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ABSTRACT
Weconsider the nonstochasticmulti-agentmulti-armed bandit prob-
lem with agents collaborating via a communication network with
delays. We show a lower bound for individual regret of all agents.
We show that with suitable regularizers and communication proto-
cols, a collaborativemulti-agent follow-the-regularized-leader (FTRL)
algorithm has an individual regret upper bound that matches the
lower bound up to a constant factor when the number of arms is
large enough relative to degrees of agents in the communication
graph. We also show that an FTRL algorithm with a suitable regu-
larizer is regret optimal with respect to the scaling with the edge-
delay parameter.We present numerical experiments validating our
theoretical results and demonstrate cases when our algorithms out-
perform previously proposed algorithms.
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1 INTRODUCTION
Coordinatingmultiple agents that can communicatewith each other
to make decisions under uncertainty is a classical problem and has
many different applications in computer science [14], game theory
[7] andmachine learning [12].We consider themulti-agent version
of a multi-armed bandit problem which is one of the most funda-
mental decision making problems under uncertainty. In this prob-
lem, a learning agent needs to consider the exploration-exploitation
trade-off, i.e. balancing the exploration of various actions in order
to learn howmuch rewarding they are and selecting high-rewarding
actions. In the multi-agent version of this problem, multiple agents
collaborate with each other trying to maximize their individual cu-
mulative rewards, and the challenge is to design efficient coopera-
tive algorithms under communication constraints.

We consider the nonstochastic (adversarial) multi-armed bandit
problem in a cooperative multi-agent setting, with 𝐾 ≥ 2 arms
and 𝑁 ≥ 1 agents. In each time step, each agent selects an arm
and then observes the incurred loss corresponding to its selected
arm.The losses of arms are according to an arbitrary loss sequence,
which is commonly referred to as the nonstochastic or adversarial
setting. Each agent observes only the loss of the arm this agent
Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
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selected in each time step. The agents are allowed to cooperate by
exchanging messages, which is constrained by a communication
graph𝐺 such that any two agents can exchange a message directly
between themselves only if they are neighbors in graph 𝐺 . Each
exchange of a message over an edge has delay of 𝑑 time steps. The
goal of each agent is to minimize its cumulative loss over a time
horizon of 𝑇 time steps. We study the objective of minimizing the
individual regret of agents, i.e. the difference between the expected
cumulative loss incurred by an agent and the cumulative loss of
the best arm in hindsight. We also study the average regret of all
agents.

The multi-agent multi-armed bandit problem formulation that
we study captures many systems that use a network of learning
agents. For example, in peer-to-peer recommender systems, the
agents are users and the arms are products that can be recom-
mended to users [3]. The delay corresponds to the time it takes
for a message to be transmitted between users. Note that in this
application scenario, the number of products (i.e. arms) may be
much larger than the number of users (i.e. agents).

The collaborative multi-agent multi-armed bandit problem was
studied, e.g., in Cesa-Bianchi et al. [6] and Bar-On and Man-
sour [2], where each edge has unit delay. Our setting is more
general in allowing for arbitrary delay 𝑑 per edge. Cesa-Bianchi
et al. [6] showed that when each agent selects arms according
to a cooperative Exp3 algorithm (Exp3-Coop), the average re-
gret is𝑂 (

√
(𝛼 (𝐺)/𝑁 + 1/𝐾) log(𝐾)𝐾𝑇 ) for large enough𝑇 , where

𝛼 (𝐺) is the independence number of graph 𝐺 . Bar-On and Man-
sour [2] have shown that individual regret of each agent 𝑣 is
𝑂 (

√
(1/|N (𝑣) | + 1/𝐾) log(𝐾)𝐾𝑇 ) when 𝑇 ≥ 𝐾2 log(𝐾), where

N(𝑣) is the set of neighbors of agent 𝑣 and itself in graph 𝐺 .
This regret bound is shown to hold for an algorithm where some
agents, referred to as center agents, select arms using the Exp3-
Coop policy and other agents copy the actions of center agents.
These bounds reveal the effect of collaboration on the learning
and what graph properties effect the efficiency of learning. How-
ever, some fundamental questions still remain. For example, to the
best of our knowledge, it is unknown from the previous literature
what is the lower bound for this problem. Moreover, it is unknown
whether better algorithms can be designed whose regret matches
a lower bound under certain conditions.

In this work, we give a regret lower bound for any learning
algorithm in which each agent can only communicate with their
neighbors. We present a center-based algorithm whose regret up-
per bound matches the lower bound when the number of arms
is large enough. We present an algorithm that has a regret upper
boundwith

√
𝑑 dependence on the delay per edge, which is optimal.

All our regret bounds are parametrized with the delay parameter 𝑑 ,
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which is unlike to Cesa-Bianchi et al. [6] and Bar-On and Mansour
[2] which considered only the special case when 𝑑 = 1. In what
follows we summarise our results in more details.

