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ABSTRACT
We propose the first model-free algorithm that achieves low regret

performance for decentralized learning in two-player zero-sum

tabular stochastic games with infinite-horizon average-reward ob-

jective. In decentralized learning, the learning agent controls only

one player and tries to achieve low regret performances against an

arbitrary opponent. This contrasts with centralized learning where

the agent tries to approximate the Nash equilibrium by controlling

both players. In our infinite-horizon undiscounted setting, addi-

tional structure assumptions is needed to provide good behaviors

of learning processes : here we assume for every strategy of the op-

ponent, the agent has a way to go from any state to any other. This

assumption is the analogous to the "communicating" assumption in

the MDP setting. We show that our Decentralized Optimistic Nash

Q-Learning (DONQ-learning) algorithm achieves both sublinear

high probability regret of order 𝑇 3/4
and sublinear expected regret

of order𝑇 2/3
. Moreover, our algorithm enjoys a low computational

complexity and low memory space requirement compared to the

previous works of [24] and [10] in the same setting.
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1 INTRODUCTION
Recently, reinforcement learning, combined with technological

progress, has achieved superhuman performances in computing

optimal behaviors in various decision processes. Particularly, there

is a development of self-play algorithms to design strong artificial

intelligence in games such as Go or Chess [20, 21]. These methods

have the practical interest that they do not require supervision nei-

ther with huge data set nor with expert feedback to train efficiently.

We focus here on Competitive Multi-Agent Reinforcement Learning

(MARL) where several agents interact with an environment that

may involve randomness, in order to maximize their own profit.

∗
An extended version of the paper with all the proofs is available at [6].

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

One of the mostly used model to deal with MARL is stochastic game

(a.k.a. Markov game in the literature) that was introduced in the

50s by Shapley [18]. Stochastic games (SGs) are more pertinent to

handle MARL compared to Markov decision processes (MDPs) that

are widely used for single-agent reinforcement learning.

Here we consider learning in infinite-horizon two-player zero-

sum game with the average-reward criterion: There are two players

that play indefinitely, and each player wins exactly what their

opponent loses. At each time, the game has a current state and

players choose and play an action simultaneously : they receive

rewards and then the state of the environment changes (possibly

randomly), this depending on the current state and the joint choice

of actions. At the early stage of the game, the reward function and

transition probabilities are unknown by the learning agent.

An important concept in stochastic games is the Nash equilib-

rium. In two-player zero-sum stochastic games, all Nash equilibria

have the same value which represents a bound of the minimum

expected average-reward that each player can obtain if they play

optimally, regardless of the strategy of the opponent. When both

agents play according to the Nash equilibrium, each of them can

not hope a greater payoff by changing unilaterally his own strat-

egy. Therefore, Nash equilibrium is often a benchmark for learning

performances and a large set of works focus on this notion.

Two settings can be considered for learning in stochastic games:

centralized and decentralized. In the first setting, a central learner

tries to find the Nash equilibrium as quick as possible by controlling

both players, e.g. [2, 3, 13, 19, 27]. In the second setting, the learner

controls only one player and tries to be as efficient as possible

against an arbitrary opponent, see [5, 10, 14–17, 22, 24, 26, 27] for

different settings and objectives. This setting is quite natural but

more challenging than the first one because the learner has no

control on the opponent strategy that may change over time. In

this paper, we consider the decentralized learning problem. Several

definitions for the regret are possible in this case, that we will

discuss in more detail in Section 2.3.

Learning algorithms are often split into two families called re-

spectively model-based algorithms and model-free algorithms. In

a model-based algorithm, the learner gathers observations of the

game in order to estimate the parameters of the model (reward func-

tions and transition probabilities), and then uses this estimation

to compute a policy that is used for playing and gathering more

information. In a model-free algorithm, the learner directly tries to

estimate the values of the true model and plays optimally according

to these value estimations. The two papers that are closest to ours

are the algorithms UCSG in [24] and PSRL-ZSG in [10]. They both

present a decentralized learning algorithm in average-reward SG
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and are both model-based. To the best of our knowledge, we pro-

pose in this paper the first model-free algorithm for the stochastic

games with infinite-horizon average-reward objective. Model-free

algorithms have the advantage that they often need considerably

less memory space to work, and additionally they often enjoy much

better time complexity, which motivates our work. They can also be

generalized to other settings, such as linear SGs. The drawbacks of

model-free is that, in the literature, model-based algorithms often

achieve better performances than model-free.

1.1 Our Contribution
We propose an algorithm, that we call decentralized optimistic

Nash Q-learning (DONQ-learning). This algorithm is designed for

infinite-horizon stochastic games with average-reward objective.

Our paper uses Q-learning optimism techniques similar to the

one introduced by Jin et al. in their seminal paper [11] for finite-

horizon MDPs. This optimistic Q-learning has then been extended

in two directions: (1) to infinite-horizon average-reward MDPs

in [25] by using an artificial discounted setting, and (2) to finite

horizon stochastic games in [3, 22]. In this paper we combine these

two lines of work to obtain an efficient learning algorithm with

sublinear regret in infinite-horizon average-reward SGs. We show

that the expected regret of DONQ-learning is sublinear in time

and is bounded by 𝑂 (𝐷 (𝑆𝐴𝐵 log(2𝑇 2))
1

3𝑇
2

3 ), where 𝑇 is the time

horizon, 𝑆 is the number of states, 𝐴 and 𝐵 are the size of learner’s

and of the opponent’s actions sets, and 𝐷 a known upper bound of

the span of the game. This result is similar to the bound obtained

in [25] for the regret in infinite-horizon MDP. In addition, our

algorithm enjoys a low computational complexity and low memory

space requirement compared to the previous works of [24] and [10]

in the same setting.We also provide a high-probability bound for the

regret of our algorithm. Surprisingly, our analysis also shows a high

probability upper bound for the regret of order𝑂 (
√︁
𝐷 log(2/𝛿)𝑇

3

4 ),
which has a dependency in𝑇 that is significantly higher than for the

expected regret. This higher dependency in𝑇 is due to an additional

term that appears because of our decentralized setting where the

learner may play against a weak opponent. This additional term

appears as a martingale difference sequence which disappears when

the expected regret is considered.

Outline. The rest of the paper is organized as follows. We first

introduce the model, the regret definition and some background on

optimistic Q-learning in Section 2. We present our DONQ-learning

algorithm in Section 3. In Section 4, we give the regret upper bounds

(expected regret and regret with high probability), along with their

proofs. We provide a proof of the most important technical lemmas

in Section 5. The proofs of some other lemmas are delegated to the

extended version of the article that is available at [6]. Finally, we

conclude in Section 6.

1.2 Related Work
Q-learning in MDP : Q-learning algorithms appeared in 1989 in

the seminal paper of Watkins [23]. The first provably-efficient Q-

learning appears in [11], where the authors add an optimism term

to Q-learning and prove that the algorithm achieves low regret

performances in finite-horizon MDPs. The authors use a smart

choice of learning rates that we also use in this paper. The same

techniques are then adapted in [8] for the discounted setting to

derive an algorithm with sample-complexity guaranties. The above

two works are used in [25] to derive an optimistic Q-learning for

average-reward MDPs that has a regret bound of order 𝑇
2

3 . This

algorithm only assumes that the MDP is weakly-communicating.

Our work is inspired from [25] and extend their algorithm for the

decentralized multi-agent setting.

Q-learning in SG : For stochastic games, a Q-learning with

optimism principle first appears in [3] for finite-horizon problems.

