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ABSTRACT
We study a class of two-player competitive concurrent stochastic

games on graphs with reachability objectives. Specifically, player

1 aims to reach a subset 𝐹1 of game states, and player 2 aims to

reach a subset 𝐹2 of game states where 𝐹2 ∩ 𝐹1 = ∅. Both players

aim to satisfy their reachability objectives before their opponent

does. Yet, the information players have about the game dynamics

is asymmetric: P1 has a (set of) hidden actions unknown to P2

at the beginning of their interaction. In this setup, we investigate

P1’s strategic planning of action deception that decides when to

deviate from the Nash equilibrium in P2’s gamemodel and employ a

hidden action, so that P1 canmaximize the value of action deception,

which is the additional payoff compared to P1’s payoff in the game

where P2 has complete information. Anticipating that P2may detect

his misperception about the game and adapt his strategy during

interaction in unpredictable ways, we construct a planning problem

for P1 to augment the game model with an incomplete model about

the theory of mind of the opponent P2. While planning in the

augmented game, P1 can effectively influence P2’s perception so

as to entice P2 to take actions that benefit P1. We prove that the

proposed deceptive planning algorithm maximizes a lower bound

on the value of action deception and demonstrate the effectiveness

of our deceptive planning algorithm using a robot motion planning

problem inspired by soccer games.
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1 INTRODUCTION
Asymmetrical information between players is commonly encoun-

tered in conflict analysis and security applications [6, 14, 23, 25].

For adversarial interactions, a player can leverage the asymmetric

information, or his/her opponent’s disinformation to gain addi-

tional benefits towards achieving his/her objective. Such strategic

reasoning and planning are termed deception [10].

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

In general, deception techniques can be categorized into two

classes: One is intention deception where the mark has misinforma-

tion or disinformation about the intention of the deceiver. In game

theory, intention deception is also known as payoff misperception

where players have different perceptions about the payoff matrix

in the game. Many existing literature focus on this class of decep-

tion [12, 16, 17] with applications to cyber defense with deception

[9, 26, 27] and motion planning [20]. Another class is capability

deception, where the mark has incomplete knowledge about the

deceiver’s action or perception capabilities.

For modeling the interactions with asymmetric information,

Bayesian games [13] and hypergames [5] have been used [2, 3,

12, 15]. In Bayesian game, the solution approach is to transform

a game with incomplete information to a game with imperfect

information by capturing players incomplete information as a type

variable, which is not observable to other players. However, in

many deception settings, the type space, i.e. , the hypothesis space

of the opponent’s intention or capabilities are not public knowledge.

Hypergame on the other hand, construct a hierarchy of perceptual

games that captures the hierarchical information — what player 𝑖

knows about the game known to the other player.

Since a hypergame model allows us to capture the unawareness

of players, this work extends the hypergame model to analyze

action deception in a class of two-player concurrent, stochastic

games where each player has a reachability objective, represented

by a set of goal states to be reached. Specifically, as the game starts,

player 1 (P1) has a (set of) private actions which are hidden from

P2. Additionally, P1 has complete information about P2’s actions.

Hence, P1 may deploy action deception — deciding when is the

best time to reveal a hidden action to capitalize on the gain from

P2’s suboptimal decisions caused by P2’s incomplete information.

In literature, two-player reachability games have been extensively

studied for the case in which both the players have symmetric

and complete information [7, 8, 22, 28]. Quantitative solutions of

reachability games can be formulated using Markov games [1, 11]

Action deception in reachability games has been studied in [18].

The authors show that given two-sided perfect observations, the

deceiver has a strategy to reach its goal with probability one by

strategically revealing the private actions, when starting from a

state that this objective cannot be achievedwith probability one, had

P2 known P1’s private actions. However, their solution is qualitative

for turn-based games, whereas we investigate the gain of action

deception for quantitative planning in concurrent games: When P1

cannot achieve the objective with probability one, how can P1 use

action deception to improve his chance of achieving his objective?

A key observation is that in quantitative planning, P2 may know

there is a mismatch between the game she knows and the true game,
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by detecting a deviation of the gameplay from the predicted distri-

bution resulting from a Nash equilibrium. Therefore, we formulate

action deception to determine a switching time of two strategies:

At the start of the interaction, P1 can select from two strategies:

One is his best response 𝜋2
1
in the game known to P2, called P2’s

perceptual game, and another is his best response 𝜋1 in the true

game, where a hidden action can be used. P1 is to determine the

optimal timing to switch from 𝜋2
1
to 𝜋1 to maximize the value of

action deception, measured by the difference between P1’s payoff

gained by deceiving P2 and P1’s payoff from the equilibrium in the

true game where P2 knows about P1’s action set.

We develop a deceptive planning algorithm that incorporates a

theory of mind (ToM) of P2 with two components: 1) P2’s change

detection mechanism: Given the switching time 𝑡 , what is the delay

𝑘1 that P2 may have to detect that P1 has deviated from her percep-

tual game? 2) P2’s reaction to deviation: What is P2’s strategy in

reaction to P1’s action deception? We employ the solution concept

of subjective rationalizable strategies [24] to model P2’s response,

that is, P2 always behaves rationally in her perception of the game.

However, P1’s theory of mind for P2 is incomplete as P1 has no

prediction of P2’s response when P2 detects the mismatch but has

not yet learned P1’s private actions. Therefore, the value of action

deception is defined to be the optimal gain against all completions

of P1’s incomplete ToM for P2. By augmenting P1’s planning state

space with the additional state variables to track the ToM of P2,

we showed that the optimal solution in the constructed planning

problem provides a lower bound on the value of action deception

using a switching strategy.

2 PRELIMINARIES AND PROBLEM
FORMULATION

Notations. Let R denote the set of real numbers and R𝑛 the set

of real 𝑛-vectors. Given a finite set 𝑍 , the set of probability distri-

butions over 𝑍 is represented as D(𝑍 ).

2.1 Concurrent Stochastic Games with
Reachability Objectives

We start by introducing a standard model of two-player stochastic

games played on a graph with perfect observations. It consists of

two components: A game graph describing the players’ interacting

dynamics, and a pair of players’ intentions/objectives expressed as

reachability properties, that is, each player has a set of goal states

to be reached. We refer to player 1 as P1 (pronoun he/him/his) and

player 2 as P2 (pronoun she/her/hers).

Definition 2.1 (Concurrent stochastic games on graphs with reach-
ability objectives). A two-player, concurrent, stochastic game on a

graph is a tuple

𝐺 = (𝑆,𝐴, 𝑃, 𝑠0, 𝛾, 𝐹1, 𝐹2),
with the following components:

• 𝑆 is a finite set of states.