1.1 Summary of our contributions
We show that any algorithm has individual regret for each agent 𝑣
lower bounded as

Ω
©­«
√(

1
|N (𝑣) | +

1
𝐾

log(𝐾)
)
𝐾𝑇

ª®¬ ,
when 𝑇 ≥ 𝐾/|N (𝑣) |. This implies the average regret lower bound
Ω(

√
(𝛿 (𝐺)2 + log(𝐾)/𝐾)𝐾𝑇 ), when 𝑇 ≥ 𝛿 (𝐺)2𝐾 , where 𝛿 (𝐺) =

(1/𝑁 )∑𝑣∈V (1/
√
|N (𝑣) |). Hence, there is a

√
log(𝐾) factor gap be-

tween the previously known upper bounds and the lower bound.
We show an algorithm that guarantees individual regret for

each agent 𝑣 to be

𝑂
©­«
√(

1
|N (𝑣) | +

|N (𝐶 (𝑣)) |
𝐾

log(𝐾)2
)
𝐾𝑇

ª®¬ ,
whenever 𝐾 ≥ max𝑣 |N (𝑣) | and 𝑇 ≥ Ω(𝐾 max𝑐∈C |N (𝑐) |), where
C is the set of center agents and 𝐶 (𝑣) is the nearest center agent
to agent 𝑣 . This regret bound improves the best known upper
bound on individual regret when the number of arms is large
enough relative to agents’ degrees. Moreover, we note that the
algorithm has optimal regret up to a constant factor when when
|N (𝐶 (𝑣)) | |N (𝑣) | log(𝐾)2/𝐾 = 𝑂 (1), i.e. when the number of arms
is large enough.

Our algorithm is based on using a cooperative Follow-the-
Regularized-Leader (FTRL) policy with a Tsallis entropy regular-
izer. This is in contrast to Bar-On and Mansour [2], Cesa-Bianchi
et al. [6], which both use a cooperative Exp3 policy.

Our regret analysis relies on a key new lemma that bounds the
change of the action selection strategy of an agent under Tsallis
entropy regularization. This result may be of independent interest.

We also present a decentralized follow-the-regularized-leader
algorithm that has regret with optimal dependency on the delay
parameter 𝑑 , namely scaling as

√
𝑑 . This algorithm uses a hybrid

regularizer, which combines an Exp3 type regularizer with a Tsallis
entropy regularizer. This algorithm is decentralised with all agents
applying the same strategy.

1.2 Related work
The multi-armed bandit problem in a multi-agent setting, where
agents collaborate with each other subject to some communi-
cation constraints, has received considerable attention in recent
years. Awerbuch and Kleinberg [1] introduced the cooperative
nonstochastic multi-armed bandit problem setting where commu-
nication is through a public channel (corresponding to a complete
graph) and some agents may be dishonest. Kar et al. [10] consid-
ered a special collaboration network in which only one agent can
observe the loss of the selected arm in each time step. Szörényi
et al. [17] discussed two specific P2P networks in which at each
time step, each agent can send messages to only two other agents.
Cesa-Bianchi et al. [5] studied an online learning problem where
only a subset of agents play in each time step.They showed that an

optimal average regret bound for this problem isΘ(
√
𝛼 (𝐺)𝑇 )when

the set of agents that play in each time step is chosen randomly,
while Ω(𝑇 ) bound holds when the set of agents can be chosen ar-
bitrarily in each time step. Kolla et al. [11], Landgren et al. [13, 13]
and Martínez-Rubio et al. [15] considered a setting in which com-
munication is constrained by a communication graph such that
any two agents can communicate instantly if there is an edge con-
necting them.

The communication model considered in our paper was intro-
duced by Cesa-Bianchi et al. [6]. Here, agents communicate via
messages sent over edges of a fixed connected graph and sending
amessage over an edge incurs a delay of value𝑑 . Cesa-Bianchi et al.
[6] considered the case when 𝑑 = 1 whereas in this paper, we con-
sider 𝑑 ≥ 1. They proposed an algorithm, referred to as Exp3-Coop,
in which each agent constructs loss estimators for each arm using
an importance-weighted estimator. The Exp3-Coop algorithm has
an upper bound of 𝑂 (

√
(𝛼 (𝐺)/𝑁 + 1/𝐾) log(𝐾)𝐾𝑇 + log(𝑇 )) on

the average regret. Bar-On and Mansour [2] combines the idea of
center-based communication from Kolla et al. [11] with the Exp3-
Coop algorithm, showing that the center-based Exp3 algorithmhas
a regret upper bound of𝑂 (

√
(1/|N (𝑣) | + 1/𝐾) log(𝐾)𝐾𝑇 ) for each

individual agent when 𝑑 = 1. We show that a better regret bound
can be guaranteed with respect to the scaling with the number of
arms 𝐾 .