An adaptation to decentralized learning (still in finite-horizon SG) is

given in [22]. For the infinite-horizon setting, the authors of [16] use

Q-learning in discounted SG for decentralized learning but without

optimism so they only establish convergence results. Our work

differs from the above because we consider the infinite-horizon

average-reward setting.

Other model-free approaches : Some papers propose other

model-free algorithms, different from Q-learning, that also use op-

timism techniques. This includes the following:

V-learning : An unavoidable assumption to use Q-learning like al-

gorithms is that the learner must observe the opponent’s action at

each time. The V-learning algorithm is proposed in [3] for central-

ized learning in finite-horizon SG, and then is adapted in [22] to

design an efficient algorithm for decentralized learning when the

agents do not observe the action of their opponent.

OOMD : For infinite-horizon average-reward MDP, the authors of

[25] propose the OOMD algorithm that achieves a regret bound

of order

√
𝑇 when they assume the ergodicity assumption. They

construct an adversarial multi-armed bandit instance for each state

to design efficient policies.

Gradient descent : Gradient descent is another approach for decen-

tralized learning in SG when the agent does not observe the action

of its opponent. Some papers propose procedures based on the op-

timistic gradient descent to achieve Nash equilibrium identification

guaranties after a finite time, for the finite-horizon setting in [7],

and for the discounted setting in [26].

Model-based algorithms : To the best of our knowledge, all

the algorithms that deal with learning in infinite-horizon average

reward stochastic games are model-based. UCRL2 is introduced

in [1] and uses optimism to achieve sublinear regret bounds in

infinite-horizon average-reward MDP with finite diameter. In [24],

UCRL2 is adapted into UCSG for SG setting, and two possible def-

initions for the diameter are proposed. These definitions extend

the notions of "communicating" MDP and "ergodic" MDP for SG.

Under the weakest assumption, UCSG enjoys a regret bound of

order 𝑇
2

3 . In this paper we assume the same diameter assumption.

In a recent work, inspired from PSRL algorithm for MDP, PSRL-ZSG

algorithm is proposed in [10] and achieves a Bayesian regret of

order

√
𝑇 under the same structure assumption. Our work does not

improve the above regret bounds but the model-free property of our

algorithm induces a lower computational complexity and memory

space requirement than the previous model-based algorithms. Plus,

we do not study Bayesian regret but worst-case expected regret or

worst-case high probability regret.
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2 PRELIMINARIES
2.1 Stochastic Game Model and Notations
We consider two-player zero-sum simultaneous stochastic games

(also known as Markov games in the literature), which generalize

the standard Markov decision processes (MDPs) into the two-player

setting where both players try to maximize their own payoff. Zero-
sum means that in this game, what a player wins corresponds

exactly to what the other loses. We write the payoff for the point

of the first player, that we call the max-player. This player tries to
maximize the payoff whereas the second player, that we call the

min-player, tries to minimize it. In this paper, the learner is the max-

player and the opponent is the min-player. The term simultaneous
means that the two players choose simultaneously how to interact

with the environment at each time. Here we consider the infinite-

horizon setting where players play indefinitely. At each time step,

the game is in a current state known by the players and they play

simultaneously an action. The players obtain a reward and the state

of the game changes, both depending on the current state and the

choices of actions.

Formally, an instance of an infinite-horizon stochastic game is a

tuple (S,A,B, 𝑟 , 𝑃), whereS is a set of states,A is the action set of

the max-player, andB it the action set of the min-player.We assume

that all the states and actions spaces are finite and of sizes 𝑆 , 𝐴 and

𝐵. For every 𝑠, 𝑎, 𝑏 ∈ S × A × B, 𝑟 (𝑠, 𝑎, 𝑏) ∈ [0, 1] is the reward
that the max-player wins (and that the min-player loses) when

the pair of actions (𝑎, 𝑏) is played in state 𝑠 . Then the next state

of the game is randomly drawn with the probability distribution

𝑃 (.|𝑠, 𝑎, 𝑏). At each time step 𝑡 the players observe the states of the

game 𝑠𝑡 , they both choose simultaneously an action 𝑎𝑡 and 𝑏𝑡 that

they play. They then observe the action of their opponent, receive

the reward 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 ). The next state 𝑠𝑡+1 is then drawn according

to 𝑃 (.|𝑠ℎ, 𝑎ℎ, 𝑏ℎ).
Markovian policies : A max-player Markovian policy 𝜇 : S →

ΔA is a function that maps every state 𝑠 with a probability dis-

tribution 𝜇 (.|𝑠) on max-player’s actions. Similarly, a min-player

Markovian policy 𝜈 : S → ΔB maps every state 𝑠 with a probabil-

ity distribution 𝜈 (.|𝑠) on min-player’s actions. The pair of policies

(𝜇, 𝜈) determines the rewards and the dynamics of the game.

Notations : For a function 𝑓 : S → R, we write 𝑃 𝑓 (𝑠, 𝑎, 𝑏) for∑
𝑠′ 𝑃 (𝑠′ |𝑠, 𝑎, 𝑏) 𝑓 (𝑠′).We alsowrite 𝑠𝑝 (𝑓 ) formax𝑠 𝑓 (𝑠)−min𝑠 𝑓 (𝑠).

For a function 𝑔 : S × A × B → R and a pair of Markovian

policies (𝜇, 𝜈), we writeD(𝜇,𝜈 ) [𝑔] (𝑠) = E𝑎∼𝜇 (. |𝑠 ),𝑏∼𝜈 (. |𝑠 ) [𝑔(𝑠, 𝑎, 𝑏)].
To lighten notation, we sometimes write 𝑔 (𝜇,𝜈 ) (𝑠) for this quantity.
In particular, for the reward and transition probability, we have:

𝑟 (𝜇,𝜈 ) (𝑠) = E𝑎∼𝜇 (. |𝑠 ),𝑏∼𝜈 (. |𝑠 ) [𝑟 (𝑠, 𝑎, 𝑏)]

𝑃 (𝜇,𝜈 ) (𝑠′ |𝑠) = E𝑎∼𝜇 (. |𝑠 ),𝑏∼𝜈 (. |𝑠 ) [𝑃 (𝑠′ |𝑠, 𝑎, 𝑏)] .

2.2 Average-Reward and Game Structure
In this paper we establish low regret bounds for the undiscounted

setting where players play indefinitely and try to maximize their

average-reward over time. The average-reward of a pair of policies

(𝜇, 𝜈) is defined for every state 𝑠 , whenever the limit exists, by

𝐽 (𝜇,𝜈 ) (𝑠) = lim

𝑇→+∞
1

𝑇
E(𝜇,𝜈 )

[
𝑇∑︁
𝑡=1

𝑟 (𝜇,𝜈 ) (𝑠𝑡 ) | 𝑠1 = 𝑠

]
,

where E(𝜇,𝜈 ) hides that the (𝑠𝑡 )𝑡 is a Markov chain whose transition

kernel is 𝑃 (𝜇,𝜈 ) . This represents the expected average-reward for

the max-player starting from state 𝑠 if both players play policies 𝜇

and 𝜈 respectively.

Given a min-player policy 𝜈 , a best response against 𝜈 for the

undiscounted setting is a max-player policy 𝜇∗ such that for all

state 𝑠 , 𝐽 (𝜇
∗,𝜈 ) (𝑠) = max𝜇 𝐽

(𝜇,𝜈 ) (𝑠). Similarly, given a max-player

policy 𝜇, a best response against 𝜇 is a min-player policy 𝜈∗ such
that for all state 𝑠 , 𝐽 (𝜇,𝜈

∗ ) (𝑠) = min𝜈 𝐽
(𝜇,𝜈 ) (𝑠).