• 𝐴 = 𝐴1 ×𝐴2 is a finite set of actions, where 𝐴1 is the set of

actions that P1 can perform, and 𝐴2 is the set of actions that

P2 can perform.

• 𝑃 : 𝑆 × 𝐴 → D(𝑆) is a probabilistic transition function. At

every state 𝑠 ∈ 𝑆 , P1 chooses an action 𝑎 ∈ 𝐴1, and P2

chooses an action 𝑏 ∈ 𝐴2 simultaneously. Then, a successor

state 𝑠 ′ is determined by the probability distribution 𝑃 (· |
𝑠, (𝑎, 𝑏)).

• 𝑠0 is an initial state.

• 𝛾 ∈ (0, 1] is a discounting factor;
• 𝐹1 ⊆ 𝑆 is P1’s target states, 𝐹2 ⊆ 𝑆 \ 𝐹1 is referred to as P2’s

target states. A reachability objective with the target set 𝐹𝑖
means that the player aims to reach a state in 𝐹𝑖 . All states

in 𝐹1 ∪ 𝐹2 are sink/absorbing states, regardless of players’

actions.

In the following, we refer to the game as a concurrent reachability

game. A play in the game is constructed as follows: The players

start in the initial game state 𝑠0, simultaneously select a pair of

actions (𝑎, 𝑏) ∈ 𝐴, and with some probability, move to a next state

𝑠1, and repeat. The game ends when one of the players satisfies

his/her objective. Thus, a play 𝜌 is a sequence of states and actions

𝑠0 (𝑎0, 𝑏0)𝑠1 (𝑎1, 𝑏1) . . . such that 𝑃 (𝑠𝑖+1 | 𝑠𝑖 , (𝑎𝑖 , 𝑏𝑖 )) > 0 for any

𝑖 ≥ 0. A prefix of a play is a finite initial segment of the state-action

sequence. The set of all possible plays in the game is denoted by

Plays. The set of prefixes of plays is denoted by PrefPlays.
The reachability objective with the target set 𝐹 can be expressed

by the temporal logic formula ^ 𝐹 read “eventually 𝐹 ”. The sym-

bol ^ is a temporal operator for the eventuality.
1
A play 𝜌 =

𝑠0 (𝑎0, 𝑏0)𝑠1 (𝑎1, 𝑏1) . . . is said to satisfy the formula, denoted by

𝜌 |= ^ 𝐹 , if there exists 𝑖 ≥ 0, 𝑠𝑖 ∈ 𝐹 . We denote by ⟦^ 𝐹⟧ = {𝜌 ∈
Plays | 𝜌 |= ^ 𝐹 } the set of plays that satisfy the reachability objec-

tive defined by a target set 𝐹 . Let 𝜌 [𝑖] be the 𝑖-th state in the play 𝜌 .

For any state 𝑠 ∈ 𝑆 , the set of plays starting from 𝑠 and satisfying

the formula, that is, {𝜌 ∈ Plays | 𝜌 |= ^ 𝐹, 𝜌 [0] = 𝑠}, can be shown

to be measurable.

A (mixed) strategy 𝜋𝑖 : PrefPlays → D(𝐴𝑖 ), for player 𝑖 ∈ {1, 2},
is a function that assigns a probability distribution over all actions

given a prefix of a play. Let Π𝑖 denote the (mixed) strategy space

of player 𝑖 . A strategy profile ⟨𝜋1, 𝜋2⟩ is a pair of strategies, one
for each player. A strategy profile ⟨𝜋1, 𝜋2⟩ induces a probability

measure Pr⟨𝜋1,𝜋2 ⟩
over PrefPlays.

We say that player 𝑖 almost surely wins the game if the player

can ensure, no matter how the opponent plays, that a state in 𝐹𝑖 will

be reached with probability one. We formally define the almost-sure

winning region and strategy as follows.

Definition 2.2 (Almost-sure winning strategy/region [8]). A strat-

egy 𝜋1 is almost-sure winning for P1 starting from state 𝑠 ∈ 𝑆 if and

only if Pr⟨𝜋1,𝜋2 ⟩
𝑠 (⟦^ 𝐹1⟧) = 1 for any 𝜋2 ∈ Π2, where Pr

⟨𝜋1,𝜋2 ⟩
𝑠 is

the probability measure over paths starting from 𝑠 induced by the

strategy profile ⟨𝜋1, 𝜋2⟩. The winning region of player 𝑖 is defined

by ASW𝑖 = {𝑠 ∈ 𝑆 | ∃𝜋1 ∈ Π1,∀𝜋2 ∈ Π2, Pr
⟨𝜋1,𝜋2 ⟩
𝑠 (⟦^ 𝐹𝑖⟧) = 1},

which is the set of states starting fromwhich, there exists an almost-

sure winning strategy.

The almost-sure winning region and strategy for P2 are defined

analogously, with respect to P2’s reachability objective ^ 𝐹2. An al-

gorithm for computing the almost-sure winning regions and strate-

gies for concurrent stochastic games with reachability objectives

can be found in [8]. Further, the game is memoryless determined.

1
Since we consider only reachability objectives and use the formula to simplify some

notations, we omit the preliminaries for temporal logic, which can be found in [21].
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Lemma 2.3 ([8]). In a concurrent reachability game, for any 𝑠 ∈
ASW1, there exists a memoryless, almost-sure winning strategy for
P1 starting from 𝑠 .

When the game reaches a state in player 𝑖’s almost-sure winning

region, player 𝑖 is ensured to eventually reach the target set 𝐹𝑖 by

following his/her almost-sure winning strategy, whereas player 𝑗

has no chance of reaching the set 𝐹 𝑗 given that 𝐹1 ∩ 𝐹2 = ∅.
For any state 𝑠 ∈ 𝑆 \ (ASW1 ∪ ASW2), both players have a

positive probability to reach their respective target sets. To compute

a strategy for any state 𝑠 ∈ 𝑆 \ (ASW1 ∪ ASW2), we introduce the
following utility function and the concept of Nash equilibrium.

