
Mitigating Imminent Collision for Multi-robot Navigation: A
TTC-force Reward Shaping Approach
Jinlin Chen

The Hong Kong Polytechnic University
Hong Kong, China

csjlchen@comp.polyu.edu.hk

Jiannong Cao, Fellow, IEEE
The Hong Kong Polytechnic University

Hong Kong, China
csjcao@comp.polyu.edu.hk

Zhiqin Cheng†
The Hong Kong Polytechnic University

Hong Kong, China
aaronworry128@gmail.com

Wei Li†
Jiangnan University
Jiang Su, China

cs_weili@jiangnan.edu.cn

ABSTRACT
We study the distributed multi-robot navigation problem, which
refers to a group of mobile robots avoiding collision with each other
while navigating from their start positions to the goal positions. Ex-
isting works still suffer from two limitations: 1) accurately quantify
the risk of collisions for heterogeneous robots and 2) effectively cap-
ture the state representation under dynamic environments. These
limitations make the heterogeneous robots prone to collisions in
high-density and dynamic environments. This work proposes a
new time-to-collision force (TTC-force) reward shaping approach,
termed Tfresh, incorporating reinforcement learning to learn a pol-
icy that adaptively chooses the optimal actions to mitigate the
imminent collision. Specifically, we use TTC-force to quantify the
risk of each robot exerted by its neighbors and shape the reward sig-
nal with TTC-force in applying the reinforcement learning scheme.
Meanwhile, we design the spatial attention mechanism involving
the dynamic adjacent matrix to capture the state representation
effectively. We evaluate the learned policy in numerous simulated
scenarios in which groups of mobile robots perform navigation
tasks. The experimental results demonstrate that our approach out-
performs the state-of-the-art methods regarding success rate, travel
distance, and travel time.

KEYWORDS
Collision Avoidance; Multi-robot Navigation; Reward Shaping; Re-
inforcement Learning
ACM Reference Format:
Jinlin Chen, Jiannong Cao, Fellow, IEEE, Zhiqin Cheng†, and Wei Li†. 2023.
Mitigating Imminent Collision for Multi-robot Navigation: A TTC-force
Reward Shaping Approach. In Proc. of the 22nd International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2023), London, United
Kingdom, May 29 – June 2, 2023, IFAAMAS, 9 pages.

1 INTRODUCTION
With the rapid growth in logistics automation and robotic technolo-
gies, many companies have designed autonomous delivery systems
in warehouses [24] to reduce labor costs, and schools have designed

†: Corresponding author.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

mobile food delivery robots on campus sidewalks to reduce human-
to-human contact during the COVID-19 pandemic [40]. Recently,
Amazon has launched a fully autonomous warehouse robot, de-
ploying more than 520,000 robot-driven units in its fulfillment and
sorting centers [15, 39]. The robots are built to be automatically
directed to perform their work and move around, meaning that
they can operate autonomously by using perception and navigation
techniques.

Although large-scale mobile robotic systems have a high poten-
tial to revolutionize warehouse and last-mile delivery applications,
they pose a formidable challenge to the control of heterogeneous
robots when performing tasks autonomously. The situation be-
comes challenging when it comes to scenarios where the density of
robots is high, and the robots need to cooperate and interact with
each other in dynamic environments. This is because the robots
should move safely by avoiding imminent collisions when they
come into contact with their neighbors in navigating from their
start positions to the goal positions.

A high-efficient and collision-free multi-robot navigation system
can facilitate task completion performance to accelerate productiv-
ity. Three mainstream approaches are prevalent in the field of multi-
robot navigation, including velocity obstacle-based, force-based,
and learning-based approaches. Specifically, velocity obstacle-based
approaches and their variants [1, 8, 26, 37] first compute the velocity
obstacle (VO) region and then select the collision-free velocity out-
side of the VO regions. The conservative feasible velocities selection
often causes the robot to discard too many admissible velocities,
leading to robots getting stuck. Force-based approaches [18, 27] are
inspired by artificial potential field [3], which use the relative posi-
tion and velocity to compute the repulsive force to avoid collision
and the attractive force to reach the goal position. However, force-
based approaches cannot work competently when the obstacle is
near the goal position. This is because the repulsive and attractive
forces cancel out, making the robot stuck in place.

