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ABSTRACT

In this paper, we propose a systematic design process for automat-
ically generating self-organizing neuro-fuzzy Q-networks by
leveraging unsupervised learning and an offline, model-free fuzzy
reinforcement learning algorithm called Fuzzy Conservative Q-
learning (FCQL). Our FCQL offers more effective and interpretable
policies than deep neural networks, facilitating human-in-the-loop
design and explainability. The effectiveness of FCQL is empirically
demonstrated in Cart Pole and in an Intelligent Tutoring System
that teaches probability principles to real humans.
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1 INTRODUCTION

In the last decade, combining deep neural networks and novel re-
inforcement learning (RL) algorithms has made solving complex
problems possible [6, 55]. Generally speaking, RL is an online and
interactive process where an agent explores its environment and
exploits what it has learned to maximize an expected cumulative
reward [56]. Exploration allows the agent to discover new possibil-
ities beyond what it has witnessed thus far [49]. In some settings,
exploration is impossible due to restrictions such as legal recourse
[52]. Still, data involving past interactions may be available —one
approach to solve this is by offline RL: an agent is trained to max-
imize an expected reward using only data that has already been
collected [36]. In challenging, sensitive, and high-risk domains,
computational models’ interpretability is also highly critical. For
example, in healthcare, it is generally more important to learn about
the discriminative interpretable patterns that capture the informa-
tive progression of a disease than to induce an accurate predictive

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 — June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

1248

Mark Abdelshiheed

North Carolina State University
Raleigh, NC, USA
mnabdels@ncsu.edu

Min Chi
North Carolina State University
Raleigh, NC, USA
mchi@ncsu.edu

computational model. More importantly, interpretability is a crucial
factor to earn credibility and adoption [32]. Due to the opaque na-
ture of deep neural networks, it is often near impossible for humans
to interpret or understand their decision making [15, 46]. Addition-
ally, Deep RL is sample inefficient. In contrast, imitation learning
(IL) relies upon expert demonstrations rather than trying to learn
from a large number of training trajectories. In IL, the agent learns
the optimal policy by imitating the expert’s demonstrations; a basic
form of IL is behavior cloning (BC) [57].

An alternative to providing a learning agent with expert knowl-
edge is instructions written by an expert (more formally known
as a linguistic control strategy) —via IF-THEN rules that describe
an approximate and imprecise causality between input and output
called fuzzy logic rules [32, 35, 62]. To incorporate this kind of
expert knowledge into neural networks, a neuro-fuzzy network
was proposed, and its use for the RL problem falls under the um-
brella of fuzzy RL [12]. This led to more interpretable policies, but
their heavy dependency upon expert knowledge limits potential
applications or dramatically increases the development cost and
time —hence the obvious appeal of automated learning techniques.

Automatic discovery of the linguistics [8, 58, 59], and how to
produce the IF-THEN relationships [28, 64], remains an ongoing
research endeavor; the objective of creating both an interpretable
and an accurate system are contradictory requirements in complex
domains [15], and to this day, there is still no universally agreed
upon systematic design process [7, 16, 30, 50, 58].

We propose a systematic design process for a self-organizing
neuro-fuzzy Q-network by using two learning paradigms in tan-
dem: unsupervised learning and an offline, model-free fuzzy RL al-
gorithm called Fuzzy Conservative Q-learning (FCQL). FCQL is
primarily based on Fuzzy Q-Learning [20], which treats a fuzzy
logic rule as a “state” in the environment —similar to how Tabular
Q-Learning [66] behaves —and trains Q-values for each of the rule’s
possible actions. To prevent overestimating Q-values in the offline
setting, we use the updated formula proposed in Conservative Q-
Learning (CQL) [34]. The primary novelty and contribution of this
work is the proposal of a systematic design process for a neuro-fuzzy
Q-network that works with a model-free offline fuzzy RL algorithm.
To the best of our knowledge, existing methods within fuzzy RL are
either developed for online interaction due to their dependency on
exploration [9], are unable to accommodate for distributional shift
[20], or rely upon the existence of a simulation [10, 22]; furthermore,
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the only existing work capable of automatic design for offline fuzzy
RL is fuzzy particle swarm RL, but this requires a simulation of
real system dynamics that may be impractical for many real-world
complex applications such as e-learning and healthcare [22]. The
effectiveness of FCQL is evaluated in two settings: (1) Cart Pole,
where FCQL'’s performance was compared directly to CQL as well
as additional offline RL (and IL) methods, and (2) an Intelligent
Tutoring System (ITS), where FCQL was empirically compared to
an expert-designed policy, referred to as Expert, in a real-world
classroom study.