Definition 2.4 (Utility functions). The utility function for player 𝑖

is defined as𝑢𝑖 : 𝑆×Π𝑖×Π 𝑗 → R such that for (𝑖, 𝑗) ∈ {(1, 2), (2, 1)},

𝑢𝑖 (𝑠, 𝜋𝑖 , 𝜋 𝑗 ) = E⟨𝜋𝑖 ,𝜋 𝑗 ⟩
[ ∞∑︁
𝑡=1

𝛾𝑡 · 𝑅(𝑆𝑡−1, (𝐴𝑡−1, 𝐵𝑡−1), 𝑆𝑡 ) | 𝑆0 = 𝑠

]
,

where 𝛾 ∈ (0, 1] is the discounting factor, and {(𝑆𝑖 , 𝐴𝑖 , 𝐵𝑖 ); 𝑖 =

0, 1, . . .} taking value in 𝑆×𝐴1×𝐴2 is the stochastic process induced

by the strategy profile ⟨𝜋𝑖 , 𝜋 𝑗 ⟩ from the concurrent reachability

game 𝐺 , and 𝑅 : 𝑆 ×𝐴 × 𝑆 → R is the reward function defined as

𝑅(𝑠, (𝑎, 𝑏), 𝑠 ′) = 1 if 𝑠 ′ ∈ ASW𝑖 and 𝑠 ∉ ASW𝑖 and 𝑅(𝑠, (𝑎, 𝑏), 𝑠 ′) = 0

otherwise.

In words, for any state in the positive winning region 𝑠 ∈ 𝑆 \
(ASW1 ∪ ASW2), the utility of player 𝑖 at state 𝑠 measures the

discounted probability of reaching his/her almost-sure winning

region ASW𝑖 from the state 𝑠 .

Definition 2.5 (Nash equilibrium [11]). A Nash equilibrium (NE)

of a stochastic game 𝐺 is a strategy profile ⟨𝜋∗
1
, 𝜋∗

2
⟩ with the prop-

erty that for (𝑖, 𝑗) ∈ {(1, 2), (2, 1)} we have
𝑢𝑖 (𝑠, 𝜋∗𝑖 , 𝜋

∗
𝑗 ) ≥ 𝑢𝑖 (𝑠, 𝜋𝑖 , 𝜋∗𝑗 ),∀𝑠 ∈ 𝑆,∀𝜋𝑖 ∈ Π𝑖 .

The NE can be solved using the solutions of zero-sum Markov

games [11].

2.2 Problem Formulation of Action Deception
We start by introducing asymmetric information in the game, which

enables P1’s deceptive planning.

Information Structure. The information owned by a player de-

scribes not only what the player observes during his/her interac-

tion with the opponent, but also what the player knows about the

components of the game. The following information structure is

considered:

• Both P1 and P2 have complete observations of states.

• P2 cannot observe P1’s actions but P1 can observe P2’s ac-

tions.

• P1’s action set known to P2, denoted 𝐴2

1
, is a proper subset

of 𝐴1, i.e. , 𝐴
2

1
⊆ 𝐴1.

• P1 knows both 𝐴2

1
and 𝐴1.

Remark 1. The assumption that P2 cannot observe P1’s actions
can be relaxed, as we shall see in the planning algorithm, even if P2
may be able to observe P1’s actions, there could still be an advantage
for P1 to use action deception.

Here is an informal problem statement.

Problem 1. Given the information structure between P1 and P2,
how can P1 exploit P2’s lack of information about P1’s actions for
strategic advantages?

2.3 An Illustrative Example: Soccer Game
We introduce a running example named soccer game to explain

the above concepts. In this game, the field is a 3 × 5 grid. There are

two players P1 and P2 in the game (A and B in Figures 1 and 2).

The ball (the star on the players) is possessed exclusively by one

of the players. The two players move simultaneously. The players

Figure 1: A soccer game between P1 (A) and P2 (B).

Figure 2: The target states.

can move up, down, left, and right (black arrows on Figure 1),

which are denoted by 𝑎𝑈 , 𝑎𝐷 , 𝑎𝐿 , 𝑎𝑅 , respectively. These actions

are known to each player. So P1’s action set is known to P2 is 𝐴2

1
=

{𝑎𝑈 , 𝑎𝐷 , 𝑎𝐿, 𝑎𝑅}. Besides, P1 has a hidden action that he can move

two cells down (red arrow on Figure 1). The hidden action is denoted

by 𝑎𝐻 . So the true action space of P1 is 𝐴1 = {𝑎𝑈 , 𝑎𝐷 , 𝑎𝐿, 𝑎𝑅, 𝑎𝐻 }.
There are two notable rules of a soccer game.

1. The players cannot go out of bounds. If they select an action

to do so, they will be forced to stay still.

2. When P1 and P2 move to the same cell, they each have a

probability of 50% to get the ball.

The two players aim to bring the ball to their opponent’s gate.

That is, P1 needs to bring the ball to the blue circles, and P2 needs

to bring the ball to the red circles. We denote the position of each

player as a tuple (𝑖, 𝑗) where 𝑖 is the player’s row and 𝑗 is the

player’s column. Let 𝑝1 be the position of P1 and 𝑝2 be the position

of P2. Then we define a boolean variable Ball = 0, 1. In this way, we

can define a state 𝑠 of a soccer game as 𝑠 = (𝑝1, 𝑝2,Ball). Therefore,
P1’s target set 𝐹1 = {((𝑖, 4), 𝑝2, 1)} for any 𝑖 and 𝑝2. P2’s target set
𝐹2 = {(𝑝1, (𝑖, 0), 0)} for any 𝑖 and 𝑝1.

At the beginning of the game, P2 does not know that P1 has

the hidden action 𝑎𝐻 . However, if P1 reveals his hidden action,

P2 will update her knowledge and change her strategy. Thus, the

question is how P1 utilizes his hidden action to improve his chance

of winning this game?

Session 1B: Planning
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

124



3 PLANNINGWITH ACTION DECEPTION
In this section, we introduce our main algorithm for action decep-

tion planning.

3.1 Hypergame Modeling and the Value of
Action Deception

We introduce a hypergame model to characterize the players’ in-

teraction given their respective information and higher-order in-

formation (that is, P1 knows about P2’s incomplete information).

First, it is observed that due to incomplete knowledge about P1’s

actions, P2’s game graph is incomplete. This incomplete view is

used to construct a perceptual game for P2.

Definition 3.1 (P2’s perceptual game). Given that P2 only knows a

subset𝐴2

1
of P1’s actions in the game graph𝐺 , P2’s perceptual game

is defined by𝐺2 = (𝑆,𝐴2

1
×𝐴2, 𝑃

2, 𝑠0, 𝛾, 𝐹1, 𝐹2) where the transition
function 𝑃2 is obtained by eliminating all transitions enabled by

P1’s actions in 𝐴1 \𝐴2

1
and any P2’s actions in 𝐴2. Formally,

𝑃2 (𝑠, (𝑎, 𝑏)) =
{
𝑃 (𝑠, (𝑎, 𝑏)) if 𝑎 ∈ 𝐴2

1
,

↑ otherwise.