As an alternative, reinforcement learning-based approaches [13,
25, 30, 33, 34] have been widely used to train the navigation policy
by mapping the observed state into continuous control commands
to steer the robots to achieving the goal position. Although rein-
forcement learning-based methods have made significant progress
by benefiting from converting rich trial-and-error experience into
knowledge [35], which enables robots to make more aggressive

Session 4E: Robotics

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1448

movement decisions, the existing models still suffer from two limi-
tations in designing reinforcement learning-based multi-robot nav-
igation policy. First, how to accurately quantify the risk of collision
for the heterogeneous robots to give an immediate reward signal.
Second, how to effectively extract the state representation from the
observed state in dynamic environments.

In this work, we propose a new collision avoidance approach,
termed Tfresh, to overcome the limitations mentioned above in mit-
igating the imminent collision of multi-robot navigation. First, we
quantify the risk of collision with TTC-force inspired by the TTC
concept [19]. The TTC-force is obtained by following a power-law
relationship concerning the TTC. If the TTC force between the
two robots is approaching zero, the two robots will not collide in
the future. We use TTC-force to shape the reward signal in each
timestep, guiding the robot to learn a high-performance navigation
policy because the dense reward signal can provide immediate feed-
back [21]. Second, we use the state encoder to encode the robots’
state and learn the state embedding given the observed sequential
states of a time horizon. We then feed the state embedding into a
spatial attention mechanism to capture the effective state represen-
tations from the state embedding. Due to its flexibility, a dynamic
adjacent matrix obtained from the relative distance between robots
is involved in the spatial attention mechanism to model the spatial
relations between the robots and their neighbors. Subsequently, the
spatial attention mechanism enables robots to pay more attention
to the state of the most-related neighboring robots. We implement
and deploy Tfresh with a group of heterogeneous mobile robots
in terms of different size and motion constraints by performing
numerous navigation tasks. The experimental results regarding
navigation efficiency show that our method can provide a satisfac-
tory collision avoidance solution for heterogeneous mobile robots
navigating in a limited workspace. The core contributions of this
work are:
• We quantify the risk of collisions for each robot exerted by
their surrounding robots with TTC-force, which effectively
measures the severity of potential collisions for heteroge-
neous mobile robots.
• We develop a spatial attention mechanism to enable robots to
pay attention to the relatively important interactions of sur-
rounding robots, which helps to capture the most significant
state representations in navigation policy learning.
• We design a novel TTC-force reward shaping approach,
which provides a dense reward signal to encourage the robot
to learn a high-performance navigation policy with rein-
forcement learning.

The rest of the paper is organized as follows. We first examine
the related works in detail and their differences from our work in
Section 2. We formally introduce the preliminary background and
the problem formulation in Section 3. We then present the proposed
multi-robot navigation approaches in Section 4. This is followed
by the experiment design and results in Section 5. In Section 6, we
present the conclusion and future work.

2 RELATEDWORK
In this section, we divide the related work about multi-robot naviga-
tion into three categories, i.e., velocity obstacle-based, force-based,

and learning-based approaches, from the implementation point of
view.
Velocity Obstacle-based Approaches - The methods in this cate-
gory directly plan the new velocity for each robot. Many existing
collision avoidance methods are based on the concept of velocity
obstacle (VO) proposed by Paolo Fiorini and Zvi Shiller [11]. The
VO stands for the set of robot velocities that will cause a potential
collision with a given obstacle moving at a given velocity. The ve-
locity obstacle-based methods can generate avoidance maneuvers
by selecting the velocities outside the velocity obstacle. In light of
this, robots can safely navigate by choosing new velocities outside
any VOs caused by their neighbors.