2 METHOD

Figure 1 illustrates the systematic design process for our proposed
self-organizing neuro-fuzzy Q-network. In the following, Section
2.1 first gives a brief review of fuzzy logic theory, its intuition,
and the motivation behind our proposed systematic design process.
Sections 2.2, 2.3, and 2.4 describe our primary contribution —the
self-organizing nature of the process. More specifically, Section
2.2 addresses the top left of Figure 1: “Discover Fuzzy Sets with
CLIP”, and Section 2.3 addresses the top right of Figure 1: “Obtain
Candidates for Fuzzy Logic Rules with ECM”. These two steps may
run in parallel to save computational time. Section 2.4 describes
the “Generate Fuzzy Logic Rules with Wang-Mendel” step, which
would construct the neuro-fuzzy Q-network for inducing RL poli-
cies. This neuro-fuzzy Q-network can be used similarly to how a
Deep Q-Network [45] is used in Deep Q-Learning. Finally, Section
2.5 describes the bottom of Figure 1 on how to train the neuro-fuzzy
Q-network: “Learn Fuzzy Logic Rules’ Q-values with FCQL”.

Our proposed self-organizing process can handle complex, high-

dimensional tasks, as demonstrated in our main empirical study
where an Intelligent Tutoring System is used to teach probability
principles to undergraduate students. More importantly, it can adapt
to the given data in both online and offline environments. Since we
are mainly interested in human-centric tasks for which exploring
the environment is not feasible, and since relatively little previous
research has explored offline settings, we are primarily concerned
with results from offline fuzzy reinforcement learning.
Problem Definition: We assume the state space, 8, is continuous
and n-dimensionsal (i.e., § = R™) —as a result, state s is a column
vector of size n but —for convenience and without loss of gener-
ality —we will write as a n-tuple such that (s.t.) s = (s1, 82, ..., Sn)-
Throughout the entirety of this paper, let i denote the i’ h input di-
mension (i.e., state attribute). For example, s; is the i th element/value
of s. Our action space, A, is a discrete and finite set.

2.1 The Theory of Fuzzy Logic

Fuzzy logic, fuzzy logic rules, linguistic variables, and their linguis-
tic terms are all by-products of the renowned fuzzy set theory [68].
Fuzzy set theory is the mathematical study of a type of uncertainty
called impreciseness. Often, fuzzy set theory is mistakenly com-
pared to probability theory, but the two are distinct mathematical
branches concerned with handling different types of uncertainty
—in fact, the two can complement one another [32, 69].

For a fuzzy set, an element’s membership is [typically] between
0 and 1 [32] —unlike “traditional” set theory, where an element
either belongs to a set or it does not. Let U represent the universe of
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Figure 1: Diagram of the proposed systematic design process
for the self-organizing neuro-fuzzy Q-network.

discourse which contains all the possible elements for some applica-
tion of concern [62]. To determine the membership of an element
u € U to afuzzy set G, we write ug (u) (the p is a special notation for
“membership function”), and has a range of [0, 1] where 0 denotes ab-
solute non-membership and 1 denotes absolute membership. As an
element’s membership approaches 0, the less it belongs to the fuzzy
set [68]. The Gaussian membership function is used to calculate
elements’ memberships to fuzzy sets in this study as it easily allows
for back-propagation via gradient descent to occur as opposed to
the alternatives (e.g., trapezoidal membership functions) [58]. In
this work, the terms “fuzzy sets” and “membership functions” can
essentially be used interchangeably [32].

Returning to the aforementioned by-products of fuzzy set theory,
linguistic terms are fuzzy sets that satisfy a set of constraints and
have a semantic meaning; the linguistic variable is then simply a
variable that can only take on values that are linguistic terms [32].
The implication relationship between the assignment of a linguistic
variable(s) to some linguistic term(s) (called the antecedents) and
the assignment of another linguistic variable to some linguistic
term (called the consequents) is a fuzzy logic rule. The degree of
applicability or activation of a fuzzy logic rule is dependent upon
the given information’s relevancy or membership to the fuzzy logic
rule’s antecedents. The collection of fuzzy logic rules constitutes a
knowledge base, and with its decision-making logic (e.g., product-
inference engine) [35], a system may be controlled with the inferred
output —this is called a fuzzy logic controller (FLC). Neuro-fuzzy
networks are computationally efficient implementations of FLCs
that facilitate back-propagation [39].

In the context of self-organizing fuzzy RL (i.e., no a priori knowl-
edge or human expert design), the fuzzy logic rules —and subse-
quently the linguistic terms they are defined over —are entirely ab-
sent at first. Our proposed method is thus essentially two-pronged:
(1) discover the areas of interest that fuzzy logic rules can be defined
for and (2) determine their corresponding outcomes (i.e., Q-values).
The first part is done by a combination of unsupervised learning
methods —namely, Categorical Learning-Induced Partitioning
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[58] for identifying linguistic terms, Evolving Clustering Method
[28] to obtain candidates for fuzzy logic rules, and then the classic
Wang-Mendel Method [64] for fuzzy logic rule generation. Lastly,
offline fuzzy RL learns the fuzzy logic rules’ Q-values. Sample code
demonstrating our method is publicly available (MIT license) [23].!