(1)

where ↑means the function is undefined for the given input.

In P2’s perceptual game, for player 𝑖 ∈ {1, 2}, the best response
strategy 𝜋2

𝑖
defined for 𝑠 ∈ 𝑆 \ (ASW2

1
∪ ASW2

2
) together with

the Almost-Sure Winning (ASW) strategy 𝜋
2,ASW
𝑖

are subjective
rationalizable, because these are best response strategies to the

opponent in P2’s perceptual game. Here ASW2

𝑖
is the almost-sure

winning region of P2’s perceptual game for player 𝑖 and ASW𝑖 is

the almost-sure winning region of true game for player 𝑖 .

To capture the asymmetric information, we extend the hyper-

game model [4] to our game setup.

Definition 3.2 (Hypergame). Given the information structure con-

sidered herein, the interaction between P1 and P2 is captured by

the hypergame

𝐻2 = (𝐻1,𝐺2),
where 𝐻1 = (𝐺,𝐺2) is P1’s perceptual game, which is a level-1

hypergame. The game 𝐺2
is P2’s perceptual game.

In this level-2 hypergame, P1 knows both the true game 𝐺 and

P2’s perceptual game 𝐺2
. P2 knows only her perceptual game 𝐺2

.

Following the notion of action deception, the deceiver hides his

actions from the mark for some time and then deviates from the

mark’s perceptual game, by, for example, employing a strategy that

uses the hidden action. We formalize the deceptive planning to

determine when to deviate. For clarity, the notations are specified

in Table. 1.

NE in𝐺 ASW strategies in𝐺 NE in𝐺2
ASW strategies in𝐺2

⟨𝜋1, 𝜋2 ⟩ ⟨𝜋ASW
1

, 𝜋ASW
2

⟩ ⟨𝜋2

1
, 𝜋2

2
⟩ ⟨𝜋2,ASW

1
, 𝜋

2,ASW
2

⟩
Table 1: Notations for players’ strategies.

Further, we restrict P1’s deceptive strategy to the following class

of strategies.

Definition 3.3 (One-time switching strategy). A switching strat-

egy is a function 𝜋sw : PrefPlays → D(𝜋1 ∪ 𝜋2
1
) that assigns, for

a history 𝜌 ∈ PrefPlays, a probability distribution over the two

best responses, 𝜋2
1
for P1 in game 𝐺2

and 𝜋1 for P1 in game 𝐺 . The

switching strategy is one-time if it satisfies the following condi-

tion: For any 𝜌 ∈ Plays, there exists a switching point 𝑡 such that

𝜋sw (𝜌 [0 : 𝑘]) = 𝜋2
1
for all 𝑘 ≤ 𝑡 and 𝜋sw (𝜌 [𝑡 + 1 : 𝑡 + 𝑛]) = 𝜋1 for

all 𝑛 > 1.

It is noted that P1 may not use the hidden action immediately
upon the switching. For example, the best response 𝜋1 may not

employ a hidden action till a later time after the switching time.

Still, when P1 deviates from P2’s perceived best response 𝜋2
1
for P1,

it is possible for P2 to detect a mismatch of the observed game play

from her perceptual game 𝐺2
, albeit with some delay. Thus, P1’s

deceptive planning must incorporate a theory of mind for P2 and a

reasonable detection mechanism that P2 can use. Next, we show

that P1’s theory of mind for P2 is inherently incomplete.

Assuming that P2 can detect the deviation of P1 at some time

𝑡 + 𝑘1, for 𝑘1 ≥ 0. In P1’s theory of mind of P2, the strategy of P2

shall be behaviorally subjectively rationalizable (BSR) [24] in the

hypergame, defined as follows.

Definition 3.4 (P1’s Incomplete Model of P2’s Behaviorally Subjec-
tively Rationalizable Strategy). P1’s incomplete model of a behav-

iorally subjectively rationalizable strategy (BSR) for P2 is a function

𝜋𝐵
2
: PrefPlays → D(𝐴2)∪ ↑. The function 𝜋𝐵

2
is constructed as fol-

lows: For any history ℎ = 𝑠0 (𝑎0, 𝑏0)𝑠1 (𝑎1, 𝑏1)𝑠2 . . . 𝑠𝑛 ∈ PrefPlays
of length 𝑛, let ℎ0:𝑡 be the history during which P1 follows the

best response 𝜋2
1
in 𝐺2

and ℎ𝑡+1:𝑛 be the history during which P1

follows the best response 𝜋1 in the true game 𝐺 , let 𝑘1 be the time

step when P2 detects the deviation and 𝑘2 be the time step when

P2 learns about P1’s true action set 𝐴1, it holds that:

• For all 0 ≤ 𝑖 ≤ 𝑡 + 𝑘1,

𝜋𝐵
2
(ℎ0:𝑖 ) =

{
𝜋2
2
(𝑠𝑖 ), if 𝑠𝑖 ∉ ASW2

2
,

𝜋
2,ASW
2

(𝑠𝑖 ), otherwise.

That is, P1 predicts that P2 follows the best response in the

game 𝐺2
.

• For all 𝑡 + 𝑘1 < 𝑖 ≤ 𝑡 + 𝑘1 + 𝑘2,

𝜋𝐵
2
(ℎ0:𝑖 ) =↑,

That is, P1 cannot predict what strategy P2 will follow during

this time span. Thus, the strategy is undefined.

• And for all 𝑖 > 𝑡 + 𝑘1 + 𝑘2,

𝜋𝐵
2
(ℎ0:𝑖 ) =

{
𝜋2 (𝑠𝑖 ), if 𝑠𝑖 ∉ ASW2,

𝜋ASW
2

(𝑠𝑖 ), otherwise.

That is, P2 follows the best response in the game 𝐺 .

P1’s model of P2’s BSR strategy is incomplete because P1 cannot

predict what strategy P2 will employ once P2 detects that the game

she knows is incorrect but does not yet know what the true game

is. In the case when P2 cannot observe P1’s actions, it is possible

that P2 will not learn the true game dynamics given her partial

observations. In this model, P2 always commits to her subjective

rationalizable strategy in his perceptual game, whether it is 𝐺2
in
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the beginning or𝐺 after learning P1’s actions. There is no advantage

to deviate from the subjective rationalizable strategy.