Many extensions based on VO have been proposed to address
different challenges and consider different kinematic-constrained
robots. Van den Berg et al. [5] have proposed the ORCA framework,
which provides an efficient way of computing the collision-free ve-
locity outside the union of all VOs imposed by neighbors. A feasible
collision-free solution is obtained by conservatively approximat-
ing each VO as a half-plane and then using linear programming
based on all half-planes. To extend ORCA to non-holonomic robots,
NH-ORCA [1] has been proposed to deal with the kinematics of
non-holonomic robots, which controls the robots staying within
a maximum tracking error 𝜖 of an ideal holonomic trajectory. To
consider uncertainty in the motion and sensing of the robots, Jamie
Snape et al. [36] have proposed HRVO, in which they use a Kalman
filter to accurately estimate the uncertainties in terms of radius,
position, and velocity. All the aforementioned algorithms have the
limitation that they are only guaranteed to provide safe motion for
robots with the linear equation of motion. Thus, Dman Bareiss and
Jur Van den Berg [4] proposed a generalized reciprocal collision
approach that unifies a variety of dynamic systems ranging from
single integrator to car-like, differential-drive, and arbitrary, linear
equations of motion into a single, generalized representation using
control obstacle. This allows general mobile robots to select new
control inputs while avoiding collision with others.

Although the VO-based method and its ORCA variants have
gained applicability in robotic applications. The problem of conser-
vatively selecting feasible velocities causes the robot to discard too
many admissible velocities because ORCA approximates the VO
cone with a line [12]. In dense multi-robot navigation scenarios,
the robots may stop moving because of the infeasible approaches,
leading to unfinished tasks.
Force-based Approaches - The approaches in this category model
the behavior of each robot as a collection of forces, which is in-
spired by the potential energy in Physics. In the work of Helbing
et al., [16], the interaction forces have been proposed to model the
interaction between humans, and the force between humans and
their surrounding obstacles.

The traditional force-based models resolve collisions by using
artificial potential fields [3], in which the repulsive potential is used
to avoid obstacles and the attractive potential allows the robots
to move to the goal positions. But such a model only reacts when
the robots get too close to each other and overlook the velocities
of neighbors. To address this issue, Karamouzas et al. [19] have
proposed a predictive force-based model. They found that the es-
timated time-to-collision is the function of the interaction force

Session 4E: Robotics

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1449

between two pedestrians, which follows an inverse power-law re-
lationship. The resulting time-to-collision model allows robots to
emulate better how humans resolve collisions in practice, leading to
more efficient behavior than VO-based methods. Later, Karamouzas
et al. [12] proposed a UTTC model to solve the uncertainty issues
taken by the robot sensor. The uncertainties regarding radius, po-
sition, and velocity are accounted for in the future trajectories of
interacting robots. To extend to the team with a large number of
agents, Samaneh Hosseini et al. [18] have proposed a force-based
motion planning based on the flocking algorithm, which allows
each robot to calculate the repulsive force and navigation force to
avoid collisions.

Although the force-based approaches are real-time, distributed,
and more flexible than VO-based approaches, they still have limi-
tations in providing a time-optimal navigation path when getting
into local optimum.
Learning-based Approaches - In recent years, learning-based
multi-robot navigation approaches have become popular. Most
methods aim to learn a decision-making policy with reinforcement
learning by inputting local or global information and outputting
the actions for robots. Pinxin Long et al. [25] proposed a distributed
sensor-level collision avoidance policy trained with multi-robot
proximal policy optimization, which maps raw sensor measure-
ments to an agent’s steering commands in terms of movement
velocity. Afterward, this method is extended with hybrid control
architecture [10] which switches between different policies based
on the obstacle density in the environment. Compared with sensor-
level methods, agent-level reinforcement learning methods [6, 9]
use environmental models to achieve high computational efficiency
and flexibility for sensor modalities. To tackle the issue of changing
number of neighboring robots in distributed environmental settings,
GA3C-CADRL [9] uses RNNs to tackle a variable number of moving
obstacles. Similarly, the socially aware RL [6] has been proposed
to infer the importance with the self-attention mechanism because
of the surrounding dynamic obstacles. Qingbiao Li et al.[22, 23]
proposed a message-aware graph attention network to determine
the relative importance of features in the messages received from
neighboring robots. Recently, RL-RVO [13] combines the concept
of reciprocal velocity obstacle and the scheme of deep reinforce-
ment learning (DRL) to solve the reciprocal collision avoidance
problem under limited information. The area of ORCA is regarded
as the reward function to guide the actor-critic based reinforcement
learning to learn a multi-robot navigation policy.