2.2 Identifying Membership Functions

In order to create fuzzy logic rules, it is necessary to define mem-
bership functions that describe fuzzy sets.? Our fuzzy logic rules
will map linguistic terms that describe the environment’s current
state, to Q-values of the available actions. In order to discover these
linguistic terms, we need a procedure designed specifically for this
purpose. In this paper, we chose Categorical Learning-Induced
Partitioning (CLIP) —a quick, single-pass algorithm capable of
producing Gaussian membership functions which can improve
upon them incrementally online/offline (increased flexibility). Fur-
ther, CLIP does not require us to determine the number of linguistic
terms we need in advance [58], unlike fuzzy C-means [13], for
instance. 3 CLIP is inspired by the behavioral category learning pro-
cess that humans possess [58]. An example of behavioral category
learning would be a young infant first seeing a dog and believ-
ing that all animals are dogs; however, as the infant grows older,
the child begins to refine what it means for an animal to be a dog
[43, 44, 58]. CLIP works in a very similar manner.

Upon seeing the first state, s, in the training data, D, CLIP will
create a fuzzy set —that represents a concept [43, 58] —which cov-
ers the entire domain for some i. Since CLIP produces fuzzy sets
that are defined by Gaussian membership functions [58], then
this newly created fuzzy set has parameters ¢! = s; and ail

q,(\/ (mini—si)z\/ (max; —s;)?
- loge A\~ loge
g g

and width of the Gaussian membership function that describe Gil,
respectively (the superscript 1 is to emphasize that it is the first
fuzzy set created in i). A newly created membership function is

i

), where c} and Uil are the center

centered upon the presented value, while <I>(o{ , o{ ) = % [o'l.] + 0'1!]
defines a regulator function and j # . The regulator function’s pur-
pose is to preserve each fuzzy set’s distinct semantic meaning “...by
maintaining a reasonable amount of buffer on either sides of its
center, where the boundary of the domain is given as [min;, max;]
and the minimum membership threshold, €, is defined s.t. the mem-
bership value of any point in the domain should be at least € before
regulation” [58]. Thus, if the center of a newly created membership
function were to be near one of the boundary’s edges, the regulator
function would prevent such drastic malformed membership func-
tions from forming —as without the regulator function, the side of
the Gaussian membership function closer to the boundary’s edge
would drop drastically to a membership value of €. By using this
regulator function, the newly created membership function would
develop the desired Gaussian shape with equal and reasonable
amount of spread on both sides of its center.

!https://github.com/johnHostetter/ AAMAS-2023-FCQL

Technically, some antecedents of the fuzzy logic rules could contain “hard” partitions
(e.g., true/false or categorical data).

3An alternative incremental procedure called Discrete Incremental Clustering exists,
but it produces trapezoidal membership functions instead [59].
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If a fuzzy set already exists in i but a new state § has been encoun-
tered (8 # s, as it is some arbitrary state that occurs next within the
training data or batch —not necessarily the successor to state s in
an episode), then CLIP will calculate a similarity match between
the input value §; and all existing fuzzy sets in i; this “similarity
match” is Hei (c{, (ri];Ei) where G{ is the ji" fuzzy set to be created

iniand cl! , olj are its Gaussian membership function’s properties,
respectively.

The best matched fuzzy set is * = argmax ./ (c{, crl.J; $i) s.t. %7
references the best matched existing fuzzy set in i. If the similarity
between $; and Gl.* exceeds a contrasting threshold k, then this fuzzy
set, G¥, represents §; satisfactorily. Otherwise, a new fuzzy set will
be created to accommodate for §;, while adjusting and refining fuzzy
sets in i. Formally, this new fuzzy set in i is created by

o]i(t)+1 — §i
ol if jR = NULL

JICORS I I if jL = NULL 1)
(oL, oR) otherwise

where J;(t) is the number of fuzzy sets that have been created for
i thus far at time-step ¢, and

7 (D( V_(cj;o;i)‘z"’jf(t))

R
(ci” = 3;)*

__,gfm)).

@

®)

o :<I>(
loge

After the creation of the new fuzzy set, the existing fuzzy sets
in i accommodate this new addition —this ensures that the fuzzy
sets within i remain distinct from one another. For computational
simplicity, only the left and right neighbors (if they exist) of the
newly created fuzzy set are adjusted/refined. This leads to three
possibilities, the new fuzzy set has:
(1) no left neighbor (i.e., jiL = NULL by Eq. 4), then the right
neighbor is fixed: ath(t +1) = /iU yia Eq. 3
(2) no right neighbor (i.e., le = NULL by Eq. 5), then the left
neighbor is fixed: oIt (t+1) = ¢h D+ yia Eq.2
(3) left & right neighbors (by Eq. 4 and Eq. 5), then both are:
crjiL(t +1) = ajzR(t +1) = gh(D+ yig Eq.2 &Eq.3
The following formulas are used to determine neighboring fuzzy
sets’ eligibility for modification:

o NULL if i > § for1 < j; < Ji(t) @

! argmin,j; ., |e/i —§;| otherwise

r_ |NULL if /i < §for1 < j; < Ji(t) )
argmingj; . 5, lefi =5 otherwise.

Repeat for 1 < i < n using every unique state within D.