To deal with the undiscounted setting, we assume the following

structure property, which is known in the particular case of MDP,

to be a minimal relevant framework for learning [4] :

Asumption 1. For every pair (𝑠, 𝑠′) of states, and any min-player
policy 𝜈 , there exists a max-player policy 𝜇 such that 𝑠′ is accessible
from 𝑠 with positive probability under policies (𝜇, 𝜈).

This assumption is intuitively necessary to get low regret be-

cause if this assumption does not hold, it means that the opponent

may have a way to lock the learning agent in "bad stage" while at

the early stage of the learning process, the agent could not have

enough information to avoid this. Note that for the MDP setting,

the analog of this assumption would be to assume that the MDP

is "communicating": here the SG is communicating for the max-

player’s point of view, i.e., from the learner’s point of view. In fact

we may additionally assume the existence of a set of states that are

transient under all Markovian policies, which would be the anal-

ogous property of "weakly communicating" for the MDP setting.

This would not change our result but would complexify notations

and proofs.

As a consequence of Assumption 1, if𝑇
(𝜇,𝜈 )
𝑠→𝑠′ is the expected time

to go from 𝑠 to 𝑠′ under policies (𝜇, 𝜈), there exists a real number

𝐷 such that

max

𝑠,𝑠′
max

𝜈
min

𝜇
𝑇
(𝜇,𝜈 )
𝑠→𝑠′ ≤ 𝐷

The minimal 𝐷 is the diameter of the game [24]. In this paper, we

denote by 𝐷 an upper bound of the diameter and we suppose that

this 𝐷 is known by the learning agent, so 𝐷 can be used to set some

values of parameters.

We summarize important results that hold under Assumption 1

in the Theorem 1 below. This theorem justifies the relevance of the

learning objective in this framework. For a proof of these results,

we refer to Theorem E.1 of [24].

Theorem 1 (Theorem E.1 of [24]). Under assumption 1, there
exist a unique real number 𝐽 ∗, a function ℎ∗ : S −→ R, and a pair of
Markovian policies (𝜇∗, 𝜈∗) such that

(1) 𝐽 ∗ = max𝜇 min𝜈 𝐽
(𝜇,𝜈 ) (𝑠) = min𝜈 max𝜇 𝐽

(𝜇,𝜈 ) (𝑠) for every 𝑠
: the game value exists and does not depend on 𝑠 .

(2) (𝜇∗, 𝜈∗) is a pair of Markovian policies such that 𝐽 (𝜇
∗,𝜈∗ ) (𝑠) =

𝐽 ∗ for all 𝑠 : 𝜇∗ is a best response against 𝜈∗ and vice-versa
(Nash equilibrium).
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(3) 𝑠𝑝 (ℎ∗) ≤ 𝐷 and satisfies the following Bellman’s optimality
equations :

𝐽 ∗ + ℎ∗ (𝑠) = max

𝜇

(
𝑟 (𝜇,𝜈

∗ ) (𝑠) + 𝑃 (𝜇,𝜈
∗ )ℎ∗ (𝑠)

)
,

𝐽 ∗ + ℎ∗ (𝑠) = min

𝜈

(
𝑟 (𝜇

∗,𝜈 ) (𝑠) + 𝑃 (𝜇
∗,𝜈 )ℎ∗ (𝑠)

)
.

2.3 Learning Objective
In this paper, we consider a decentralized learning algorithm that

has a low regret in a two-player zero-sum stochastic game. Nash

equilibria in this setting provide to players an optimal way to play

whatever their opponent does: If the max-player plays their Nash

policy, it guarantees them an average-reward of at least 𝐽 ∗ against
any opponent and we want to measure the online performance of

the learning agent compared to this Nash policy. Thus our regret is

given by

Reg(𝑇 ) =
𝑇∑︁
𝑡=1

(
𝐽 ∗ − 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 )

)
(1)

This definition is classical for the regret in decentralized learning

[10, 22, 24], and generalizes the definition for the MDP setting

[1, 25]. Note that in contrast withMDPs, the regret is not necessarily

non-negative: If the opponent is weak, then the learning agent

can achieve an average-reward greater than 𝐽 ∗. The definition in

Equation (1) ensures that, whatever the opponent’s strategy, the

learner should learn a defensive strategy that works against it -

but does not need to exploit the opponent’s weakness - to achieve

sublinear performances.

A stronger regret definition would be to consider that the learner

competes with the best response against the opponent (potentially

assuming this one uses only Markovian policies). This would lead

to the following regret definition:

𝑇∑︁
𝑡=1

(
max

𝜇
𝐽 (𝜇,𝜈𝑡 ) − 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 )

)
,

or a weaker version where the learner competes with the best fixed

(over time) max-player policy, that is

max

𝜇

𝑇∑︁
𝑡=1

(
𝐽 (𝜇,𝜈𝑡 ) − 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 )

)
.

Unfortunately, it is shown in [14] that for the finite-horizon setting,

it is not possible to design an algorithm that has a sublinear regret

with the two above learning objectives. Hence, and because the

infinite-horizon setting is more general than the finite-horizon one,

in this paper we focus on the regret definition given by (1).

2.4 Background on Discounted SG
Aswe will see later, our DONQ-learning algorithm, uses an artificial

discounted setting to run. Hence, we recall here some facts and

notations about the discounted setting.

In the discounted setting, what players get at time 𝑡 is amortized

by a factor 𝛾𝑡−1 where 𝛾 < 1 is called the discount factor. Given a

discount factor 𝛾 and a pair of policies (𝜇, 𝜈), the value function for

the discounted setting is defined for every state 𝑠 as

𝑉
(𝜇,𝜈 )
𝛾 (𝑠) = E(𝜇,𝜈 )

[+∞∑︁
𝑡=1

𝛾𝑡−1𝑟 (𝜇,𝜈 ) (𝑠𝑡 ) | 𝑠1 = 𝑠

]
,

where E(𝜇,𝜈 ) hides that the (𝑠𝑡 )𝑡 is a Markov chain whose transition

kernel is 𝑃 (𝜇,𝜈 ) . This represents the expected discounted cumulative

reward for the max-player starting from state 𝑠 if both players play

policies 𝜇 and 𝜈 respectively. Then, for every pair of actions (𝑎, 𝑏),
the Q-value function in (𝑠, 𝑎, 𝑏) is defined as

𝑄
(𝜇,𝜈 )
𝛾 (𝑠, 𝑎, 𝑏) = 𝑟 (𝑠, 𝑎, 𝑏) + 𝛾𝑃𝑉 (𝜇,𝜈 )𝛾 (𝑠, 𝑎, 𝑏) .

This represents the expected discounted cumulative reward for

the max-player starting from state 𝑠 where players first play 𝑎

and 𝑏 respectively, and then follow policies 𝜇 and 𝜈 respectively.

Therefore, for every state 𝑠 we have the relation

𝑉
(𝜇,𝜈 )
𝛾 (𝑠) = D(𝜇,𝜈 ) [𝑄

(𝜇,𝜈 )
𝛾 ] (𝑠) .