Multi-armed bandits with delayed feedback have been studied
extensively in the single-agent setting [8, 9, 18]. Specifically, Zim-
mert and Seldin [21] considered a setting in which the agent has
no prior knowledge about the delays and showed an optimal regret
of𝑂 (

√
𝐾𝑇 +

√
𝑑 log(𝐾)𝑇 ) where 𝑑 is the average delay over𝑇 time

steps. We present, in the multi-agent setting, a distributed learning
algorithm whose regret upper bound can also achieve this optimal√
𝑑 dependence on the delay per edge 𝑑 .
We use the Tsallis entropy family of regularizers proposed by

Tsallis [19]. Zimmert and Seldin [22] have shown that an on-
line mirror descent algorithm with a Tsallis entropy regularizer
achieves optimal regret for the single-agent bandit problem. We
show a distributed learning algorithm for the multi-agent bandit
setting, which uses a Tsallis entropy regularizer.

1.3 Organization of the paper
Section 2 provides problem formulation and definitions of notation.
Section 3 presents our two algorithms and their regret bounds. In
Section 4, we present a lower bound on individual regret of each
agent. Section 5 contains numerical results. Finally, conclusion re-
marks are given in Section 6. Proofs of our results are available in
the supplementary material [20].

2 PROBLEM FORMULATION
We consider a multi-armed bandit problem with a finite set A =
{1, . . . , 𝐾} of actions (arms) played by 𝑁 agents. The agents can
communicate through a communication network 𝐺 = (V, E)
where V is the set of 𝑁 agents and E is the set of edges such
that (𝑢, 𝑣) ∈ E if, and only if, agent 𝑢 can send/receive messages
to/from agent 𝑣 . We denote the neighbors of the agent 𝑣 and itself
by the set N(𝑣) = {𝑢 ∈ V : (𝑢, 𝑣) ∈ E} ∪ {𝑣}. Sending a message
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over edge 𝑒 ∈ E incurs a delay of value 𝑑𝑒 ≥ 0 time steps. We con-
sider the homogeneous setting under which 𝑑𝑒 = 𝑑 ≥ 1 for every
edge 𝑒 ∈ 𝐸. Note that the delayed communication network model
in Cesa-Bianchi et al. [6] and Bar-On and Mansour [2] is restricted
to the special case 𝑑 = 1.

At each time step 𝑡 = 1, 2, . . . ,𝑇 , each agent 𝑣 ∈ V chooses an
action 𝐼𝑡 (𝑣) ∈ A according to distribution 𝑝𝑣𝑡 over A and then ob-
serves the loss value, ℓ𝑡 (𝐼𝑡 (𝑣)) ∈ [0, 1]. Notice that the loss does
not depend on the agent, but only on the time step and the chosen
action. Hence, if two agents choose the same action at the same
time step, they incur the same loss. We consider the nonstochastic
setting where the losses are determined by an oblivious adversary,
meaning that the losses do not depend on the agent’s realized ac-
tions.

At the end of each time step 𝑡 , each agent 𝑣 ∈ V sends a mes-
sage 𝑆𝑡 (𝑣) of size 𝑏𝑡 (𝑣) information bits to all its neighbors and af-
ter this, each agent 𝑣 ∈ V has messages ∪𝑢∈N(𝑣) {𝑆𝑠 (𝑢) : 𝑠+𝑑 = 𝑡}.
We assume that at each time step 𝑡 , each agent 𝑣 can send to each of
its neighbors a message 𝑆𝑡 (𝑣) =

〈
𝑣, 𝑡, 𝐼𝑡 (𝑣), ℓ𝑡 (𝐼𝑡 (𝑣)) , 𝑝𝑣𝑡

〉
, i.e. the

agent id, the time step, the chosen arm id, the instant loss received
and the instant action distribution. We denote with 𝑏𝑡 (𝑣) the num-
ber of information bits to encode 𝑆𝑡 (𝑣). The total communication
cost in each time step is

∑
𝑣∈V

∑
𝑢:(𝑢,𝑣) ∈E 𝑏𝑡 (𝑢) information bits.

The individual regret of each agent 𝑣 is defined as the difference
between its expected accumulated loss and the loss of the best ac-
tion in hindsight, i.e.

𝑅𝑣𝑇 = E

[
𝑇∑
𝑡=1

ℓ𝑡 (𝐼𝑡 (𝑣))
]
−min
𝑖∈A

𝑇∑
𝑡=1

ℓ𝑡 (𝑖).

The average regret of 𝑁 agents is defined as

𝑅𝑇 =
1
𝑁

∑
𝑣∈V

𝑅𝑣𝑇 .

Additional notation. We define P𝐾−1 to be the𝐾−1 simplex. Let
𝛼 (𝐺) be the size of a maximal independent set of graph 𝐺 , where
the maximal independent set is the largest subset of nodes such
that no two nodes in this set are connected by an edge.

3 ALGORITHMS AND REGRET UPPER
BOUNDS

In this section, we propose two collaborative multi-agent bandit
algorithms, the center-based cooperative follow-the-regularized-
leader (CFTRL) algorithm and the decentralized cooperative
follow-the-regularized-leader (DFTRL) algorithm. The first algo-
rithm has optimal regret up to a constant factor when the number
of arms is large enough. The second algorithm has optimal depen-
dence on the delay parameter 𝑑 .