2.3 Obtaining Candidates for Fuzzy Logic Rules

The identification of relevant or important fuzzy logic rules is
closely related to the identification of exemplars, clusters, or proto-
types within input-output data [8, 28, 48, 67]. In offline RL, we have
no associated output behavior to the given states before learning
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Q-values. Despite this, we can still identify “regions of interest”
or exemplars that are to be modelled by the Evolving Clustering
Method (ECM) [28]. ECM further partitions the input space to facil-
itate the creation of fuzzy logic rules. The ECM algorithm is a quick,
single-pass procedure that dynamically estimates the number of
clusters within the data, as well as their current centers, after being
given a threshold value called Dthr; Dthr affects the number of clus-
ters identified, and subsequently, the number of fuzzy logic rules
possibly identified. To select an appropriate value for Dthr, it can
be adjusted to limit the growth of the knowledge base —essentially,
the larger the Dthr value is, the smaller the number of identified
candidates for fuzzy logic rules will become, but this runs the risk
of losing potential approximation power.

For a data point to be within a cluster, it must have a distance
that is less than the threshold Dthr. ECM measures distance by
relying upon the general Euclidean distance [28] defined as ||s—§|| =
(Zh 1si— §,~|2)% /n% where s, § € 8.

Upon sampling state s from the training data, ECM creates a
cluster where the center, x1, is equal to s, and sets the cluster’s
radius, r!, to zero. As ECM begins to see other data, it will adjust
this cluster’s estimated center as well as its radius. Clusters are no
longer updated once their radius reaches the threshold value, Dthr
—effectively serving as a throttle to a cluster’s maximum allowed
“area of influence” or “receptive field” within the input space.

ECM can be described with five steps:

(1) Create the first cluster, (Xl, rl), by taking the first state, s,
from the training data as the center x! = s, setting the radius
r! to zero and recording the support, supp! = 1.

(2) Ifall examples are processed, exit. Else, the distances between
the current state, s, and all M existing clusters are calculated:
[|s = x™||, form=1,2,...,M.

(3) If ||s = x™|| < r™ for m = 1,2,..., M, then state s belongs
to a cluster (x*, r*) with the minimum distance ||s — x*|| =
min(]|s — x™||) subject to the constraint ||s — x™|| < r™
form =1,2,..., M; if the previous conditions are met —no
cluster is added or updated, and the algorithm returns to
Step 2. Else, go to the next step.

(4) Find the cluster, (x',r"), that satisfies T = argmin (||s —
x| +rm) form=1,2,...,M.

(5) If min (||s —x™|| + r™) > 2 X Dthr, the state s does not be-
long to any existing clusters; a new cluster is created via
Step 1, and the algorithm goes to Step 2. Else, the clus-
ter, (x',r"), is updated by moving x', increasing the ra-
dius, r', and incrementing the support, supp': specifically,
r¥ = min (||s—xm||+rm)/2,x'}' = ((supp'{'—1)><XT+S)/supp'}',
and supp’ is incremented by 1. Return to Step 2.

The collection of clusters’ centers obtained by ECM are then can-
didates to generate fuzzy logic rules —these candidates are denoted
by X s.t. X = {x,x%,...,xM}. These candidates will reappear in
Section 2.4 where the Wang-Mendel Method will prepare them into
a fuzzy logic rule format and select only those that are unique. No-
tice that the candidates may not necessarily equal the original states’
values —instead, they are the result of a few states that are brought
together by similarity. The purpose of this “preprocessing step” is to
assist the Wang-Mendel Method by eliminating redundant state ob-
servations that are closely similar. Without this, in high-dimension
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tasks, it becomes possible for the Wang-Mendel Method to produce
a number of fuzzy logic rules that grow linearly with respect to
the original training data (i.e., |D|) [64]. Therefore, we hope that
|X| << |D| before applying the Wang-Mendel Method.

2.4 Generating the Fuzzy Logic Rules

The Wang-Mendel Method is one of the most widely used fuzzy
logic rule generation methods [29, 64] and was originally designed
for supervised learning by following a five-step procedure. For our
task, we mainly leverage the second step.

Suppose X is a set of candidates for fuzzy logic rules where
each element is x = (x1,x2,...,xn). A candidate fuzzy logic rule is
generated by converting x into its fuzzy representation —a Carte-
sian product of fuzzy sets, s.t. each fuzzy set within this Cartesian
product operation belongs to its respective input-dimension. To de-
termine which fuzzy sets are in this Cartesian product, for1 < i < n
of x, we select the fuzzy set that x; attains the highest degree of
membership to:

* = argmaxG{ (xj)for1 <j<J;

(6)
where J; is the number of fuzzy sets that have been partitioned for
i (notice that J; is no longer a function of time, ¢, as it was earlier
—this is because J; is now a constant value as CLIP is done). A fuzzy
logic rule maps a Cartesian product of fuzzy sets to some decision,
which would be the Q-values corresponding to possible actions in
fuzzy RL. However, as Q-values are not known at this point, the
zero vector, 0, (length of | A|) initializes their values. Thus, given a
candidate x, we generate a fuzzy logic rule in the form:

Ruley : (GT,GJ,....Gy) > 0 (7)

where * satisfies Eq. 6 for 1 < i < n and Rule; means the kth fuzzy
logic rule (k > 1); rules with identical antecedents are eliminated
to prevent redundancy in the knowledge base.