Given a min-player policy 𝜈 , a best response against 𝜈 for the

𝛾-discounted setting is a max-player policy 𝜇∗ such that for all

state 𝑠 , 𝑉
(𝜇∗,𝜈 )
𝛾 (𝑠) = max𝜇 𝑉

(𝜇,𝜈 )
𝛾 (𝑠). Similarly, given a max-player

policy 𝜇, a best response against 𝜇 is a min-player policy 𝜈∗ such

that for all state 𝑠 , 𝑉
(𝜇,𝜈∗ )
𝛾 (𝑠) = min𝜈 𝑉

(𝜇,𝜈 )
𝛾 (𝑠).

It is known that there always exists a pair of policies (𝜇𝛾 , 𝜈𝛾 )
such that 𝜇𝛾 is a best response against 𝜈𝛾 and vice-verse for the

𝛾-discounted setting. (𝜇𝛾 , 𝜈𝛾 ) is called a Nash equilibrium of the

game. All Nash equilibria have the same value function, denoted

by 𝑉 ∗𝛾 , which satisfies for every state 𝑠

𝑉 ∗𝛾 (𝑠) = max

𝜇
min

𝜈
𝑉
(𝜇,𝜈 )
𝛾 (𝑠) = min

𝜈
max

𝜇
𝑉
(𝜇,𝜈 )
𝛾 (𝑠).

We also denote by 𝑄∗𝛾 the unique Q-value function of the Nash

equilibria. 𝑉 ∗𝛾 and 𝑄∗𝛾 satisfy the following Bellman’s optimality

equations for all (𝑠, 𝑎, 𝑏) :
𝑄∗𝛾 (𝑠, 𝑎, 𝑏) = 𝑟 (𝑠, 𝑎, 𝑏) + 𝛾𝑃𝑉 ∗𝛾 (𝑠, 𝑎, 𝑏),

𝑉 ∗𝛾 (𝑠) = max

𝜇
min

𝜈
D(𝜇,𝜈 ) [𝑄∗𝛾 ] (𝑠) .

We recall (see e.g. [24] Lemma E.2) that under Assumption 1, if

𝐷 is a bound on the diameter of the game as defined above, then

for any 𝛾 < 1 we have

𝑠𝑝 (𝑉 ∗𝛾 ) ≤ 𝐷. (2)

2.5 Learning Rate Notations and Properties
In our DONQ-learning algorithm, we use optimistic Q-learning

updates to maintain estimators. At a given time 𝑡 , such an algorithm

observes the current state-action triplet (𝑠, 𝑎, 𝑏) and updates the

𝑄-value of this triplet as:

𝑄𝑡+1 (𝑠, 𝑎, 𝑏) ← (1 − 𝛼𝜏 )𝑄𝑡 (𝑠, 𝑎, 𝑏) + 𝛼𝜏 ([new sample] + [bonus]),
where 𝜏 is the number of visits of the triplet (𝑠, 𝑎, 𝑏) up to time 𝑡 .

The quantity 𝛼𝜏 is called the learning rate and has to be well-

chosen to ensure good learning performances. In the optimistic

Q-learning algorithm for 𝐻 -finite-horizon MDPs, the authors of

[11] propose the learning rate 𝛼𝜏 = 𝐻+1
𝐻+𝜏 and they show that such a

learning rate has good properties summarized in Lemma 1 below.

For every 0 ≤ 𝜏 ≤ 𝑇 , they define 𝛼0𝜏 =
∏𝜏

𝑗=1 (1 − 𝛼 𝑗 ) and for all
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1 ≤ 𝑖 ≤ 𝜏 , 𝛼𝑖𝜏 = 𝛼𝑖
∏𝜏

𝑗=𝑖+1 (1 − 𝛼 𝑗 ). Note that if 𝜏 ≥ 1, 𝛼0𝜏 = 0 and

that

∑𝜏
𝑖==0 𝛼

𝑖
𝜏 = 1. The sequence 𝛼𝑖𝜏 has the following properties.

Lemma 1 (Lemma 4.1 of [11]). The sequence 𝛼𝑖𝜏 satisfy :

(1)
1√
𝜏
≤ ∑𝜏

𝑖=1

𝛼𝑖
𝜏√
𝑖
≤ 2√

𝜏
for every 𝜏 ≥ 1.

(2)

∑𝜏
𝑡=1 (𝛼

𝑖
𝜏 )2 ≤ 2𝐻

𝜏 for every 𝜏 ≥ 1.
(3)

∑∞
𝜏=𝑖 𝛼

𝑖
𝜏 ≤ 1 + 1

𝐻
for every 𝑖 ≥ 1

In this paper we use the same choice of learning rate for some

carefully chosen parameter 𝐻 .

3 THE DONQ-LEARNING ALGORITHM
The main idea of our decentralized optimistic Nash Q-learning (that

we present in Algorithm 1) is to learn the game in a well-chosen

discounted setting using optimistic Q-Learning techniques first

introduced in [11]. The convenience of the 𝛾-discounted setting is

that the Q-values are well-defined and bounded by 1/(1−𝛾) which
enables to build and maintain optimistic estimators𝑄𝑡 for the Nash

Q-value 𝑄∗𝛾 .

Algorithm 1 DONQ-learning Algorithm

1: Parameters : 𝐻 > 1, 𝛿 ∈ (0, 1)
2: Initialization : ∀𝑠, 𝑎, 𝑏
3: 𝑄

1
(𝑠, 𝑎, 𝑏) = 𝑄

↓
1
(𝑠, 𝑎, 𝑏) = 𝑉

↓
1
(𝑠) = 𝐻

4: 𝑁1 (𝑠, 𝑎, 𝑏) = 0 ; 𝜇1 (𝑎 |𝑠) = 1/𝐴 ; 𝛾 = 1 − 1/𝐻
5: ∀𝜏 ≥ 1, 𝛼𝜏 = 𝐻+1

𝐻+𝜏 𝛽𝜏 = 2𝐷

√︃
𝐻 log(2𝑇 /𝛿 )

𝜏

6: Begin :
7: Observe 𝑠1.

8: for 𝑡 = 1, 2, . . . ,𝑇 do
9: Draw and play 𝑎𝑡 ∼ 𝜇𝑡 (.|𝑠𝑡 ).
10: Observe 𝑏𝑡 (drawn from the unknown opponent’s policy).

11: Observe 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 ) and 𝑠𝑡+1.
12: Increment 𝑁𝑡+1 (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 ) ← 𝑁𝑡 (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 ) + 1
13: Set 𝜏 := 𝑁𝑡+1 (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 ) and update 𝑄-estimators as:

𝑄𝑡+1 (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 ) ← (1 − 𝛼𝜏 )𝑄𝑡 (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 ) +

𝛼𝜏

[
𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 ) + 𝛾𝑉

↓
𝑡 (𝑠𝑡+1) + 𝛽𝜏

]
𝑄
↓
𝑡+1 (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 ) ← min

(
𝑄
↓
𝑡 (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 ), 𝑄𝑡+1 (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 )

)
14: Update the policy

(𝜇𝑡+1 (.|𝑠𝑡 ), 𝜈𝑡+1 (.|𝑠𝑡 )) ← GetNashPolicies

(
𝑄
↓
𝑡+1 (𝑠𝑡 , ., .)

)
15: Update 𝑉 -estimator

𝑉
↓
𝑡+1 (𝑠𝑡 ) ← D(𝜇𝑡+1,𝜈̃𝑡+1 ) [𝑄

↓
𝑡+1] (𝑠𝑡 )

16: 𝑁𝑡+1, 𝑄𝑡+1, 𝑄
↓
𝑡+1, 𝑉

↓
𝑡+1, 𝜇𝑡+1 are kept equal to their values

at the previous time step, 𝑁𝑡 ,𝑄𝑡 ,𝑄
↓
𝑡 ,𝑉
↓
𝑡 , 𝜇𝑡 , for all other 𝑠, 𝑎, 𝑏.