A completion of P1’s model of P2’s BSR strategy, denoted by

𝜋̃𝐵
2
, is defined such that for any ℎ ∈ PrefPlays, if 𝜋𝐵

2
(ℎ) is defined,

then 𝜋̃𝐵
2
(ℎ) = 𝜋𝐵

2
(ℎ), otherwise 𝜋̃𝐵

2
(ℎ) ∈ D(𝐴2) can be an arbitrary

distribution over P2’s actions. We define Π̃𝐵
2
be the set of all possible

completions for 𝜋𝐵
2
. With this notion, we can define the value of

action-deception as follows.

Definition 3.5 (The value of action deception using one-time switch-
ing strategy). For any one-time switching strategy 𝜋sw of P1, the

value of action deception for any initial state 𝑠0 ∈ 𝑆\(ASW1∪ASW2),
i.e. , the positive winning region for P1/P2,

VoD(𝜋sw) = min

𝜋̃𝐵
2
∈Π̃𝐵

2

𝑢1 (𝑠0, 𝜋sw, 𝜋̃𝐵2 ) − 𝑢1 (𝑠0, 𝜋1, 𝜋2),

and the optimal one-time switching strategy 𝜋sw,∗ is such that

𝜋sw,∗ = arg max

𝜋 sw∈Πsw
1

VoD(𝜋sw),

where Πsw
1

is the set of one-time switching strategies in which P1

can select. The optimal value of action deception is VoD(𝜋sw,∗).
By definition, if the value of action deception is greater than 0,

then P1 will gain more payoff against P2 by using action deception

than what P1 should have obtained if P1 informs P2 of the true

game dynamics. Because P1 cannot predict how P2 reacts upon de-

tecting the game mismatch, P1’s computation of the value of action

deception considers the worst case completion of his incomplete

model of P2’s BSR strategy.

Example 1. We use a variation of the soccer game to illustrate
the two different key events when P1 employs a one-time switching
strategy.

1. P1 switches his strategy from 𝜋2
1
to 𝜋1.

2. P2 detects that P1 deviates from the equilibrium in P2’s per-
ceptual game 𝐺2.

3. P1 uses his hidden action.
Consider the arena in Figure 3, where the blue cells represent bouncing
walls. We assume𝐴2

1
= 𝐴2 = {𝑎𝑈 , 𝑎𝐷 , 𝑎𝐿, 𝑎𝑅} and a hidden action for

P1 is that P1 can traverse the yellow cell. But in P2’s perceptual game,
that yellow cell is a bouncing wall. The target states for P1 and P2 are
the same as those in the soccer game introduced in Subsection 2.3.

Since P2 does not know the hidden action of P1, P2’s subjective
rationalizable strategy in 𝐺2 will inform P2 to reach the starred cell,
where she can intercept P1 with the highest probability, given P1’s
best response in 𝐺2. P2 predicts that P1 will also move to the top row.
In the meantime, an optimal strategy for P1 is to move toward the
bottom corridor and eventually use his hidden action to win. In this
example, P1 will switch his strategy to 𝜋1 as the game starts and then
use his hidden action when the yellow cell is reached, which shows
that event 3 occurs after event 1, and with a possible delay. In this
example, events 1 and 2 occur at the same time. In general, 2 only
occurs after 1, with an inherent delay introduced by change detection
algorithms.

3.2 A Detection Mechanism
To complete a theory of mind for P2, we incorporate a change

detection mechanism that predicts the detection time 𝑘1.

Figure 3: Soccer game with bouncing walls.

Assumption 1. P2 should not detect any deviation if P1 follows
the best response 𝜋2

1
in P2’s perceptual game 𝐺2.

Given P2’s perceptual game𝐺2
, P2’s knowledge about her action

sequence 𝑏0𝑏1, . . . , 𝑏𝑛 , and P2’s knowledge about P1’s best response

𝜋2
1
in𝐺2

, P2’s null hypothesis is a Markov chainMC0 = {𝑆𝑡 , 𝑡 ≥ 0}
where 𝑆0 = 𝑠0 is the initial game state and the transition function

is defined by

Pr0 (𝑆𝑡+1 = 𝑠 ′ | 𝑆𝑡 = 𝑠, 𝐵𝑡 = 𝑏𝑡 ) =∑︁
𝑎∈𝐴2

1

𝑃2 (𝑠 ′ | 𝑠, 𝑎, 𝑏𝑡 )𝜋21 (𝑠, 𝑎), for 𝑡 = 0, 1, . . . , 𝑛.

Had P2 known that P1 will switch to strategy 𝜋1, which is P1’s

best response in the true game, he can construct the alternative

hypothesis as another Markov chain MC1 = {𝑆 ′𝑡 , 𝑡 ≥ 0} with the

initial state 𝑆 ′
0
= 𝑠0 and the transition function

Pr1 (𝑆 ′𝑡+1 = 𝑠 ′ | 𝑆 ′𝑡 = 𝑠, 𝐵𝑡 = 𝑏𝑡 ) =∑︁
𝑎∈𝐴1

𝑃2 (𝑠 ′ | 𝑠, 𝑎, 𝑏𝑡 )𝜋1 (𝑠, 𝑎), for 𝑡 = 0, 1, . . . , 𝑛.

Assuming P2 knows both MC0 and MC1, then P2 can employ

Page’s likelihood ratio CUSUM change point detection [19] to de-

tect if P1 switched the strategy. Given the observation {𝑠0, . . . , 𝑠𝑁 }
generated by MC0 for the first 𝑘 steps and then MC1 for the re-

maining 𝑘 + 1, . . . , 𝑁 time steps, with the knowledge of P2’s action

sequence 𝑏𝑘 , 𝑘 = 0, . . . , 𝑁 − 1, the change detector is to determine

the change point. The stopping time 𝑁𝐺 is defined as follows.

𝑁𝐺 = inf{𝑛 | max

1≤𝑘≤𝑛

[ 𝑛∑︁
𝑖=𝑘

log

Pr1 (𝑠𝑖 | 𝑠𝑖−1, 𝑏𝑖−1)
Pr0 (𝑠𝑖 | 𝑠𝑖−1, 𝑏𝑖−1)

]
≥ 𝑐𝛾 },

where 𝑐𝛾 is a user-defined threshold and 1 ≤ 𝑛 ≤ 𝑁𝐺 . We introduce

the following discrimination function: Let 𝑠0:𝑛 = 𝑠0, 𝑏0, 𝑠1, 𝑏1, . . . , 𝑠𝑛
be P2’s observation up to time 𝑛,

𝑑 (𝑠0:𝑛) = max

1≤𝑘≤𝑛

[ 𝑛∑︁
𝑖=𝑘

log

Pr1 (𝑠𝑖 | 𝑠𝑖−1, 𝑏𝑖−1)
Pr0 (𝑠𝑖 | 𝑠𝑖−1, 𝑏𝑖−1)

]
.