2.5 Fuzzy Conservative Q-Learning (FCQL)

The k! fuzzy logic rule, Ruley, must learn the Q-values of | Al
discrete actions available at the current state s. For Ruley, ai and
Qi, denote the £*" possible action and its corresponding Q-value for

the k'h fuzzy logic rule, respectively. The fuzzy logic rules defined
previously with Eq. 7 are expanded into a trainable format:

Rule : IF s is Gf and ... and s, is G)

®)

41 g ol

THEN Action a,lC is Q}C and ... and Action a;

Let a' be the selected action in Rule;. for some transition in D.
The actual Q-value of a' is

YK Rule(s) x Qf
YK Rulep(s)

where Ruley (s) = [} Gl.* (si) and * is the chosen linguistic term

Q(s,a) = )

for Ruley.’s i* h linguistic variable (i.e., the terms that made Ruley in
Eq. 7). Eq. 9 defines a zero-order Takagi-Sugeno-Kang (TSK) neuro-
fuzzy network with product-inference engine and a knowledge base
of size K [15, 62]. This TSK neuro-fuzzy network can theoretically
approximate any real continuous function on a closed and bounded
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domain to any given degree of accuracy [33, 41, 61, 63]. To learn Q-
values in the offline fuzzy RL setting, we combine Fuzzy Q-Learning
with the CQL framework by augmenting the standard Bellman error
objective function; a few variants exist [34], but in this paper, the
training objective

Augmentation by CQL
mina E lo ex| s,a)) =B +_~ (3 s,al
0 s~D gz P(Q( > )) a'w”ﬁ<aws) [Q( > )]]
a
! t t s
+ 2 Es,a"',s/~D (Q(S’ a') - (:R(S’ a') + Y[glea./)l( (s, a)]))

Standard Bellman Error

learns the Q-values for each fuzzy logic rule in the form of Eq. 8
where @ > 0 is a tradeoff factor s.t. as the size of available data
grows, the magnitude of & can become lesser [34]. Further, 74 is the
behavior policy that collected the training data D, y € [0, 1] is the
discount factor, s’ is the next state after state s and R is the reward
function. The functions Q(s, a), O(s, a’) and Q(s’, a) are calculated
by Eq. 9 with their respective arguments. Offline training continues
until it reaches either convergence, a specified error threshold, or
the maximum number of iterations.

3 CART POLE & RESULTS

For CLIP and ECM, the training data’s order of presentation may
affect the output, but subsequent runs do not appear to produce
substantially different results.

Description: A cart is placed on a one-dimensional track with a
pole affixed by a hinge. Each state in the environment is described
by four continuous features: cart position, cart velocity, pole angle,
and pole angular velocity. The goal is to balance the pole by moving
the cart left or right; a reward of +1 is given for every time-step the
pole remains balanced. An episode will end if either: (1) the pole
angle exceeds +12 deg; (2) the position of the cart is greater than
+2.4; or (3) the episode is longer than 500 time-steps (truncation).

Six approaches: For baselines, deep neural networks were
trained with 4 different strategies: 1. Conservative Q-Learning
(COL) [34] with a Double Deep Q-Network [60]; 2. Batch Con-
strained Q-Learning (BCQ) [19]; 3. Neural Fitted Q Iteration
(NFQ) [51]; 4. Behavior Cloning (BC) [57]. These baselines were
selected due to their applicability in discrete control and capabil-
ity/potential for offline learning. Additionally, a fifth baseline was
trained, Fuzzy Q-Learning (FQL) [20], to demonstrate the ne-
cessity of a model-free fuzzy RL procedure for the offline setting
(which we propose FCQL to answer this need). All five baselines
are compared to our proposed Fuzzy Conservative Q-Learning
(FCQL). The deep neural networks for CQL, BCQ, NFQ, and BC had
two hidden layers, each with 256 neurons using ReLU activation
function and bias; its output layer has a linear activation function
and one output neuron per possible action. Both FQL and FCQL
automatically design themselves when given the available training
data as outlined in the “Method” section, and output is calculated by
Eq. 9. However, FCQL will use the suggested augmentation from the
CQL framework in Eq. 2.5, whereas FQL will only use the standard
bellman error. For consistency, all methods used Adam [31].
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Policy induction: Parameters shared by conditions (e.g., dis-
count factor y) were identical. The following values were used:
a = 0.5,y = 0.99, learning rate n = le — 4 with a batch size of
64. For the FCQL, parameters for CLIP were € = 0.2, k = 0.6, and
ECM’s distance threshold, Dthr, was 0.4. The cart pole training
data and policy inductions for CQL, BCQ, NFQ as well as BC were
from an offline Deep RL library called d3rlpy (MIT license) [53].
Two different methods were used to collect the cart pole training
data: (1) Replay and (2) Random. The Replay data was collected
by a DON using experience replay and solving the cart pole en-
vironment online. In contrast, the Random data was collected by
selecting actions randomly to balance the cart pole online.