17: end for

The DONQ-learning algorithm takes as input a parameter 𝐻

and defines a discount factor 𝛾 = 1 − 1

𝐻
. The agent then operates

as if it was in a discounted objective. The algorithm also takes as

parameter a confidence level 𝛿 ∈ (0, 1) which is set either to obtain

a high probability regret bound, or to obtain a sublinear expected

regret.

All optimistic estimators are initialized with 𝐻 . At each time 𝑡 ,

the learner plays an action 𝑎𝑡 drawn from the current policy 𝜇𝑡 and

observes the opponent action 𝑏𝑡 , the reward 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 ) and the

next state 𝑠𝑡+1. Then the optimistic estimator 𝑄𝑡+1 is updated for

the current state-actions tuple (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 ), by using an optimistic Q-

learning like operation with a learning rate 𝛼𝜏 = 𝐻+1
𝐻+𝜏 , the current

optimistic estimator of the next state value 𝑉
↓
𝑡 (𝑠𝑡+1) and a bonus

term 𝛽𝜏 that scales in 𝐷

√︃
𝐻
𝜏 , where 𝜏 is the number of visits of

state-actions tuple (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 ). For technical reasons, the algorithm
maintains a non-increasing version of 𝑄𝑡 , denoted by 𝑄

↓
𝑡 , which

is the one used to update the learner’s policy and to compute the

optimistic value estimators 𝑉
↓
𝑡 .

The learner’s policy is updated for the current state 𝑠𝑡 : 𝜇𝑡+1 (.|𝑠𝑡 )
is chosen to be the max-player Nash policy of the matrix game

𝑄
↓
𝑡+1 (𝑠𝑡 , ., .). Note that if 𝜇∗ is an optimal Markovian Nash policy of

the max-player, then for all 𝑠 , 𝜇∗ (.|𝑠) is a max-player Nash policy of

the matrix game 𝑄∗ (𝑠, ., .). Then the algorithm also computes the

min-player Nash policy 𝜈𝑡+1 (.|𝑠𝑡 ) of the matrix game 𝑄
↓
𝑡+1 (𝑠𝑡 , ., .)

in order to update 𝑉
↓
𝑡+1 (𝑠𝑡 ) as the expected value of 𝑄

↓
𝑡+1 (𝑠𝑡 , ., .)

under policies 𝜇𝑡+1 and 𝜈𝑡+1. We emphasize that 𝜈𝑡+1 is not the

policy used by the opponent at time 𝑡 + 1 (the opponent’s policy is

unknown to us and can be arbitrary).

4 THEORETICAL GUARANTEES
4.1 Main Results: Regret Guarantees
The key challenge is to correctly set the parameter 𝐻 to obtain

sublinear regret guarantees. On the one hand, a large value for 𝐻

implies that the undiscounted objective is well approximated by the

discounted case, but at the same time, the regret coming from the

discounted analysis will be large. On the other hand, a small value of

𝐻 means that the undiscounted objective is not well approximated

by the discounted case, which may have bad consequences the

regret.

We give here two regret bounds, with high probability and in

expectation, both with a sublinear dependency in 𝑇 obtained with

a smart choice of the parameter 𝐻 . First, Theorem 2 provides the

high probability regret bound, depending on the parameter 𝐻 .

Theorem 2. For any 𝛿 ∈ (0, 1), there exists an absolute1 constant
𝐶 such that with probability at least 1 − 3𝛿 , the regret is bounded by

Reg(𝑇 ) ≤𝐷 𝑇

𝐻
+ 2𝐻

√︁
2𝑇 log(2/𝛿)

+ 12𝐷
√︁
𝑆𝐴𝐵𝐻𝑇 log(2𝑇 /𝛿)

+𝐶
(
𝑆𝐴𝐵𝐻 + 𝐷

√︁
𝑇 log(4/𝛿)

)
.

If the parameter 𝐻 scales in 𝑇
1

4 , this theorem shows a high

probability regret bound of order 𝑇
3

4 . Indeed, such a value of 𝐻

balances the terms
𝑇
𝐻

and 𝐻
√
𝑇 that appear in our analysis.

1
By absolute, we mean a constant that does not depend on any of the models

parameters.
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Corollary 1. For any 𝛿 ∈ (0, 1), we have that with probability

at least 1 − 3𝛿 , by setting the parameter 𝐻 =

√︂
𝐷

log(2/𝛿 )
1

2

𝑇
1

4 , for 𝑇

sufficiently large the regret is upper bounded by

Reg(𝑇 ) ≤
√︃
𝐷 log(2/𝛿)

1

2𝑇
3

4 + 𝑜
(
𝑇

3

4

)
.

The second term of the regret bound of Theorem 2 has a 𝐻
√
𝑇

factor. This term does not appear in the analysis of [25] for the

MDP case. It is due to the fact that we were not able to bound

(𝑄↓𝑡 −𝑄∗𝛾 ) (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 ) with a better bound than 𝐻 (see Equation (s4)
in the regret decomposition below). This difficulty appears because

the learner plays against an opponent that may be possibly weak.

More explanations are given in Appendix A.7 of the extended ver-

sion of the paper [6]. This term appears because we simply use

Azuma-Hoeffding’s inequality for our high probability regret bound.

However, since this term appears as terms of a martingale differ-

ence sequence, their sum can be bounded more efficiently when

we consider the expected regret, as we see below.

Theorem 3 provides upper bounds for the expected regret, also

depending on the parameter 𝐻 . This bound is similar to the regret

bound of Theorem 2 with 𝛿 = 1/𝑇 but is significantly smaller be-

cause the second term of the regret bound of Theorem 2 disappears.

Theorem 3. There exists an absolute constant 𝐶 such that

E[Reg(𝑇 )] ≤𝐷 𝑇

𝐻
+ 12𝐷

√︃
𝑆𝐴𝐵𝐻𝑇 log(2𝑇 2)

+𝐶
(
𝑆𝐴𝐵𝐻 + 𝐷

√︁
𝑇 log(4𝑇 )

)
.

By setting a parameter 𝐻 that scales in 𝑇
1

3 , we can balance the

terms
𝑇
𝐻

and

√
𝐻𝑇 (due to regret bound for discounted setting) and

obtain a regret bound in expectation of order 𝑇
2

3 . The bound that

we obtain for the expected regret is then significantly smaller than

the high probability bound of Corollary 1 because Theorem 3 does

not has the term in 𝐻
√
𝑇 as Theorem 2.

Corollary 2. For 𝑇 sufficiently large, by setting the parameter

𝐻 =

(
𝑇

𝑆𝐴𝐵 log(2𝑇 2 )

)
1/3

, the expectation of the regret is bounded by

E[Reg(𝑇 )] ≤ 𝐷 (𝑆𝐴𝐵 log(2𝑇 2))
1

3𝑇
2

3 + 𝑜
(
𝑇

2

3

)
.

We highlight the fact that in the algorithm and our analysis, we

only use that the diameter 𝐷 is an upper bound of 𝑠𝑝 (ℎ∗) (Theo-
rem 1) and 𝑠𝑝 (𝑉 ∗) : any other known quantity that satisfies these

two properties can replace 𝐷 in the parameter setting and the theo-

retical guarantees.