3.1 A center-based cooperative
follow-the-regularized-leader algorithm

We consider an algorithmwhere some agents, referred to as centers,
run a FTRL algorithm, and each other agent copies the action selec-
tion distribution from its nearest center. The strategy based on us-
ing center agents was proposed in Bar-On and Mansour [2], where
agents played the Exp3 strategy instead. These centre agents col-
laboratively update their strategies by exchanging messages with

other agents, and each non-center agent copies the strategy of its
nearest center agent. The center agents are selected such that they
have a sufficiently large degree, which can be shown to reduce in-
dividual regret of center agents. Moreover, the center agents are
selected such that each non-center agent is within a small distance
to a center agent.

Let C ⊆ V be the set of centers. The set of agents V is parti-
tioned into disjoint componentsV𝑐 , 𝑐 ∈ C. Each non-center agent
𝑣 belongs to a unique component. For each agent 𝑣 , let 𝐶 (𝑣) de-
note its center agent, 𝑐 = 𝐶 (𝑣) if and only if 𝑣 ∈ V𝑐 . Let 𝑑 (𝑣) be
the distance between a non-center agent 𝑣 and its center𝐶 (𝑣). The
set of centers C and the partitioning {V𝑐 : 𝑐 ∈ C} are computed
according to Algorithms 3 and 4 in Bar-On and Mansour [2].

Let J𝑡 (𝑣) = {𝐼𝑡 (𝑣 ′) : 𝑣 ′ ∈ N (𝑣)} be the set of actions chosen by
agent 𝑣 or its neighbors at time step 𝑡 . Each center agent 𝑐 ∈ 𝐶 runs
a FTRL algorithmwith the collaborative importance-weighted loss
estimators observable up to time step 𝑡 ,

𝐿̂𝑐,𝑜𝑏𝑠𝑡 (𝑖) =
𝑡−1∑
𝑠=1

ℓ̂𝑐,𝑜𝑏𝑠𝑠 (𝑖)

and

ℓ̂𝑐,𝑜𝑏𝑠𝑡 (𝑖) =
{

ℓ𝑡−𝑑 (𝑖)
𝑞𝑐
𝑡−𝑑 (𝑖)

I {𝑖 ∈ J𝑡−𝑑 (𝑐)} if 𝑡 > 𝑑
0 otherwise

where
𝑞𝑐𝑡 (𝑖) = 1 −

∏
𝑣∈N(𝑐)

(
1 − 𝑝𝑣𝑡 (𝑖)

)
is the neighborhood-aggregated importance weight.

In each time step, the center agents update their action selection
distributions according to the FTRL algorithm, i.e.

𝑝𝑐𝑡 = argmin𝑝∈P𝐾−1

{〈
𝑝, 𝐿̂𝑐,𝑜𝑏𝑠𝑡

〉
+ 𝐹𝑡 (𝑝)

}
.

where 𝐹𝑡 (𝑝) is the Tsallis entropy regularizer [22] with the learning
rate 𝜂 (𝑐),

𝐹𝑡 (𝑝) = −2
𝐾∑
𝑖=1

√
𝑝𝑖/𝜂 (𝑐). (1)

Each non-center agent 𝑣 ∈ V\𝐶 selects actions according to the
uniform distribution until time step 𝑡 > 𝑑 (𝑣)𝑑 .Then the non-center
agent copies the action selection distribution from its center, i.e.
𝑝𝑣𝑡 = 𝑝

𝐶 (𝑣)
𝑡−𝑑 (𝑣)𝑑 . The details of the CFTRL algorithm are described

in Algorithm 1.

3.1.1 Individual regret upper bound. We show an individual regret
upper bound for Algorithm 1 in the following theorem.

TheoRem 3.1. Assume that𝐾 ≥ max𝑣∈V |N (𝑣) | and𝑇 ≥ 36(𝑑+
1)2𝐾 max𝑐 |N (𝑐) |, and agents follow the CFTRL algorithmwith each
center agent 𝑐 ∈ C using the learning rate 𝜂 (𝑐) =

√
|N (𝑐) |/(3𝑇 ).

Then, the individual regret of each agent 𝑣 ∈ V is bounded as

𝑅𝑣𝑇 = 𝑂

(
1√

|N (𝑣) |
√
𝐾𝑇 + 𝑑 log(𝐾)

√
|N (𝐶 (𝑣)) |𝑇

)
.