Consequently, inducing a policy using only Random data in-
creases the difficulty of inducing an effective policy. Each condition
was run 50 times across different seeds; for every seed, each algo-
rithm was shown the same data in the same order. When training
on the Replay data —during each run —the amount of data avail-
able for offline training increased from 10 episodes to 250 episodes
by increments of 10 to demonstrate how the conditions behave
as more training data becomes available. When training on the
Random data —during each run —the amount of data available for
offline training increased from 100 episodes to 1000 episodes by
increments of 100 instead as it became more challenging to balance
the cart pole with a Random-only behavior policy. The model was
evaluated online for 100 episodes using OpenAl Gym [14], and its
average performance was recorded.

Discovery of Fuzzy Logic Rules: The fuzzy logic rule growth
for either the FCQL or FQL conditions (as they both used the same
self-organizing procedure and resulting neuro-fuzzy Q-network in
their respective policy inductions) witnessed approximately linear
growth as the amount of offline training data increased, as shown
in Figures 2 and 3 when trained on the Replay and Random data, re-
spectively. However, its growth does appear to plateau as even more
data becomes available —this is likely due to the ECM algorithm
serving as a threshold or bottleneck in preventing superfluous fuzzy
logic rules from being generated.
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Figure 2: Replay data; the fuzzy logic rule growth for either
the FCQL or FQL conditions.

Results on Replay data: Figure 4 shows that FCQL consistently
outperforms CQL. Although BC offers comparable performance
to FCQL as training episodes increase, FCQL maintains an early
advantage by requiring fewer training episodes and containing
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Figure 3: Random data; the fuzzy logic rule growth for either
the FCQL or FQL conditions.

a rule-based knowledge base, whereas BC is implemented via a
deep neural network. While BCQ is shown to be a robust offline
RL algorithm in [18], it was unable to control the cart pole in the
online evaluations in our experiments. One potential reason is that
the original BCQ implementation for discrete action spaces uses a
conditional Variational Autoencoder (VAE) to induce a policy, as it
was initially proposed to solve the Atari games. In this work, the
encoder and decoder had a latent space of 32 features. Given that
the Cart Pole problem is a mere four features, the encoding to and
from a space larger than the original state space may have resulted
in BCQ being unable to learn the Q-values effectively.

Results on Random data: Figure 5 reveals that —with our
self-organizing process —both the FCQL and FQL consistently out-
perform CQL, BCQ, NFQ, and BC. BC will try to mimic the behavior
of the training data —which was collected by acting randomly —and
thus, fails to learn a sufficient policy. CQL now struggles with bal-
ancing the cart pole, but since both FCQL and CQL use the same
training objective, the only difference remains in their function
approximation of the Q-values. FCQL and FQL benefit from self-
organizing the neuro-fuzzy Q-network’s architecture to adequately
accommodate or reflect the patterns within the input space, which
may have enhanced their approximation capabilities.
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Figure 4: Replay data; starting from 10 episodes being avail-
able for offline training, up to 250 episodes of offline training,
in increments of 10.
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Figure 5: Random data; starting from 100 episodes being
available for offline training, up to 1000 episodes of offline
training, in increments of 100.

Human-in-the-loop: To demonstrate the feasibility of includ-
ing humans in the design of the neuro-fuzzy Q-network, a subop-
timal neuro-fuzzy Q-network partially trained by FCQL (with a
mean of 381.7 and standard deviation of 101.1) is selected. Here
we will show that the human expert can inspect and correct this
suboptimal neuro-fuzzy Q-network. Figure 6 shows the identified
linguistic terms for this example, and the fuzzy logic rule that had
the strongest influence when the cart failed to balance the pole was
Ruley; shown in Figure 7 (i.e., “if the cart is all the way to the left but
is moving left slowly, and the pole is falling to the left quickly, then
moving the cart to the left or right has Q-values of 15.90 and 15.72,
respectively”). In this original rule, the difference between Q-values
for pushing the cart left (15.90) or right (15.72) is rather small even
though pushing left is much better. So a human can modify the
rule’s Q-value for left from 15.90 to 17.0. The updated policy was
then evaluated online for 100 episodes and consistently scored a
perfect 500.0. The human was able to quickly adjust the suboptimal
model to achieve optimal performance in ~5 minutes.

4 ITS EXPERIMENTS & RESULTS

Description: Figure 8 shows our ITS’s graphical user interface. It
is a web-based application that teaches ten probability principles
(e.g., the Addition Theorem and Bayes’ Theorem). The pedagogical
decisions are whether the student should solve the next problem
(Problem-Solving (PS)), study the tutor’s solution as a worked-out
example (Worked-Example (WE)) or work collaboratively with the
tutor to solve the next problem (Collaborative Problem-Solving
(CPS)). During the CPS, an additional level of interaction between
the student and tutor occurs —the tutor can decide to either tell
the student the next step or elicit the student to solve the next step
themselves. The ITS provides adaptive instructions, immediate feed-
back, and on-demand hints to enhance learning. The student can
request hints by clicking the [Hint] button shown in the “Response
Window” of Figure 8.