The update of the discrimination function can be made incremental

as follows,

𝑑 (𝑑 (𝑠0:𝑛−1), (𝑠𝑛−1, 𝑏𝑛−1, 𝑠𝑛)) =

max

{
𝑑 (𝑠0:𝑛−1) + log

Pr1 (𝑠𝑛 | 𝑠𝑛−1, 𝑏𝑛−1)
Pr0 (𝑠𝑛 | 𝑠𝑛−1, 𝑏𝑛−1)

, 0

}
.
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Remark 2. If P2 can observe P1’s action sequence 𝑎0𝑎1, . . . , 𝑎𝑛 ,
then we only need to construct the Markov chain over the set 𝑆 ×𝐴1.

Pr0 (𝑆𝑡+1 = 𝑠 ′, 𝐴𝑡 = 𝑎𝑡 | 𝑆𝑡 = 𝑠, 𝐵𝑡 = 𝑏𝑡 ) =
𝑃2 (𝑠 ′ | 𝑠, 𝑎𝑡 , 𝑏𝑡 )𝜋21 (𝑠, 𝑎𝑡 ), for 𝑡 = 0, 1, . . . , 𝑛.

The chain for the alternative hypothesis is constructed analogously.

The assumption that P2 knows the alternative hypothesisMC1 is

unrealistic. We refer to this P2 with such knowledge as an informed
opponent.

Next, we show that P1’s deceptive planning strategy against

such an informed opponent will provide a lower bound on the per-

formance for P1’s deceptive planning against P2 in the actual game.

Our formulation employs a semi-Markov decision process (MDP),

which is a class of MDP in which the agent selects policies rather

than primitive actions. The semi-MDP is equivalently expressed as

a one-player stochastic game where P1 makes a decision, and then

the nature player determines a stochastic outcome. In this way, we

can capture clearly how nature’s choice affects the theory of mind

of P2, constructed by P1.

Definition 3.6 (Planning an optimal one-time switch action decep-
tion). The planning with action deception can be formulated as a

semi-Markov decision process

𝑀 = (𝑉1 ∪𝑉𝑁 , {𝜋2
1
, 𝜋1},Δ, 𝑅),

where

• 𝑉1 B 𝑆 × Φ × {0, 1} is the state set at which P1 makes a

decision. Each state (𝑠, 𝜙, 𝜇) includes a state 𝑠 ∈ 𝑆 of the

original game 𝐺 , a real number 𝜙 ∈ [0, +∞), and a Boolean

𝜇 ∈ {0, 1}. Here 𝜙 represents the value of the discrimination

function given some history. The Boolean 𝜇 keeps track of

whether P1 has deviated from the equilibrium in 𝐺2
.

• 𝑉𝑁 B 𝑆 ×Φ×{0, 1}×𝐴1×𝐴2 is the state set at which nature

determines a probabilistic outcome.

• 𝜋2
1
, 𝜋1 are two macro-actions (policies) for P1.

• Δ is the probabilistic transition function, defined for both P1

and the nature player’s states.

First, at any nature’s state 𝑣 = (𝑠, 𝜙, 𝜇, 𝑎, 𝑏), if 𝑠 ∈ ASW1 ∪
ASW2 (almost-sure winning regions for either player in the

true game 𝐺), then with probability one, a sink state sink is

reached, i.e. ,

Δ((𝑠, 𝜙, 𝜇, 𝑎, 𝑏), 𝜆, sink) = 1.

where 𝜆 is a null action, representing nature’s probabilistic

choice.

Second, consider a P1’s state (𝑠, 𝜙, 𝜇), there are three cases:
Case 1: if 𝜇 = 0 and P1 chooses the strategy 𝜋2

1
, then

Δ((𝑠, 𝜙, 0), 𝜋2
1
, (𝑠, 𝜙, 0, 𝑎, 𝑏)) = 𝜋2

1
(𝑠, 𝑎) · 𝜋2

2
(𝑠, 𝑏)

At the state (𝑠, 𝜙, 0, 𝑎, 𝑏), the nature determines a probabilistic

outcome

Δ((𝑠, 𝜙, 0, 𝑎, 𝑏), 𝜆, (𝑠 ′, 𝜙, 0)) = 𝑃 (𝑠, (𝑎, 𝑏), 𝑠 ′).

Case 2: if 𝜇 = 0 and P1 switches to strategy 𝜋1, then

Δ((𝑠, 𝜙, 0), 𝜋1, (𝑠, 𝜙, 1, 𝑎, 𝑏)) = 𝜋1 (𝑠, 𝑎) · 𝜋22 (𝑠, 𝑏),

where the Boolean switches from 0 to 1 indicating that P1

switched strategies. Then, at the state (𝑠, 𝜙, 1, 𝑎, 𝑏), the nature
determines a probabilistic outcome,

Δ((𝑠, 𝜙, 1, 𝑎, 𝑏), 𝜆, (𝑠 ′, 𝜙 ′, 1)) = 𝑃 (𝑠, (𝑎, 𝑏), 𝑠 ′),
where 𝜙 ′ = 𝑑 (𝜙,Obs(𝑠, (𝑎, 𝑏), 𝑠 ′)) is the updated value for

the discrimination function given P2’s observation of the

transition.

Case 3: If 𝜇 = 1, P1 only has one macro-action, which is

to follow his best response in the game 𝐺 . Consider a state

(𝑠, 𝜙, 1), then
Δ((𝑠, 𝜙, 1), 𝜋1, (𝑠, 𝜙, 1, (𝑎, 𝑏))) = 𝜋1 (𝑠, 𝑎) · 𝜋22 (𝑠, 𝑏).

Note that P2 still follows the NE in her perceptual game 𝐺2
.

Given the state (𝑠, 𝜙, 1, (𝑎, 𝑏)), the nature decides the next
state probabilistically. If 𝜙 ≤ 𝑐𝛾 , then

Δ((𝑠, 𝜙, 1, (𝑎, 𝑏)), 𝜆, (𝑠 ′, 𝜙 ′, 1)) = 𝑃 (𝑠, (𝑎, 𝑏), 𝑠 ′) .
where 𝜙 ′ = 𝑑 (𝜙,Obs(𝑠, (𝑎, 𝑏), 𝑠 ′)).
Otherwise, if 𝜙 > 𝑐𝛾 ,

Δ((𝑠, 𝜙, 1, (𝑎, 𝑏)), 𝜆, sink) = 1.