The proof of the theorem is provided in the supplementary ma-
terial [20]. In the following, we provide a proof sketch. The proof
relies on two key lemmas which are shown next.
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Algorithm 1: Center-based cooperative FTRL (CFTRL)
Input :Tsallis regularizer Eq. (1), learning rate 𝜂 (𝑐)

and the delay 𝑑 .
Initialization : 𝐿̂𝑐,𝑜𝑏𝑠1 (𝑖) = 0 for all 𝑖 ∈ A and 𝑐 ∈ 𝐶 ,

𝑝𝑣1 (𝑖) = 1/𝐾 for all 𝑖 ∈ A and 𝑣 ∉ 𝐶 .
1 for each time step 𝑡 = 1, 2, . . . ,𝑇 do
2 Each 𝑐 ∈ C updates

𝑝𝑐𝑡 = argmin𝑝∈P𝐾−1 {⟨𝑝, 𝐿̂
𝑐,𝑜𝑏𝑠
𝑡 ⟩ + 𝐹𝑡 (𝑝)};

3 Each 𝑐 ∈ C chooses 𝐼𝑡 (𝑐) = 𝑖 with probability 𝑝𝑐𝑡 (𝑖) and
receives the loss ℓ𝑡 (𝐼𝑡 (𝑐));

4 Each 𝑐 ∈ C sends the message
𝑆𝑡 (𝑐) =

〈
𝑐, 𝑡, 𝐼𝑡 (𝑐), ℓ𝑡 (𝐼𝑡 (𝑐)), 𝑝𝑐𝑡

〉
to all their neighbors;

5 Each 𝑐 ∈ C receives messages {𝑆𝑡−𝑑 (𝑣) : 𝑣 ∈ N (𝑐)} and
computes 𝐿̂𝑐,𝑜𝑏𝑠𝑡+1 ;

6 Each 𝑣 ∈ V \ C updates 𝑝𝑣𝑡 = 𝑝𝐶 (𝑣)
𝑡−𝑑 (𝑣)𝑑 when 𝑡 > 𝑑 (𝑣)𝑑

and 𝑝𝑣𝑡 = 𝑝𝑣1 otherwise;
7 Each 𝑣 ∈ 𝑉 \ C chooses 𝐼𝑡 (𝑣) = 𝑖 with probability 𝑝𝑣𝑡 (𝑖)

and receives ℓ𝑡 (𝐼𝑡 (𝑣));
8 Each 𝑣 ∈ V \ C sends 𝑆𝑡 (𝑣) =

〈
𝑣, 𝑡, 𝐼𝑡 (𝑣), ℓ𝑡 (𝐼𝑡 (𝑣)), 𝑝𝑣𝑡

〉
to all its neighbors.

9 end

Lemma 3.2. Assume that the delay of each edge is 𝑑 ≥ 1, then the
individual regret of each center agent 𝑣 with the regularizer 𝐹𝑡 (𝑝) =∑𝐾
𝑖=1 𝑓𝑡 (𝑝𝑖 ) satisfies

𝑅𝑣𝑇 ≤ 𝑀 + 1
2
E

[
𝑇∑
𝑡=1

∑
𝑖∈A

1
𝑞𝑣𝑡 (𝑖) 𝑓 ′′𝑡 (𝑝𝑣𝑡 (𝑖))

]
+𝑑 · E

[
𝑇∑
𝑡=1

∑
𝑖∈A

1
𝑓 ′′𝑡 (𝑝𝑣𝑡 (𝑖))

]
where

𝑀 = max
𝑥 ∈P𝐾−1

−𝐹1 (𝑥) +
𝑇∑
𝑡=2

max
𝑥 ∈P𝐾−1

(𝐹𝑡−1 (𝑥) − 𝐹𝑡 (𝑥)) .

Lemma 3.3. For any 𝛿 > 1, assume that agent 𝑣 runs a FTRL
algorithm with Tsallis entropy (1) and learning rate 𝜂 (𝑣) ≤ (1 −
1/
√
𝛿)/(𝛿3𝑑/2

√
𝐾) and 𝐾 ≥ 2, then for all 𝑡 ≥ 1 and 𝑖 ∈ A

(1 − (1 + 𝛿)𝜂 (𝑣)ℓ̂𝑣,𝑜𝑏𝑠𝑡 (𝑖))𝑝𝑣𝑡 (𝑖) ≤ 𝑝𝑣𝑡+1 (𝑖) ≤ 𝛿𝑝
𝑣
𝑡 (𝑖).

Theproofs of the two lemmas are provided in the supplementary
material [20]. Similar property as in Lemma 3.3 was known to hold
for the Exp3 algorithm by a result in Cesa-Bianchi et al. [6]. To the
best of our knowledge, this property was previously not known to
hold for the FTRL algorithm with Tsallis entropy.

Lemma 3.2 bounds the individual regret by the sum of a con-
stant, the regret due to the instant bandit feedback, and the
regret due to the delayed full-information feedback, which is
𝑂 (

√
𝐾𝑇 /|N (𝑐) |). Since the action selection distributions of non-

center agents are copied from their centers in the past rounds,
Lemma 3.3 bounds the difference between action selection distribu-
tions of non-center agent 𝑣 and its center𝐶 (𝑣) in the same rounds

Algorithm 2: Decentralized cooperative FTRL (DFTRL)
Input :Hybrid regularizer Eq. (2), learning rates 𝜂𝑡 ,

𝜁𝑡 , and delay 𝑑 .
Initialization : 𝐿̂𝑣,𝑜𝑏𝑠1 (𝑖) = 0 for all 𝑖 ∈ A and 𝑣 ∈ V .

