flag to the goal,
which is critical for the success of the task but is not explicitly
rewarded. Therefore, the additional flexibility brought by the value
decomposition network in QMIX and VDN can help different agents
coordinate their strategies to complete the task, which has been
observed to be especially effective in difficult tasks [14].

4.4 Result with Large-Scale Distributed
Training Tasks

In order to exploit the potential and the flexibility of CraftEnv, we
also design scenarios with more complex structure to train with
large-scale distributed resources, which more accurately simulates
the working environment in real-world scenarios such as smart
logistics. As MAPPO shows the ability to utilize large-scale samples
in complex tasks in practice [3, 27], we choose it as the algorithm
used in the large-scale training process. The design of these sim-
ulation tasks are shown in Figure 4, and the details are listed in
Appendix C. The video recording the result with distributed train-
ing is also provided in the supplemental materials. We believe that
in future practice, with detailed construction of the simulation task
for real-life applications in CRC systems, CraftEnv can promote
richer applications of MARL in real-world applications.

4.5 Result on Physical Machines
Aside from the simulation, we also have designed and built the phys-
ical CraftEnv robotic system in the real world [25]. We successfully
deployed the policies learned using CraftEnv on these physical
machines, demonstrating the advantage of CraftEnv in connect-
ing the simulated interaction and real-life deployments. Benefit by

2Strictly speaking, there is no concept of “task completion” in free building tasks, as
there is no unique evaluation metric, instead agents are encouraged to use their own
creativity to achieve higher rewards. Here the “success” of task is that the agents have
found a way to connect all the blocks to form a large platform.

the comprehensive design of the state space and action space in
CraftEnv, this process can be completed directly with the corre-
sponding physical model. Some examples of the result is shown
in Figure 5. Besides, the deployment results are also recorded in
the supplemental materials. With comprehensive and rich physical
constraints, CraftEnv can help to develop stable and easy-to-use
strategies for MARL agents to learn in the applications of CRC
systems.

5 RELATEDWORK
To our best knowledge, CraftEnv is the first CRC environment for
MARL research, which is designed with the aim of pushing forward
the development of collective intelligence and swarm technology.
As demonstrated in our experiments, CraftEnv can be used as a
simulation environment for real-world scenarios such as smart
warehousing and intelligent construction, and can be easily and
efficiently deployed to real-world applications. Structurally speak-
ing, CraftEnv is a fully-cooperative MARL environment that is
enlightened by the MineCraft game and has high flexibility. Cur-
rently, there has been a variety of cooperative MARL environments
and CRC simulation scenarios in the research fields, but CraftEnv
shows its unique advantages in multiple aspects such as system
architecture, task design, and application deployment.

In the context of CRC, there are many studies focusing on the im-
provement on traditional methods, such as SAPSO [28], SAFER [12]
and NAIVE [11]. However, most of these researches only consider
simple tasks such as building blocks of specified structure [28],
or approximating rigid bodies with linear elements and used fi-
nite element analysis (FEA) for structural calculations [11]. Even
though there exists some works that use intuitive and easy-to-use
engines and game development tools such as Unity3D to implement
dynamic simulation environments [12], but the simulation is still
restricted in patterns such as unanchored structures and irregular
terrains. In comparison, CraftEnv supports various types of ele-
ments with comprehensive and detailed physical constraints and
interfaces for custom objects. For the actions of agents, CraftEnv
also supports action masks that fit the physical constraints of the
real world scenarios.

Besides, there have been some studies on the application of
MARL in CRC systems [1, 18, 20]. However, the tasks considered
in these works are either using goal structures consisting only of
blocks to estimate the performance of the trained policy [18] or
using point mass boids to test their tuning behavior [1]. However,
these tasks are designed only as games that are far from real-world
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Figure 4: Example of goal-conditioned building tasks (left) and free building tasks (right) with distributed training.

Figure 5: Experiment on the physical machines [25].

Table 3: Comparison of CraftEnv with other popular cooperative MARL environments. CraftEnv supports the customization of
multiple types of tasks based on various elements. CraftEnv’s comprehensive physical constraints facilitate the simulation of multiple
real-world scenarios and can be tested in real machines with the counterpart entities for the components of the environment.

Environment Observability Reward Setting Agent Number Main Difficulty Task Number

SMAC Partial Dense 2 − 10 Large action space 1
LBF Partial / Full Sparse 2 − 4 Coordination among agents 7
MPE Partial / Full Dense 2 − 3 Non-stationary 9

RWARE Partial Sparse 2 − 4 Sparse reward 3
CraftEnv Partial / Full Sparse / Dense Flexible Complex and diverse tasks Free to Design

applications. Compared with them, CraftEnv is the first compre-
hensive and rich MARL environment for the simulation of CRC
systems. The task settings of CraftEnv are not only closely linked
to real-world applications such as smart warehousing, but also pro-
vide high flexibility, making the evaluation of the MARL algorithm
not only more comprehensive, but also effectively integrated with
real-world applications.

Current MARL environments that have connections to real-
life applications often try to reflect the cooperation ability among
agents with goals that require high degree of collaboration. For
example, in the LBF environment [4], agents need to collect ran-
domly scattered food in a grid world, and in RWARE [14], agents
are asked to place the shelves into designated workspaces, which is
similar to CraftEnv’s task design. However, the physical constraints
in RWARE on the workspace are relatively simple, and it only con-
siders the two-dimensional case, which is far from the practical
application scenarios. CraftEnv, by contrast, provides detailed phys-
ical constraints in 3D scenarios with rich elements that can more
appropriately simulate real-world tasks such as smart warehousing.
In addition, the aforementioned MARL environments are either
pure game environments or only simulations of real-world tasks.
CraftEnv, however, provides physical machine support, where the

trained strategy can be directly deployed on physical models. De-
tailed comparison with other MARL environments is shown in
Table 3.

6 CONCLUSION
Wepropose the firstMARL environment for CRC scenarios, CraftEnv,
which can model multiple real-world scenarios such as smart ware-
housing and smart construction from the perspective of reinforce-
ment learning. CraftEnv can not only conveniently and consis-
tently evaluate the performance of various MARL algorithms in
real scenes, but also promote the application of MARL technol-
ogy in real tasks on this basis, thus promoting the development of
collective intelligence. In the experiments, we find that the value
factorization based method can often achieve better performance
in multiple tasks of CraftEnv. Besides, the bottleneck of perfor-
mance for different algorithms mainly exists in the task allocation
of agents and the early exploration of the environment. We hope
CraftEnv can shed some light on the relative strengths and limi-
tations of existing MARL algorithms in real-life applications and
provide guidance in terms of practical considerations and future
research, In this way, swarm intelligence can be further developed
in a variety of real situations.
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