• 𝑅 : 𝑉1 ∪𝑉𝑁 → R is a state-based reward function. For any

𝑣 ∈ 𝑉1, 𝑅(𝑣) = 0, and for any 𝑣 = (𝑠, 𝜙, 𝜇, 𝑎, 𝑏) ∈ 𝑉𝑁 ,

𝑅(𝑣) =


1, if 𝑠 ∈ ASW1,

−1, if 𝑠 ∈ ASW2,

𝑢1 (𝑠, 𝜋1, 𝜋2), if 𝜙 > 𝑐𝛾 ∧ 𝑠 ∉ ASW1 ∪ ASW2,

0, otherwise.

In this planning problem, the process terminates when one of

the players reaches his/her almost-sure winning regions in the

true game, or P2 detects the deviation of P1’s best response from

his perceptual game. The semi-MDP can be solved using dynamic

programming algorithms.

Lemma 3.7. Given that𝐺2 can be obtained from𝐺 by eliminating
all transitions enabled by pairs of P1’s hidden actions 𝐴1 \ 𝐴2

1
and

P2’s actions, it holds that ASW2 ⊆ ASW2

2
.

The proof follows from the computation of almost-sure winning

regions [8] in a concurrent reachability game and thus is omitted.

Intuitively, P1’s hidden actions can make a state 𝑠 ∈ ASW2

2
\ ASW2

becomes positive winning for P1 and P2, regardless of P2’s action

choice.

The following statement holds:

Theorem 3.8. Let 𝜋sw,† be the optimal policy in the semi-MDP
𝑀 , it holds that

VoD(𝜋sw,†) ≤ VoD(𝜋sw,∗).
where 𝜋sw,∗ is the optimal one-time switching strategy for action
deception (Def. 3.5).

Proof. For each state sequence that terminates in sink in the

semi-MDP, 𝜌 = (𝑠0, 𝜙0, 𝜇0) (𝑠0, 𝜙0, 𝜇0, 𝑎0, 𝑏0) (𝑠1, 𝜙1, 𝜇1), . . .
(𝑠𝑁 , 𝜙𝑁 , 𝜇𝑁 , 𝑎𝑁 , 𝑏𝑁 ), sink, we can identify one unique play in the

original game 𝜌 = 𝑠0 (𝑎0, 𝑏0)𝑠1 (𝑎1, 𝑏1)𝑠2 . . . 𝑠𝑁 ∈ PrefPlays.
Following the previous analysis of P2’s BSR strategy, let 𝑡 be

P1’s strategy switching time, 𝑡 + 𝑘1 be the time when P2 detects a
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deviation and 𝑡 + 𝑘1 + 𝑘2 be the time when P2 learns about the true

game. The following cases are possible:

Case 1: If 𝑡 + 𝑘1 > 𝑁 , which means that P2 does not detect P1’s

deviation from 𝜋2
1
and thus for all 0 ≤ 𝑘 ≤ 𝑁 , ℎ𝑘 ≤ 𝑐𝛾 , then the

game can only terminate if 𝑣𝑁 ∈ ASW1 ∪ ASW2. In the case that

𝑠𝑁 ∈ ASW1, P1 receives a payoff of 1 as he can use the almost-sure

winning strategy starting from 𝑠𝑁 . In the second case, 𝑠𝑁 ∈ ASW2,

P1 receives a payoff of -1. Because ASW2 ⊆ ASW2

2
(Lemma 3.7) and

P2 does not know the true game 𝐺 , P2 can commit to the almost-

sure winning strategy 𝜋
2,ASW
2

. Such a strategy is sub-optimal in

the true game. Thus, P1’s payoff of −1 is a lower bound on the

actual payoff P1 may receive because P2’s suboptimal strategy

may provide a possibility for the game states to leave ASW2. This

is because a policy almost-sure winning for ASW2

2
may not be

almost-sure winning for ASW2 based on the qualitative analysis of

reachability objectives [8].

Case 2: If 𝑡 +𝑘1 = 𝑁 , which means that P2 detects P1’s deviation

from 𝜋2
1
at time step𝑁 , then P1’s reward is given by the payoff of the

equilibrium in the true game. This reward is a lower bound because

it assumes that after detection, P2 commits to his best response in𝐺 .

This assumption ignores the possible delay that P2 learns about the

true game after detection. For any strategy 𝜋2 that P2 can commit

to after the detection, we have that 𝑢2 (𝑠𝑁 , 𝜋1, 𝜋2) ≤ 𝑢2 (𝑠𝑁 , 𝜋1, 𝜋2)
and thus 𝑢1 (𝑠𝑁 , 𝜋1, 𝜋2) ≥ 𝑢1 (𝑠𝑁 , 𝜋1, 𝜋2) because ⟨𝜋1, 𝜋2⟩ is the

equilibrium in the zero-sum game 𝐺 .

Given both cases, the reward P1 obtains upon reaching sink, is a
lower bound on the actual payoff P1 receives against a BSR strategy

employed by P2. In addition, if the process does not terminate, then

the reward obtained by P1 is zero, which is the same as the reward

of a non-terminating play for P1 against any BSR strategy of P2.

Thus, the optimal value of action deception is lower bounded by

the value of the optimal policy in the semi-MDP𝑀 . □

4 EXPERIMENTS
We illustrate the solution using the soccer game example in Ex-

ample 1. First, it is observed that the MDP in Def. 3.6 has hybrid

state space because the range Φ of the discrimination function is

continuous. We employ a discretization-based approach to solve the

MDP by uniformly discretizing state-space [0, 𝑐𝛾 ] into 𝑛 intervals,

[(𝑖−1)𝛿, 𝑖𝛿], 𝑖 = 1, 2, . . . , 𝑛, where 𝛿 is the length of the interval. For

a discrimination function value 𝜙 ∈ [(𝑖 − 1)𝛿, 𝑖𝛿], we label it as a
discrimination function value level 𝜙𝑖 . For 𝜙 > 𝑐𝛾 , we label it as 𝜙𝑒𝑥 .

In the update of the discrimination function value, the midpoint

of the interval represents the level 𝜙𝑖 . For instance, if the current

level is 𝜙𝑖 , the update will be 𝜙
′ = 𝑑 ( (2𝑖−1)𝛿

2
,Obs(𝑠, (𝑎, 𝑏), 𝑠 ′)). In

the experiments, we set 𝛿 = 0.2, 𝑐𝛾 = 2. Hence, there are 10 levels

with [0, 𝑐𝛾 ] and a level 𝜙𝑒𝑥 .