1 for each time step 𝑡 = 1, 2, . . . ,𝑇 do
2 Each 𝑣 ∈ V updates

𝑝𝑣𝑡 = argmin𝑝∈P𝐾−1 {⟨𝑝, 𝐿̂
𝑣,𝑜𝑏𝑠
𝑡 ⟩ + 𝐹𝑡 (𝑝)};

3 Each 𝑣 ∈ V chooses 𝐼𝑡 (𝑣) = 𝑖 with probability 𝑝𝑣𝑡 (𝑖)
and receives the loss ℓ𝑡 (𝐼𝑡 (𝑣));

4 Each 𝑣 ∈ V sends the message
𝑆𝑡 (𝑣) =

〈
𝑣, 𝑡, 𝐼𝑡 (𝑣), ℓ𝑡 (𝐼𝑡 (𝑣)), 𝑝𝑣𝑡

〉
to all their neighbors;

5 Each 𝑣 ∈ V receives messages {𝑆𝑡−𝑑 (𝑣 ′) : 𝑣 ′ ∈ N (𝑣)}
and computes 𝐿̂𝑣,𝑜𝑏𝑠𝑡+1 ;

6 end

when 𝑇 > 𝑑 (𝑣)𝑑 . Consequently, the difference between the indi-
vidual regret of a non-center agent 𝑣 and its center𝐶 (𝑣) is bounded
by 𝑂 (𝑑 (𝑣)𝑑𝜂 (𝐶 (𝑣))𝑇 ) = 𝑂 (𝑑 log(𝐾)

√
|N (𝐶 (𝑣)) |𝑇 ).

3.2 A decentralized cooperative
follow-the-regularizer-leader algorithm

Theorem 3.1 provides a bound for individual regrets, which in-
creases linearly in the edge-delay parameter 𝑑 . This can be prob-
lematic when the delay in the communication network is large.We
show that the effect of delays on regret can be reduced by using a
decentralized follow-the-regularized-leader (DFTRL) algorithm.

In the DFTRL algorithm, each agent runs a FTRL algorithmwith
a hybrid regularizer 𝐹𝑡 (𝑝) defined in Zimmert and Seldin [21] as
follows

𝐹𝑡 (𝑝) =
𝐾∑
𝑖=1

(−2√𝑝𝑖
𝜂𝑡

+ 𝑝𝑖 log(𝑝𝑖 )
𝜁𝑡

)
(2)

where 𝜂𝑡 and 𝜁𝑡 are some non-increasing sequences.
As is shown in Theorem 4.1, there is a regret lower bound that

consists of two parts: the first part is the regret lower bound of the
multi-armed bandit problem and the second part is the regret lower
bound of the bandit problem with full-information but delayed
feedback [9]. The hybrid regularizer combines the Tsallis entropy
regularizer with an optimal regularizer in the full-information set-
ting, the negative entropy regularizer. The learning rates of the
two regularizers can be tuned separately to minimize the regret
from the two parts. The details of the DFTRL are described in Al-
gorithm 2.

3.2.1 Average regret upper bound. We show a bound on the aver-
age regret for the DFTRL algorithm in the following theorem. The
sequences 𝜂𝑡 and 𝜁𝑡 are assumed to be set as

𝜂𝑡 = (1/(1 − 1/𝑒)) (𝛼 (𝐺)/𝑁 + 1/𝐾)−1/4
√
2/𝑡

and
𝜁𝑡 =

√
log(𝐾)/(𝑑𝑡).

TheoRem 3.4. Assume that each agent follows the DFTRL algo-
rithm and the delay of each edge is 𝑑 ≥ 1, then the average regret
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over 𝑁 agents is bounded as

𝑅𝑇 = 𝑂

((
𝛼 (𝐺)
𝑁

+ 1
𝐾

)1/4 √
𝐾𝑇 +

√
𝑑 log(𝐾)𝑇

)
.

Proof of the theorem is provided in the supplementary material
[20]. We note that the average regret scales as

√
𝑑 which is better

than linear scaling of the CFTRL algorithm.
For the special case when 𝑑 = 1, as in Cesa-Bianchi et al.

[6],Theorem 3.4 shows that when the number of arms 𝐾 is large
enough, then the DFTRL algorithm has an 𝑂 ((𝛼 (𝐺)/𝑁 )1/4

√
𝐾𝑇 )

regret, which is better than𝑂 ((𝛼 (𝐺)/𝑁 )1/2
√
𝐾𝑇

√
log(𝐾)) of Exp3-

Coop from Cesa-Bianchi et al. [6]. Specifically, this improvement
holds when 𝐾 = Ω(exp(

√
𝑁 /𝛼 (𝐺))) .

In what follows we provide a proof sketch of Theorem 3.4. First
we present a key lemmawhose proof is provided in the supplemen-
tary material [20].