To summarize, the approaches mentioned above still have their
limitations, which lie in accurately quantifying the risk of colli-
sions and effectively capturing the state representation of robots.
To overcome these limitations, we proposed a new TTC-force re-
ward shaping approach to quantify the risk and design a spatial
attention mechanism that allows the robots to pay attention to the
most-related neighbors. It enables reinforcement learning to learn
a high-performance navigation policy that can make collision-free
movements and steer the robots to their goal positions faster.

Slide 19

𝑅!

𝑅"

𝒗"

𝒗!

𝒑" + 𝒗"𝜏

𝒑! + 𝒗!𝜏

𝑟" + 𝑟!

𝒑!

𝒑"

Figure 1: Illustration of the calculation of time to collision 𝜏

between robots 𝑅𝑖 and 𝑅 𝑗 .

3 PRELIMINARIES AND PROBLEM
FORMULATION

In this section, we first introduce the model of time-to-collision,
reward shaping of reinforcement learning, and then define the
multi-robot navigation problem formally.

3.1 Time to Collision
To avoid collision during the navigation, the robot should be able
to predict whether and when it will collide with its nearby robots
so that it can adapt its velocity accordingly. We adopt the concept
of time-to-collision to reason about the potential collisions, which
refers to the time required for two robots to collide if they continue
moving with their present velocity and direction [14, 38]. Consider-
ing two robots 𝑅𝑖 and 𝑅 𝑗 as shown in Fig. 1, the position, velocity,
and radius of them are denoted as 𝒑 =

[
𝑝𝑥 , 𝑝𝑦

]
, 𝒗 =

[
𝑣𝑥 , 𝑣𝑦

]
, and

𝑟 . A collision between two robots occurs at the timeslot 𝜏 ≥ 0 if
the corresponding discs intersect. In other words, a collision occurs
when the distance between two robots is equal to the sum of their
radius,

| | (𝒑 𝑗 + 𝒗 𝑗𝜏) − (𝒑𝑖 + 𝒗𝑖𝜏) | | = 𝑟𝑖 + 𝑟 𝑗 (1)

where | | · | | represents an Euclidean norm. After taking the square of
both sides, we obtain the following quadratic equation with respect
to 𝜏 ,

(Δ𝒗 · Δ𝒗)︸ ︷︷ ︸
𝑎

𝜏2 + 2 · (Δ𝒑 · Δ𝒗︸ ︷︷ ︸
𝑏

)𝜏 + Δ𝒑 · Δ𝒑 − 𝑟2𝑖 𝑗︸ ︷︷ ︸
𝑐

= 0 (2)

where the relative position Δ𝒑 = 𝒑𝑖 − 𝒑 𝑗 , the relative velocity
Δ𝒗 = 𝒗𝑖 −𝒗 𝑗 , and the combined radius 𝑟𝑖 𝑗 = 𝑟𝑖 +𝑟 𝑗 . Moreover, 𝑎, 𝑏, 𝑐
denotes the coefficient terms of the quadratic equation with 𝜏 as the
variable. After simplification and solving the quadratic equation,
we can obtain the solution of 𝜏 with

𝜏 =
𝑐

−𝑏 +
√
D

, (3)

where


𝑎 = Δ𝒗 · Δ𝒗,
𝑏 = Δ𝒑 · Δ𝒗,
𝑐 = Δ𝒑 · Δ𝒑 − 𝑟2𝑖 𝑗 ,

D = 𝑏2 − 𝑎 · 𝑐

(4)

It is evident that there are no collisions if 𝜏 is negative or if 𝜏 is
undefined when D ≤ 0.

Session 4E: Robotics

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1450

Action

Goal-force Reward
𝑹𝑮𝒐𝒂𝒍

TTC-force Reward
𝑹𝑻𝑻𝑪

𝑳𝑪𝑳𝑰𝑷(𝜽)

Score

Neighbors State
Embedding

Robot State
Embedding

Neighbors State
(!𝒔𝒊𝒏)

Robot State
(𝒔)

Robot State
Encoder (𝑭𝐚)

Spatial
Attention

Spatial
Attention

Neighbors State
Encoder (𝑭𝒏𝒆𝒊)

+
MLP

Adjacent Matrix Spatial Attention with Adjacent Matrix

Spatial Attention with Adjacent Matrix

Multi-Robot Systems

Feature matrix Neural network layers

+

TTC-force Reward Shaping

Adjacent Matrix

MLP
…

𝒩

𝒩

𝒩

𝒩

𝑳𝑽(𝝓)

+

Optimize actor/critic network with total loss w.r.t 𝜽 and 𝝓 like PPO.