4.1 Value of Deception and Comparative
Analysis

We show the value of action deception by comparing the differences

between some state values under different strategies. Since there

are too many states in the MDP. We mainly focus on initial states,

i.e., the state that 𝑠 ∉ ASW1 ∪ ASW2, 𝜙 = 0, and 𝜇 = 0.

Figure 4 uses heat maps to show the value of action deception

VoD(𝜋sw,†) given the optimal switching strategy 𝜋sw,† obtained

by solving the semi-MDP. To make the results clearer, we plot the

figure by multiplying the value by 100, i.e. , the range of VoD(𝜋sw,†)
is enlarged to [0, 100] instead of [0, 1]. We employ value iteration

to solve the semi-MDP that terminates when the Bellman error is

below 0.1 (with respect to the enlarged reward). From this figure,

Figure 4: The VoD(𝜋sw,†) given all possible initial positions.

we observe that P1 will benefit more from action deception when

P2 has the ball at the beginning of their interaction. Across all

initial states, the maximal VoD is 72.289 and the minimal VoD is

0. In other words, the maximum gain of winning probability for

P1 is nearly 70% for some states. If from a given initial state where

VoD(𝜋sw,†) is close to zero, then P1 may choose not to deviate and

instead inform P2 of the true game.

To gain more insight into P1’s switching policy, Figure 5 shows

a snapshot of the game state where P1 switches his strategy. This

Figure 5: P1 switches his strategy to avoid losing the game.

state 𝑠 ∈ ASW2

2
, i.e., the almost-sure winning region of P2 in𝐺2

. P2

thinks that she will win with probability 1 by moving left. However,

if P2 knows the true game, P2 will not go left now since she knows
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that P1 can intercept the ball with probability 0.5 by using the

hidden action 𝑎𝐻 . That is, 𝜋2
2
(𝑎𝐿 | 𝑠) = 1 and 𝜋2 (𝑎𝐿 | 𝑠) = 0 at the

current state 𝑠 . When concurrently, P2 moves left according to 𝜋2
2

and P1 uses the hidden action to move down two cells, P1 increase

his chance of winning by 50%.

To understand how the delay in detection can be exploited by P1,

we perform the following experiment. Instead of using a realistic

change detection, the semi-MDP is constructed assuming that P2

has no delay in detecting the change. Then, by solving this semi-

MDP, we obtained an optimal switching strategy 𝜋so for P1 to play

against such a strong opponent P2.

Figure 6 uses heat maps to show the differences of state value,

i.e, 𝑢1 (𝑠0, 𝜋sw,†, 𝜋2
2
) −𝑢1 (𝑠0, 𝜋so, 𝜋2

2
) for different initial states. Note

that the difference equals the difference between the value of de-

ception against the realistic P2 and the value of deception against

the strong opponent. Across all initial states, the maximal state

Figure 6: The difference between VoD for the realistic P2 and
a strong opponent P2 with no detection delay.

value difference is 46.564 and the minimal state value difference is

0. We also observed that the sets of initial states with higher values

of deception are consistent between the case playing against the

realistic P2 (Fig. 4) and the strong opponent P2 (Fig. 6). This result

also highlights the importance of exploiting P2’s detection delay.

4.2 Sensitivity Analysis of Detection Threshold
In the construction of the semi-MDP, we fixed the threshold of

the change detection algorithm. However, it is possible that the

true detection threshold used by P2 can be different. We conduct

experiments to assess how effective the deceptive strategies are

against uncertainty in the detection threshold.

The higher 𝑐𝛾 is, the less sensitive the detector becomes. Our

previous experiment sets 𝑐𝛾 = 2 which is a relatively sensitive value.

Next, we consider different values of 𝑐𝛾 = 1, 5, 8, 12, respectively.

For each 𝑐𝛾 value, we construct the corresponding semi-MDP and

then evaluate the strategy computed in the semi-MDP when 𝑐𝛾 = 2

in these different semi-MDPs, referred to as 𝑀1, 𝑀5, 𝑀8, 𝑀12
. In

this way, we can evaluate how robust P1’s strategy performs if P2

employs a detection threshold 𝑐𝛾 = 1, 5, 8, 12 while P1 thinks P2’s

detection threshold is 𝑐𝛾 = 2.

The value of 𝜋sw,† in𝑀𝑖
is denoted 𝑢𝑖

1
for 𝑖 = 1, 5, 8, 12, respec-

tively. And the value of 𝜋sw,† in the original semi-MDP 𝑀 given

𝑐𝛾 = 2 is denoted 𝑢2
1
. The following table (Table 2) shows the maxi-

mum values of 𝑢2
1
(𝑠0, 𝜋sw,†) − 𝑢𝑖

1
(𝑠0, 𝜋sw,†), for each 𝑖 = 1, 5, 8, 12.

From this result, we observe that the performance does not de-

grade much. At the initial state where the maximum value of

𝑢2
1
(𝑠0, 𝜋sw,†) −𝑢𝑖

1
(𝑠0, 𝜋sw,†) is observed, the computed policy 𝜋sw,†

has a performance degradation within the range of [2%, 5%].

𝑐𝛾 = 1 𝑐𝛾 = 5 𝑐𝛾 = 8 𝑐𝛾 = 12

maximum difference 2.235 3.529 3.464 3.403

original value 𝑢2
1
(𝑠0, 𝜋sw,†) 92.61 94.00 94.00 94.00

Table 2: Comparison of the state value under 𝜋sw,∗ in different
semi-MDP with 𝑐𝛾 = 1, 5, 8, 12.

5 CONCLUSION
In this paper, we develop a planning algorithm for action deception

in two-player concurrent stochastic games with asymmetric infor-

mation in both players’ knowledge and observations. We formally

prove that the synthesized switching strategy provides a lower

bound on the value of action deception, despite the incomplete in-

formation regarding P2’s response strategy. Building on this result,

there are several future directions to be considered: First, whether

it is possible to extend the solution concepts from competitive inter-

actions to more general non-cooperative interactions. In practice,

asymmetric information is prevalent in multi-agent interactions

and it is possible that the agents’ intentions can be partially aligned.

If one player knows that the other player may not know his action

capabilities but is adaptive, how can this player strategically use

the private actions to improve multi-agent collaboration? Another

direction is to consider action deception in a competitive setting

but with a more general information structure, for instance, what

if both P1 and P2 have partial observations over state and action

sequences? It is interesting to know which subclass of such games

may have tractable solutions.
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