Participants: This study was given to students as a homework
assignment in an undergraduate Computer Science class in the
Fall of 2021 at North Carolina State University. Students were told
to complete the study in one week and will be graded based on
demonstrated effort rather than learning performance. 129 students
were randomly assigned into two conditions: FCQL (N = 65) and
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Figure 6: Linguistic terms describing the state environment as discovered by CLIP. Hatched and colored linguistic terms
correspond to the selected Ruley; in the “human-in-the-loop” example.

(2) (1) (3) ITS training: Students receive training on 12 problems
(shown in the same order for each student) with the assis-
tance of an automated tutor (FCQL or Expert).

(4) Posttest: Students’ learning is evaluated with 20 problems

e —14 isomorphic to the pretest, with the remaining 6 being
4

non-isomorphic multiple-principle problems.

15.90 Rulez 15.72 All of the tests were graded in a double-blind manner by two

experienced graders, and were normalized to [0, 1].

Policy induction: The FCQL policy induction was done offline
using pre-collected training data containing 1,834 students’ inter-
action logs over nine semesters of classroom studies (Fall 2016 to
Spring 2021). During these studies, the tutor, the general procedure,
the training materials, and the training problems were all the same.
The training corpus provides the state representation, action, and
reward information for policy induction.

State: We extracted 142 features that might impact student learning
from the student-system interaction logs that can be categorized

Figure 7: Rulez; describes state (2). Here, (1) is the original
state. In (2), the cart is left of the original position (Fig.6 (a)),
the cart velocity is moving to the left slowly (Fig. 6 (b)), the
pole angle is left from the vertical (negative) (Fig.6 (c)), and
the pole angular velocity is also negative (Fig.6 (d)).

Expert (N = 64). Due to preparation for final exams and the study’s
length, 92 students completed the study, but two students were

excluded from our analysis due to perfect performance in the pretest. )
The final group sizes were FCQL (N = 45) and Expert (N = 47). into five groups: Autonomy (10 features): the amount of work done
by the student, such as the number of elicits since the last tell; Tem-

poral Situation (29 features): time-related information about work
process, such as average time per step; Problem-Solving (35 features):
information about the current problem-solving context, such as the
difficulty of the current problem; Performance (57 features): informa-
tion about the student’s performance during problem-solving, such
as the percentage of correct entries; Hints (11 features): student’s
hint usage, such as the total number of hints requested thus far.
Action: PS, WE, or CPS described above.
e ovent A and 5 with A0, p(81-0.5, and (A ~BY=0.2. Dotormine p(A 1 B). Reward: No immediate reward during tutoring, but the delayed
Problem Statement Window reward is the students’ Normalized Learning Gain (NLG), which
measures their learning gain irrespective of their incoming com-

_ . posttest—pretest :
petence [1-5, 27]. NLG is defined as T Tpretest where 1 is

: Dialog Window the maximum score for both pre- and post-test. A hierarchy of
Variable Window FCQL policies were created such that one FCQL policy determines
what action to take on the problem-level, and separate FCQL policies
determine whether to elicit or tell the next step during a CPS. Param-

A Chi-square test revealed the students’ completion rate between
conditions was not significantly different: y%(2) = 0.8768, p = .349.
Experiment procedure & grading: Consists of:
(1) Textbook: Students read about probability principles and
review examples.
(2) Pretest: Students’ a priori knowledge is bench-marked with
14 single- and multiple-principle problems.

Equations. Your response:

‘Addition theorem for two events

. Carpuron oo Response Window eters for the FCQL policy induction were: @ = 0.1,y = 0.99, learning
o ergans Lo on vt oo virga
oo Aton Theoram for two overts: A and & T el o Gepondent YO entor gt event rate n = le —2, batch size of 128, € = 0.3, k = 0.7, and Dthr was 0.08.

Results: There was no significant difference between students’
incoming competence, t(90) = —0.490, p = 0.625. The training
time between conditions was also not significant, (90) = —1.282,

Equation Window

Flgure 8: The interface of our prObablhty tutor. 4The posttest is designed to be significantly harder than the pretest.
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p = 0.203. The FCQL violated normality, according to the Shapiro-
Wilk test (p = 0.003), as well as the Expert (p = 0.002). Lev-
ene’s Test for Equality of Variances found the two conditions had
equal variance, (p = 0.593). The difference in posttest scores be-
tween FCQL (.803 + .163) and Expert (.683 + .165) was significant,
£(90) = 3.502, p = 0.001, Cohen’s d = 0.730. For completeness —due
to the violation of normality —the Mann-Whitney U test was also
consulted. Posttest scores between FCQL (mean rank = 56.60) and
Expert (mean rank = 36.83) were statistically different, U = 603,
z = —3.553 (standardized test statistic), p < 0.0005. By difference of
means and comparison of mean ranks, FCQL statistically improved
students’ overall performance in the posttest problems compared to
the Expert designed policy. Furthermore, students’ incoming com-
petence was also factored in by adjusting for their pretest scores
with a one-way ANCOVA test. Between FCQL and Expert, there
was a significant difference in posttest scores, F(1,89) = 22.520,
p < 0.0005, partial ? = 0.202. To summarize, our results showed
that FCQL-induced policies are significantly more effective than the
Expert designed ones in that FCQL performed significantly higher
in their posttest than Expert despite both conditions solving the
same problems in the same order and spending the same amount
of time on the ITS.