Lemma 3.5. For every agent 𝑣 ∈ A and any probability distribu-
tion 𝑝𝑣 over A, it holds∑

𝑖∈A

∑
𝑣∈V

𝑝𝑣 (𝑖) 3
2

𝑞𝑣 (𝑖) ≤ 𝑁

√
1

1 − 1/𝑒

(
𝛼 (𝐺)
𝑁

+ 1
𝐾

)
𝐾

where 𝑞𝑣 (𝑖) = 1 − ∏
𝑣′∈N(𝑣) (1 − 𝑝𝑣

′ (𝑖)).

Lemma 3.5 shows that the average regret from the FTRL al-
gorithm with the hybrid regularizer with instant feedback is
𝑂 ((𝛼 (𝐺)/𝑁 + 1/𝐾)1/4

√
𝐾𝑇 ). For the regularizer in Eq. (2), the de-

lay effect term is 𝑂 (
√
𝑑𝑇 log(𝐾)). Lemma 3.2 bounds the average

regret by the sum of two terms.

4 REGRET LOWER BOUNDS
We present lower bounds on individual regret 𝑅𝑣𝑇 for every agent
𝑣 ∈ V and average regret 𝑅𝑇 .

TheoRem 4.1. The worst-case individual regret of each agent 𝑣 ∈
V , 𝑅𝑣𝑇 , is

Ω

(
max

{
min

{
𝑇,

1√
|N (𝑣) |

√
𝐾𝑇

}
,
√
𝑑 log(𝐾)𝑇

})
and the worst-case average regret, 𝑅𝑇 , is

Ω
(
max

{
min

{
𝑇, 𝑐𝐺

√
𝐾𝑇

}
,
√
𝑑 log(𝐾)𝑇

})
where 𝑐𝐺 = (1/𝑁 )∑𝑣∈V 1/

√
|N (𝑣) |.

The proof is provided in the supplementary material [20]. The
lower bounds contain two parts. The first part is derived from the
lower bounds in Shamir [16] for a class of online algorithms. The
second part handles the effect of delays by showing that the indi-
vidual regret of each agent cannot be smaller than the regret of a
single agent with delayed full information.

We note that the individual regret of Algorithm 1 is optimal with
respect to scaling with the number of arms 𝐾 and the average re-
gret of Algorithm 2 is optimal with respect to scaling with delay
𝑑 .

5 NUMERICAL EXPERIMENTS
In this section, we present results of numerical experiments whose
goal is to compare performance of CFTRL and DFTRL algorithms
with some state-of-the-art algorithms and demonstrate the tight-
ness of our theoretical bounds. We consider the classic stochastic
multi-armed bandit problem with agents communicating via dif-
ferent networks.

The stochastic multi-armed bandit problem is defined as follows:
each arm 𝑖 is associated with a Bernoulli distribution with mean
𝜇𝑖 for 𝑖 = 1, 2, . . . , 𝐾 . The loss ℓ𝑡 (𝑖) from choosing arm 𝑖 at time
step 𝑡 is sampled independently from the corresponding Bernoulli
distribution. In our experiments, we set 𝜇𝑖 = (1 + 8(𝑖 − 1)/(𝐾 −
1))/10 so that 𝜇1, . . . , 𝜇𝐾 is a linearly decreasing sequence. Each
problem instance is specified by a tuple (𝐾,𝐺,𝑑). The two baseline
algorithms we choose are the center-based Exp3 algorithm in Bar-
On andMansour [2] and the Exp3-Coop algorithm in Cesa-Bianchi
et al. [6] whose regret upper bounds are suboptimal as discussed
in the introduction.

The numerical results are for four experiments whose goals are
as follows:

• the first experiment compares the performance of CFTRL,
DFTRL and the baselines when the number of arms in-
creases,

• the second experiment validates the effect of the graph de-
gree in the regret upper bound on CFTRL,

• the third experiment validates the effect of the delay param-
eter on the regret upper bounds of CFTRL and DFTRL, and,
finally,

• the fourth experiment compares CFTRL and the center-
based Exp3 algorithm on some sparse random graphs.

In summary, our numerical results validate theoretical results
and demonstrate that CFTRL and DFTRL can achieve significant
performance gains over some previously proposed algorithms.The
code for producing our experimental results is available online in
the GitHub repository: [link].

5.1 The effect of the number of arms
In the first experiment, we evaluate the performance of CFTRL and
DFTRL against the baselines on a 𝑟 -regular graph (all nodes have
the same degree of 𝑟 ). Note that in a regular graph, each agent has
equal probability to be a center agent. For a 𝑟 -regular graph, CFTRL
has an individual regret upper bound of 𝑂 (

√
(1/𝑟 )

√
𝐾𝑇 ) and

DFTRL has an average regret upper bound of 𝑂 ( 4
√
1 − 𝑟/𝑁

√
𝐾𝑇 )

when the number of arms 𝐾 is large enough according to our anal-
ysis. We first demonstrate numerical results showing that CFTRL
and DFTRL can achieve significant performance gains over the
center-based Exp3 algorithmwhose individual regret upper bound
is𝑂 (

√
(1/𝑟 ) log(𝐾)

√
𝐾𝑇 ) and the Exp3-Coop algorithm whose av-

erage regret upper bound is𝑂 (
√
(1 − 𝑟/𝑁 ) log(𝐾)

√
𝐾𝑇 ) when the

number of arms 𝐾 is large enough.
Figure 1 shows the regret 𝑅𝑇 versus 𝑇 for different number of

arms, namely 20, 30 and 40. The results demonstrate that CFTRL
and DFTRL achieve better regret than Exp3-COOP and center-
based Exp3 when the number of arms is large enough.
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Figure 1: Average regret 𝑅𝑇 versus𝑇 for different algorithms
on a 2-regular graph with 𝑁 = 3 agents and edge-delay 𝑑 = 1,
and varied number of arms: (top)𝐾 = 20 (middle)𝐾 = 30, and
(top) 𝐾 = 40. We used 10 independent simulation runs.