4.2 Computational Complexity
An interesting property of Q-learning like algorithms is that only

the values of the current state and state-action tuple are updated

at each step. This contrasts with model-based approaches [10, 24]

where some policies have to be entirely computed in the inner

loop of the algorithm, or with value-iteration like algorithms [2,

27] where a sweep of the state space is needed at each step. The

only non-constant time operation in DONQ-learning is the call to

GetNashPolicies procedure, but it is known that we can compute

the value and the Nash policy of a zero-sum matrix game of size

𝐴×𝐵 in a polynomial time via linear programming [9, 12], and this

does depend on the size of the state space.

4.3 Proofs of Theorems 2 and 3
To show Theorem 2 and 3, we decompose the regret as follows:

Reg(𝑇 ) =
𝑇∑︁
𝑡=1

(𝐽 ∗ − 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 ))

=

𝑇∑︁
𝑡=1

(𝐽 ∗ − (1 − 𝛾)𝑉 ∗𝛾 (𝑠𝑡 )) (s1)

+
𝑇∑︁
𝑡=1

(𝑉 ∗𝛾 (𝑠𝑡 ) − D(𝜇𝑡 ,𝜈𝑡 ) [𝑄
∗
𝛾 ] (𝑠𝑡 ) − 𝜁𝑡 ) (s2)

+
𝑇∑︁
𝑡=1

(D(𝜇𝑡 ,𝜈𝑡 ) [𝑄
∗
𝛾 ] (𝑠𝑡 ) − 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 ) − 𝛾𝑉 ∗𝛾 (𝑠𝑡 )) (s3)

+
𝑇∑︁
𝑡=1

𝜁𝑡 (s4)

where 𝜁𝑡 = D(𝜇𝑡 ,𝜈𝑡 ) [𝑄
↓
𝑡 −𝑄∗𝛾 ] (𝑠𝑡 ) − (𝑄

↓
𝑡 −𝑄∗𝛾 ) (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 ). Note that

{𝜁𝑡 }𝑡 is a martingale difference sequence, bounded by 2𝐻 in abso-

lute value, with respect to the 𝜎-algebra generated by all random

variables up to 𝑠𝑡 since 𝑎𝑡 and 𝑏𝑡 are drawn with policies 𝜇𝑡 (.|𝑠𝑡 )
and 𝜈𝑡 (.|𝑠𝑡 ) respectively. We bound (s1), (s2) and (s3) separately,
sometimes under high probability events, and we finally deal with

(s4) specifically for both types of regret bounds.

4.3.1 Analysis of the Term (s1). The term (s1) represents the gap
we pay because we learn in an artificial discounted setting. Each

term of (s1) tends to 0 when 𝛾 is close to 1, that is when 𝐻 is big.

Concretely we show the following Lemma 2 :

Lemma 2. For every 𝑠 ∈ S,���𝐽 ∗ − (1 − 𝛾)𝑉 ∗𝛾 (𝑠)��� ≤ (1 − 𝛾)𝐷 =
𝐷

𝐻
.

When summing over 𝑡 in (s1), a factor 𝑇 appears but the factor

1/𝐻 enables to get a sublinear dependency in 𝑇 in the regret with

a well-chosen parameter 𝐻 .

4.3.2 Analysis of the Term (s2). Then, we first bound (s2) under
an event E𝛿 defined below for any 𝛿 ∈ (0, 1) and that ensures in

particular that 𝑄
↓
𝑡 and 𝑉

↓
𝑡 are really upper bounds of 𝑄∗𝛾 and 𝑉 ∗𝛾

respectively.

E𝛿 := For all (𝑠, 𝑎, 𝑏) and time 𝑡 , the following inequalities hold

(𝑄↓𝑡 −𝑄∗𝛾 ) (𝑠, 𝑎, 𝑏) ≥ 0, (𝑉 ↓𝑡 −𝑉 ∗𝛾 ) (𝑠) ≥ 0, (3)

(𝑄↓𝑡+1 −𝑄∗𝛾 ) (𝑠, 𝑎, 𝑏) ≤𝛼0𝜏𝐻 + 6𝐷
√︂

𝐻

𝜏
log(2𝑇 /𝛿)

+
𝜏∑︁
𝑖=1

𝛾𝛼𝑖𝜏

[
(𝑉 ↓𝑡𝑖 −𝑉

∗
𝛾 ) (𝑠𝑡𝑖+1)

]
(4)

where 𝜏 = 𝑁𝑡+1 (𝑠, 𝑎, 𝑏) and 𝑡1, 𝑡2, . . . , 𝑡𝜏 the times where (𝑠, 𝑎, 𝑏)
was visited.

Lemma 3. For any 𝛿 ∈ (0, 1), E𝛿 is true with probability at least
1 − 𝛿 .
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A proof of Lemma 3 is given in Appendix A.1 of the extended

version [6]. E𝛿 holds with probability at least 1 − 𝛿 and under

E𝛿 , Lemma 4 gives an upper bound for (s2) that scales in
√
𝐻𝑇 .

This is the main contribution of the regret due to performances of

optimistic Q-learning in the discounted setting.

Lemma 4. For any 𝛿 ∈ (0, 1), under E𝛿 , there exists an absolute
constant 𝑐 such that

𝑇∑︁
𝑡=1

(𝑉 ∗𝛾 (𝑠𝑡 ) − D(𝜇𝑡 ,𝜈𝑡 ) [𝑄
∗
𝛾 ] (𝑠𝑡 ) − 𝜁𝑡 ) ≤ 12𝐷

√︁
𝑆𝐴𝐵𝐻𝑇 log(2𝑇 /𝛿)

+ 𝑐𝑆𝐴𝐵𝐻 .

4.3.3 Analysis of the Term (s3). To bound (s3) we define an other

event E′
𝛿
for any 𝛿 ∈ (0, 1) that ensures that Azuma-Hoeffding’s

inequalities used on functions 𝑉 ∗𝛾 and 𝑄∗𝛾 hold.

E′
𝛿
: The two following inequalities hold����� 𝑇∑︁

𝑡=1

(D(𝜇𝑡 ,𝜈𝑡 ) [𝑄
∗
𝛾 ] (𝑠𝑡 ) −𝑄∗𝛾 (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 ))

����� ≤ (1 + 𝛾𝐷)√︁2𝑇 log(4/𝛿)

(5)����� 𝑇∑︁
𝑡=1

(𝑃𝑉 ∗𝛾 (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 ) −𝑉 ∗𝛾 (𝑠𝑡+1))
����� ≤ 𝐷

√︁
2𝑇 log(4/𝛿) (6)

Lemma 5. E′
𝛿
holds with probability at least 1 − 𝛿

A proof of Lemma 5 is given in Appendix A.2 of the extended

version [6]. In fact, the terms in (s3) are almost terms of Bellman’s

equations so, since E′
𝛿
holds with probability at least 1−𝛿 , we bound

(s3) with high probability as shown in Lemma 6 that is proved in

Appendix A.3 of the extended version.

Lemma 6. For any 𝛿 ∈ (0, 1), under E′
𝛿
, there exists an absolute

constant 𝑐′ such that

𝑇∑︁
𝑡=1

(D(𝜇𝑡 ,𝜈𝑡 ) [𝑄
∗
𝛾 ] (𝑠𝑡 ) − 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 ) − 𝛾𝑉 ∗𝛾 (𝑠𝑡 )) ≤ 𝑐′𝐷

√︁
𝑇 log(4/𝛿).