Figure 2: Framework overview of Tfresh. The proposed framework consists of a state feature extraction module, an actor-
network, and a critic network. First, the state feature module learns the state embedding of the robot’s state and its neighboring
robots’ state. Then, the concatenated (⊕) state embedding and adjacent matrix (N by N) are fed into the spatial attention.
Finally, the output state representation is fed into the MLP to output the action and critic score for the action and critic network,
respectively. Besides, the loss of policy L𝐶𝐿𝐼𝑃 (𝜃) and loss of critic LV (𝜙) are used to optimize the neural network parameters.

3.2 Reward Shaping
Reward shaping is a technique that provides immediate feedback
based on prior knowledge, which can effectively boost RL agents by
converting the domain knowledge into additional rewards [21]. This
advantage makes the technique widely used to guide reinforcement
learning processes.

Specifically, reward shaping is equivalent to learning in a more
complementary environment. The new environment is the evo-
lution of the native Markov decision process (MDP) to a shaped
MDP with augmented rewards. Using the notation for a native
MDP,M = {S,A,R,P, 𝛾}, where S is the finite state;A is a set of
actions; P is the next-state transition probabilities; R specifies the
reward distributions, and 𝛾 is the discounted factor.M is converted
to the shaped MDP,M′ = {S,A,R + F ,P, 𝛾}. Any conventional
RL algorithm can be used on the shaped processM′, and it can
improve the convergence rate of reinforcement learning agents.
Successful shaping transforms the native processM such that the
shaped process is easier to learn and still preserves the optimal
policy ofM.

Taking advantage of the benefits that reward shaping brings to
RL, we shape a new reward function (see Sec. 4.3) to guide the RL
converging at an optimal point in policy learning.

3.3 Problem Formulation
The multi-robot navigation problem can be formulated as a sequen-
tial decision-making problem in a reinforcement learning frame-
work [13, 32]. We consider 𝑁 mobile robot navigating in a 2D
environment, and each robot has its goal position 𝒑𝑔 . At each time
𝑡 , each robot 𝑅𝑖 has the state 𝒔𝑡 , the action 𝒖𝑡 , and its neighboring
robots’ state 𝒔𝑡 = [𝑠𝑡,1, ...𝑠𝑡,N𝑖

] where N𝑖 is the number of neigh-
bors. The state consists of two parts, i.e., internal and external state
𝒔𝑡 = [𝒔𝑖𝑛𝑡 , 𝒔𝑒𝑥𝑡]. The internal states are the robot’s position, velocity,
and radius, 𝒔𝑖𝑛𝑡 = [𝑝𝑥 , 𝑝𝑦, 𝑣𝑥 , 𝑣𝑦, 𝑟] ∈ R5, which can be obtained
by the robots. The external states are the goal position, preferred
velocity, and orientation, 𝒔𝑒𝑥𝑡 = [𝑝𝑔𝑥 , 𝑝𝑔𝑦, 𝑣𝑝𝑟𝑒 𝑓𝑥 , 𝑣

𝑝𝑟𝑒 𝑓
𝑦 , 𝜓] ∈ R5,

which can be specified by the global scheduling systems. The action

is the velocity of robots 𝒖𝑡 = [𝑣𝑥𝑡 , 𝑣𝑦𝑡] ∈ R2. We aim to develop
a policy 𝜋𝜃 :

(
𝒔𝑡 , 𝒔

𝑖𝑛
𝑡

)
↦→ 𝒖𝑡 , with the objective of minimizing

expected traveling time E[T] to goal positions while avoiding col-
lision with other robots,

argmin
𝜋𝜃

(
𝒔𝑡 , 𝒔

𝑖𝑛
𝑡

) E
[
T |𝒔0, 𝒔𝑖𝑛0 , 𝜋𝜃

]
(5)

subject to : ∀𝑡 ∈ [1,T], 𝜏 < 0 orD < 0 (6)

𝒑𝑡 = 𝒑𝑡−1 + 𝜋𝜃 (𝒔𝑡−1, 𝒔𝑖𝑛𝑡−1) · Δ𝑡 (7)
𝒑T = 𝒑𝑔 (8)

where Eq. (5) is the expected traveling time given the robots’ state
and the learned policy. Eq. (6) is the collision avoidance constraint,
meaning that the distance between robot 𝑅𝑖 and its neighbors is
larger than the sum of their radius. Eq. (7) is the motion equation
of robots, and Eq. (8) refers to the goal reaching constraint.