5.2 The effect of graph degree on CFTRL
In the second experiment, we validate the scaling of the graph de-
gree in the regret upper bound of CFTRL. On the 𝑟 -regular graph,
CFTRL has a regret that scales as 𝑂 (1/

√
𝑟 ) according to Theo-

rem 3.1. We run CFTRL on the problem instances with fixed num-
ber of arms 𝐾 , delay 𝑑 and increasing node degree 𝑟 . The results in
Figure 2 shows that the averaged regret decreases as the graph de-
gree increases and the rate of decrease is approximately 𝑂 (1/

√
𝑟 ).

5.3 The effect of delay on CFTRL and DFTRL
In the third experiment, we run CFTRL and DFTRL algorithms
on a fixed star graph 𝐺 with a fixed number of arms 𝐾 and var-
ied edge-delay 𝑑 . Figure 3 shows that the normalized regret of
CFTRL is 𝑅𝑇 /

√
𝑑 = 𝑂 (

√
𝑑) while the normalized regret of DFTRL

2 3 4 5
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R T

(1/ r )
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Figure 2: Average regret of CFTRL versus graph degree 𝑟 , for
a 𝑟 -regular graph with 𝑁 = 6 nodes, 𝐾 = 10 and 𝑑 = 1.
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Figure 3: Average regret of CFTRL and DFTRL versus the
edge-delay 𝑑 on a star regular graph with 𝑁 = 20 and 𝐾 = 3.

is 𝑅𝑇 /
√
𝑑 = 𝑂 (1). Hence, when the delay 𝑑 is large enough, CFTRL

has a linearly increasing regret with respect to 𝑑 which is in con-
trast to the sub-linear increasing regret of DFTRL. This is consis-
tent with our theoretical analysis, which states that CFTRL has a
regret upper bound of 𝑂 (𝑑) and DFTRL has a regret upper bound
of 𝑂 (

√
𝑑).

5.4 The effect of graph sparsity
In the fourth experiment, we validate that our CFTRL algorithm
can outperform the center-based Exp3 algorithm on some random
graphs. We consider Erdős–Rényi random graphs of 𝑁 nodes with
probability of an edge equal to 2 log(𝑁 )/𝑁 . This condition en-
sures that the graph is connected and |N (𝑣) | = 𝑂 (log(𝑁 ))) for
all 𝑣 ∈ V , almost surely [4, Corollary 8.2]. This random graph al-
lows us to evaluate performance of algorithms for a large sparse
random graph. We fix 𝐾 and 𝑑 and vary the number of nodes 𝑁
and compare the performance of CFTRL and the center-based Exp3
algorithm on these graphs. We fix𝑇 to 1000 time steps. According
to our analysis, CFTRL has a lower individual regret bound than
the center-based Exp3 algorithmwhen the number of arms is large
enough relative to the number of agents. The results in Figure 4 in-
dicate that CFTRL has at least as good performance as the center-
based Exp3 algorithm when 𝐾 varies, and can have significantly
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Figure 4: Average regret𝑅𝑇 versus the number of nodes𝑁 for
sparse Erdős–Rényi random graphs, for CFTRL and center-
based Exp3 algorithms.

better performance when the number of arms is large relative to
the number of agents.

6 CONCLUSION
We presented new results for the collaborative multi-agent non-
stochastic multi-armed bandit with communication delays. We
showed a lower bound on the regret of each individual agent and
proposed two algorithms (CFTRL and DFTRL) together with their
regret upper bounds. CFTRL provides an optimal regret of each in-
dividual agent with respect to the scaling with the number of arms.
DFTRL has an optimal average regret with respect to the scaling
with the edge-delay. Our numerical results validate our theoretical
bounds and demonstrate that significant performance gains can be
achieved by our two algorithms compared to state-of-the-art algo-
rithms.

There are several open research questions for future research.
The first question is to consider the existence of a decentralized
algorithm which can provide 𝑂 ((1/

√
|N (𝑣) |)

√
𝐾𝑇 ) individual re-

gret for each agent 𝑣 . It is unclear whether a center-based commu-
nication protocol is necessary to achieve this regret. The second
question is to consider whether an algorithm exists with an opti-
mal scaling with the number of arms and the edge-delay param-
eter. The third question is to understand the effect of edge-delay
heterogeneity on individual regrets of agents.
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