4.3.4 Analysis of the Term (s4) and Conclusion. We prove the high

probability regret bound by compiling the previous high probability

bounds on (s1), (s2), and (s3) (Lemmas 2, 4 and 6). Additionally we

use Azuma-Hoeffding to bound

∑𝑇
𝑡=1 𝜁𝑡 with high probability. This

makes appear a term that scales in 𝐻
√
𝑇 . We balance this term and

the term
𝑇
𝐻

of (s1) with a well-chosen parameter 𝐻 of order 𝑇
1

4 to

obtain an upper bound of order 𝑇
3

4 for the regret. More details are

given in Appendix A.5 of the extended version [6].

We also establish the regret bound in expectation using the re-

sults of previous sections (Lemmas 2, 4 and 6). To deal with the

remaining

∑𝑇
𝑡=1 𝜁𝑡 , we use the fact that {𝜁𝑡 } is a martingale differ-

ence sequence (bounded sequence with a conditional expectation

of 0 according to its filtration) to show that its weight is negligible

especially in the case where the previous high probability events

hold. We then set 𝐻 smartly to balance the dominant term
𝑇
𝐻

and√
𝐻𝑇 with respect to 𝑇 , and obtain the desired regret bound in ex-

pectation of order 𝑇
2

3 . More details are given in the Appendix A.6

of the extended version [6].

5 PROOFS OF MAIN LEMMAS
Here we give the proofs of Lemma 2 and 4. All the other omited

proofs are given in Appendix of the extended version [6]. Lemma 2

(resp. Lemma 4) induces the term that scales in
𝑇
𝐻

(resp.

√
𝐻𝑇 ) in

the statements of Theorems 2 and 3.

5.1 Proof of Lemma 2
We denote by (𝜇∗, 𝜈∗) and ℎ∗ the Nash equilibrium for the undis-

counted setting and the bounded function, both given by Theorem

1. We also denote by (𝜇𝛾 , 𝜈𝛾 ) a Nash equilibrium for the discounted

setting with discount 𝛾 .

By sub-optimality of 𝜇∗ against 𝜈𝛾 for the discounted setting

(first inequality), and the sub-optimality of 𝜈𝛾 against 𝜇∗ for the
undiscounted setting (second inequality), we get

𝑉 ∗𝛾 (𝑠) ≥ 𝑉
(𝜇∗,𝜈𝛾 )
𝛾 (𝑠)

= E𝜇∗,𝜈𝛾

[+∞∑︁
𝑡=1

𝛾𝑡−1𝑟 (𝜇
∗,𝜈𝛾 ) (𝓈𝑡 ) |𝓈1 = 𝑠

]
≥ E𝜇∗,𝜈𝛾

[+∞∑︁
𝑡=1

𝛾𝑡−1
(
𝐽 ∗ + ℎ∗ (𝓈𝑡 ) − 𝑃 (𝜇

∗,𝜈𝛾 )ℎ∗ (𝓈𝑡 )
)
|𝓈1 = 𝑠

]
.

Since 𝓈𝑡+1 is generated with transition probability 𝑃 (𝜇
∗,𝜈𝛾 ) (.|𝓈𝑡 )

in the stochastic process under E𝜇∗,𝜈𝛾 , the last term in the expecta-

tion can be seen as ℎ∗ (𝓈𝑡+1). Therefore we get

𝑉 ∗𝛾 (𝑠) ≥
𝐽 ∗

1 − 𝛾 + E𝜇
∗,𝜈𝛾

[+∞∑︁
𝑡=1

𝛾𝑡−1 (ℎ∗ (𝓈𝑡 ) − ℎ∗ (𝓈𝑡+1)) |𝓈1 = 𝑠

]
=

𝐽 ∗

1 − 𝛾 + ℎ
∗ (𝓈1) − E𝜇∗,𝜈𝛾

[+∞∑︁
𝑡=2

(𝛾𝑡−2 − 𝛾𝑡−1)ℎ∗ (𝓈𝑡 ) |𝓈1 = 𝑠

]
≥ 𝐽 ∗

1 − 𝛾 +min

𝑠
ℎ∗ (𝑠) −max

𝑠
ℎ∗ (𝑠)

+∞∑︁
𝑡=2

(𝛾𝑡−2 − 𝛾𝑡−1)

≥ 𝐽 ∗

1 − 𝛾 − 𝑠𝑝 (ℎ
∗)

≥ 𝐽 ∗

1 − 𝛾 − 𝐷.

By the sub-optimality of 𝜈∗ against 𝜇𝛾 in the discounted setting

(first inequality), and the sub-optimality of 𝜇𝛾 against 𝜈∗ in the

undiscounted setting (second inequality), we have

𝑉 ∗𝛾 (𝑠) ≤ 𝑉
(𝜇𝛾 ,𝜈∗ )
𝛾 (𝑠)

= E(𝜇𝛾 ,𝜈∗ )

[+∞∑︁
𝑡=1

𝛾𝑡−1𝑟 (𝜇
𝛾 ,𝜈∗ ) (𝓈′𝑡 ) |𝓈′1 = 𝑠

]
≤ E(𝜇𝛾 ,𝜈∗ )

[+∞∑︁
𝑡=1

𝛾𝑡−1 (𝐽 ∗ + ℎ∗ (𝓈′𝑡 ) − 𝑃 (𝜇
𝛾 ,𝜈∗ )ℎ∗ (𝓈′𝑡 )) |𝓈′1 = 𝑠

]
.
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Here, 𝓈
′
𝑡+1 is generated with transition probability 𝑃 (𝜇

𝛾 ,𝜈∗ ) (.|𝓈′𝑡 )
in the stochastic process under E(𝜇𝛾 ,𝜈∗ ) , the last term in the expec-

tation can be seen as ℎ∗ (𝓈′
𝑡+1). Therefore we get

𝑉 ∗𝛾 (𝑠) ≤
𝐽 ∗

1 − 𝛾 + E𝜇
𝛾 ,𝜈∗

[+∞∑︁
𝑡=1

𝛾𝑡−1 (ℎ∗ (𝓈′𝑡 ) − ℎ∗ (𝓈′𝑡+1)) |𝓈
′
1
= 𝑠

]
=

𝐽 ∗

1 − 𝛾 + ℎ
∗ (𝓈′

1
) − E𝜇𝛾 ,𝜈∗

[+∞∑︁
𝑡=2

(𝛾𝑡−2 − 𝛾𝑡−1)ℎ∗ (𝓈′𝑡 ) |𝓈′1 = 𝑠

]
≤ 𝐽 ∗

1 − 𝛾 +max

𝑠
ℎ∗ (𝑠) −min

𝑠
ℎ∗ (𝑠)

+∞∑︁
𝑡=2

(𝛾𝑡−2 − 𝛾𝑡−1)

≤ 𝐽 ∗

1 − 𝛾 + 𝑠𝑝 (ℎ
∗)

≤ 𝐽 ∗

1 − 𝛾 + 𝐷.

Putting both parts together and multiplying by (1−𝛾) we obtain
the desired statement.

5.2 Proof of Lemma 4
We simply write 𝑉 ∗ and 𝑄∗ for 𝑉 ∗𝛾 and 𝑄∗𝛾 respectively to lighten

notations.

For every time 𝑡 we have

𝑉 ∗ (𝑠𝑡 )−D(𝜇𝑡 ,𝜈𝑡 ) [𝑄
∗] (𝑠𝑡 ) = (𝑉 ∗−𝑉

↓
𝑡 ) (𝑠𝑡 )+(𝑉

↓
𝑡 −D(𝜇𝑡 ,𝜈𝑡 ) [𝑄

∗]) (𝑠𝑡 ) .