5 RELATED WORK

Historically, fuzzy reinforcement learning (RL) was introduced to
incorporate existing linguistic control knowledge to reduce the
time required to solve RL [12]. ARIC was first proposed [11] but
was later generalized to GARIC, which could learn despite weak
reinforcement signals and allowed any differentiable membership
function —unlike its predecessor [9]. These two methods were later
evaluated in an Orbital Operations Simulator for Shuttle Attitude
Control. However, they are dependent on exploration as they are
on-policy actor-critic frameworks —limiting use to online RL [10].
An extension of Watkin’s Q-Learning [66] with FLCs called
Fuzzy Q-Learning was later proposed [20, 21] —like its predecessor
—it is an off-policy method. Fuzzy Q-Learning was intended for
online RL and works in domains with a continuous state space with
continuous or discrete actions [26]. One important stipulation is
that the aforementioned methods relied upon experts to provide
the membership function definitions and fuzzy logic rules manually
[9,11, 20, 21, 26]. Initially, this was viewed as a benefit, but providing
expert knowledge can be time-consuming, or there may be none
available; thus, a self-organizing FLC by Q-learning was proposed
—where the model automatically builds the fuzzy logic rules and
learns their corresponding Q-values via online interaction by trial
and error [30]. The dynamic evolving fuzzy neural network [28]
—where the Evolving Clustering Method originates from —has also
been used before for fuzzy RL, but again was for online [54] and
cannot be interpreted since it is an approximate fuzzy rule base [15].
Other actor-critic frameworks such as RNN-FLCS [40], FACRLN
[65], and RFALCON [38] could learn the structure and parameters
of the FLC automatically but were designed for online fuzzy RL.
The first work to propose self-organizing FLCs to model-based
offline RL is fuzzy particle swarm RL (FPSRL) —this was explicitly
designed for when online learning is strictly forbidden, but requires
a simulation to learn its necessary parameters (and subsequently its
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policy) [22]. Furthermore, FPSRL assumes that it is relatively easy to
(1) model system dynamics given transition samples & (2) yield an
interpretable control policy. These assumptions, and its simulation
dependency, restrict FPSRL from settings where system dynamics
cannot be easily modeled, or it is unclear if an interpretable control
policy can easily be obtained —furthering the need for an offline
model-free fuzzy RL algorithm that can be dynamic and evolve to
environmental changes. To the best of our knowledge, there is no
published work describing such a method.

The incorporation of RL with other logics has been explored.
Relational RL (RRL) combines RL with inductive logic programming
(or relational learning) to produce interpretable and generalizable
policies; these can be applied to planning tasks such as the simple
blocks world [17]. Relational Deep RL leveraged deep neural net-
works with RRL to achieve state-of-the-art performance in StarCraft
1T mini-games [70]; however, the authors’ claim of interpretable
policies is restricted to using self-attention —not (fuzzy) logic rules
(i.e., natural language instructions) like in our proposed method.
Alternatives such as neural logic RL have also been proposed, where
induced policies are represented using first-order logic [25].

6 LIMITATIONS AND BROADER IMPACT

A self-organizing neuro-fuzzy Q-network has been proposed, and
its effectiveness has been shown in Cart Pole as well as teaching stu-
dents probability principles within an Intelligent Tutoring System
(ITS). The resulting agent embodies a knowledge base consisting
of interpretable fuzzy logic rules. In settings where exploration of
options is prohibited, domain experts can validate the agent before-
hand. Furthermore, the agent’s decision making is transparent, as
humans can examine which rules were applied, how strongly they
influenced the output and then alter it accordingly.
Limitations: In this work, we did not evaluate the proposed meth-
ods on other datasets since this work is exploratory to verify the
effectiveness of the FCQL framework; in the future, we will apply it
to more datasets to further investigate its robustness and generaliz-
ability. A primary challenge for FCQL is balancing interpretability,
and effectiveness [15]. A notable limitation of FCQL is its current
inability to handle very high-dimensional tasks concerning knowl-
edge base readability. Although it was demonstrated in the ITS, the
resulting fuzzy logic rules contain 142 antecedents —hampering
any effort by a human to read them. However, this may allow for
interpretation by easily facilitating pattern mining (e.g., discover-
ing rule activation patterns) compared to deep neural networks.
This limitation on scalability is not reserved only to FCQL, but is a
common theme amongst methods in fuzzy logic control; to address
the scalability limitation, rough set theory [47] may be applied [16].
We believe neuro-fuzzy Q-networks can be a great alternative
for offline RL where there is limited data [42], possible human
expert knowledge to incorporate [9, 11, 24, 35], and the simultane-
ous demand for interpretation and accuracy [15]. Future research
could improve upon the proposed FCQL procedure by extending the
neuro-fuzzy Q-network to handle computer vision tasks such as the
Atari games by incorporating object-sensitivity [37]. FCQL’s cur-
rent format is most applicable to problems with continuous inputs,
from which a diagnosis must be obtained, in an environment where
there is no available ground truth —only rewards or punishments.
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