The second difference is upper bounded by

𝑉
↓
𝑡 (𝑠𝑡 ) − D(𝜇𝑡 ,𝜈𝑡 ) [𝑄

∗] (𝑠𝑡 ) = D𝜇𝑡 ,𝜈̃𝑡 [𝑄
↓
𝑡 ] (𝑠𝑡 ) − D(𝜇𝑡 ,𝜈𝑡 ) [𝑄

∗] (𝑠𝑡 )

≤ D(𝜇𝑡 ,𝜈𝑡 ) [𝑄
↓
𝑡 −𝑄∗] (𝑠𝑡 )

= (𝑄↓𝑡 −𝑄∗) (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 ) + 𝜁𝑡

= (𝑄↓𝑡+1 −𝑄∗) (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 )

+ (𝑄↓𝑡 −𝑄
↓
𝑡+1) (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 ) + 𝜁𝑡 .

The inequality holds by definition of 𝜈𝑡 as a best-response against

𝜇𝑡 for the matrix game 𝑄
↓
𝑡 (𝑠𝑡 , ., .). Under E𝛿 , inequality (4) bounds

the term (𝑄↓𝑡+1 −𝑄∗) (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 ), and therefore,

𝑉 ∗ (𝑠𝑡 ) − D(𝜇𝑡 ,𝜈𝑡 ) [𝑄
∗] (𝑠𝑡 ) − 𝜁𝑡 ≤ (𝑉 ∗ −𝑉

↓
𝑡 ) (𝑠𝑡 )

+ (𝑄↓𝑡 −𝑄
↓
𝑡+1) (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 )

+ 6𝐷
√︂

𝐻

𝑛𝑡
log(2𝑇 /𝛿)

+
𝑛𝑡∑︁
𝑖=1

𝛾𝛼𝑖𝑛𝑡

[
(𝑉 ↓𝑡𝑖 (𝑠𝑡 ,𝑎𝑡 ,𝑏𝑡 ) −𝑉

∗) (𝑠𝑡𝑖 (𝑠𝑡 ,𝑎𝑡 ,𝑏𝑡 )+1)
]
,

where 𝑛𝑡 = 𝑁𝑡+1 (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 ) and 𝑡𝑖 (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 ) is the 𝑖-th time when

(𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 ) has been visited. Note that 𝛼0𝑛𝑡𝐻 = 0 since

𝑛𝑡 = 𝑁𝑡+1 (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 ) > 0 by definition.

Now we sum over 𝑡 to get (s2). We need this technical Lemma :

Lemma 7. Under E𝛿 , we have

𝛾

𝑇∑︁
𝑡=1

𝑛𝑡∑︁
𝑖=1

𝛼𝑖𝑛𝑡 (𝑉
↓
𝑡𝑖 (𝑠𝑡 ,𝑎𝑡 ,𝑏𝑡 )−𝑉

∗) (𝑠𝑡𝑖 (𝑠𝑡 ,𝑎𝑡 ,𝑏𝑡 )+1) ≤ 𝑆𝐻+
𝑇+1∑︁
𝑡=2

(𝑉 ↓𝑡 −𝑉 ∗) (𝑠𝑡 )

where 𝑛𝑡 = 𝑁𝑡+1 (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 ) and 𝑡𝑖 (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 ) is the 𝑖-th time when
(𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 ) has been visited.

A proof of Lemma 7 is given in Appendix A.4 of the extended

version [6].

To rest of the proof can then be separated in the following steps.

• By Lemma 7, it holds that

𝑇∑︁
𝑡=1

𝑛𝑡∑︁
𝑖=1

𝛾𝛼𝑖𝑛𝑡 (𝑉
↓
𝑡𝑖 (𝑠𝑡 ,𝑎𝑡 ,𝑏𝑡 ) −𝑉

∗) (𝑠𝑡𝑖 (𝑠𝑡 ,𝑎𝑡 ,𝑏𝑡 )+1)

≤ 𝑆𝐻 +
𝑇+1∑︁
𝑡=2

(𝑉 ↓𝑡 −𝑉 ∗) (𝑠𝑡 ).

This gives a telescoping sum with

∑𝑇
𝑡=1 (𝑉 ∗ − 𝑉

↓
𝑡 ) (𝑠𝑡 ) and

only (𝑉 ↓𝑇+1 −𝑉 ∗) (𝑠𝑇+1) − (𝑉
↓
1
−𝑉 ∗) (𝑠1) ≤ 2𝐻 remains.

• Since 𝑄
↓
𝑡 decreases of at most 𝐻 per tuple (𝑠, 𝑎, 𝑏), we have
𝑇∑︁
𝑡=1

(𝑄↓𝑡 −𝑄
↓
𝑡+1) (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 ) ≤ 𝑆𝐴𝐵𝐻 .

• Since

∑
𝑠,𝑎,𝑏 𝑁𝑇+1 (𝑠, 𝑎, 𝑏) = 𝑇 , we have

𝑇∑︁
𝑡=1

1

√
𝑛𝑡

=

𝑇∑︁
𝑡=1

∑︁
𝑠,𝑎,𝑏

1(𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝑏𝑡 = 𝑏)√︁
𝑁𝑡+1 (𝑠, 𝑎, 𝑏)

=
∑︁
𝑠,𝑎,𝑏

𝑁𝑇+1 (𝑠,𝑎,𝑏 )∑︁
𝑗=1

1

√
𝑗

≤
∑︁
𝑠,𝑎,𝑏

2

√︁
𝑁𝑇+1 (𝑠, 𝑎, 𝑏) ≤ 2

√︄
𝑆𝐴𝐵

∑︁
𝑠,𝑎,𝑏

𝑁𝑇+1 (𝑠, 𝑎, 𝑏) ≤ 2

√
𝑆𝐴𝐵𝑇 .

Putting every thing together, we get the desired inequality for a

certain absolute constant 𝑐 .

6 CONCLUSION
In this work we propose the DONQ-learning algorithm that is the

first model-free algorithm that deals with decentralized learning

in infinite-horizon average-reward stochastic games. It uses an

artificial discounted setting in order to use optimism techniques

developed in previous works. This algorithm achieves sublinear

regret performances both with high probability and in expectation.

Surprisingly, our analysis gives a high probability upper bound of

order 𝑇
3

4 whereas we show an upper bound of order 𝑇
2

3 for the

expected regret. We are not sure if this difference is a proof artifact

or an actual difference between the expected and high-probability

regret. The high probability regret bound is obtained by choosing

a parameter 𝐻 = 𝑇 1/4
while the bound for the expected regret

is obtained by choosing 𝐻 = 𝑇 1/3
. An open question is whether

choosing 𝐻 = 𝑇 1/3
leads to a high probability bound in 𝑇 2/3

or

in 𝑇 5/6
which is the high probability bound given by our analy-

sis. Another open question is to know if there exists a model-free

algorithm that achieves the information-theoretical lower bound

of order 𝑇
1

2 under our Assumption 1. For future work, the same

setting (decentralized learning in infinite-horizon average-reward

SG) where we additionally assume that the opponent’s actions are

unobservable may be studied. This has already been studied for the

finite-horizon setting with for instance the V-learning algorithm. It

would be interesting to see if such model-free algorithms can be

adapted to the infinite-horizon setting.
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