We use RL framework to learn the policy, by considering the
robot’s state with its neighbors’ state, 𝒔𝑡 =

[
𝒔𝑡 , 𝒔

𝑖𝑛
𝑡

]
. The policy is

learned bymapping the robots’ states to actions, then the goal of the
robot is to find a policy that achieves maximal expected discounted
total reward by learning from the experience of outcomes in the
process. That is,

J (𝜃) = E𝒔∼𝑝𝜋 ,𝒖∼𝜋𝜃
T∑︁
𝑡=0

𝛾𝑡R𝑡 (9)

where 𝑝𝜋 is the state distribution under policy 𝜋𝜃 ,
∑T
𝑡=0 𝛾𝑡R𝑡 is

the cumulative rewards in a time T . For each step in the learning
process, the agent chooses an action and transitions to a new state
by the dynamics of the domain model in the transition distributions.
Each transition provides some reward as described by a reward
function, in which the reward is shaped by the TTC-force and will
be presented in Sec. 4.3.

4 OUR APPROACH
In this section, we first describe the overall architecture of our ap-
proach. Then, we introduce the reinforcement learning framework

Session 4E: Robotics

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1451

regarding observation and action space, and how to shape the re-
ward with the TTC-force according to the time to collision. Finally,
we exhibit how TTC-force guides reinforcement learning to learn
a multi-robot navigation policy.

4.1 Framework Overview
The framework overview of the proposed Tfresh is shown in Fig. 2.
We design three major components, i.e., the state encoders, an actor
network, and a critic network. Specifically, we feed the robots’ state
into the state encoders, and the state encoders output the corre-
sponding state embedding, the concatenated state embedding and
adjacent matrix are fed into the spatial attention of the actor and
critic network to capture the relatively important state representa-
tion. The state representation is fed into the multi-layer perceptron
(MLP) feature decoder of the actor and critic network to output
the action and critic score. Finally, the sum of actor and critic loss
is used to update the neural network parameters with the Adam
optimizer.

To compute the adjacent matrix, we first obtain the relative
distanceM𝑖 𝑗

𝑑
between robots 𝑅𝑖 and 𝑅 𝑗 according to their positions.

Then, the adjacent matrix A𝑖 𝑗
𝑠 is obtained by a softmax function

over distance matrixM𝑖 𝑗

𝑑
with a scale parameter 𝜂.

A𝑖 𝑗
𝑠 = softmax(𝜂 1

M𝑖 𝑗

𝑑

) (10)

where softmax function is applied to the rows, the diagonal val-
ues are set as one. During the training stage, the adjacent matrix
changes in each iteration. Thus we design a learned matrixW𝑖 𝑗

𝑑
,

which combines with the adjacent matrix to allow the model to cap-
ture the pattern of the adjacent relations. We named it as dynamic
adjacent matrix A𝑖 𝑗

𝑑
,

A𝑖 𝑗

𝑑
= softmax(W𝑖 𝑗

𝑑
⊙ A𝑖 𝑗

𝑠) (11)

where ⊙ is an element-wise product,W𝑖 𝑗

𝑑
is a learned parame-

ter matrix. The dynamic adjacent matrix is employed on the state
embedding, which can capture the relatively important state rep-
resentation from neighboring robots. Finally, the resulting state
representation is fed into the MLP decoders to get the action and
critic scores.

4.2 Observation and Action Space
The observation represents the environmental information obtained
by the robots. Given the observation 𝒔𝑡 at time step 𝑡 , the robots
decide its optimal moving velocity decision, denoted as action 𝒖𝑡 .
We consider that each robot 𝑅𝑖 can observe its own state 𝒔𝑖𝑡 and the
states that are sent out by the number of 𝑁𝑖 neighboring robots 𝒔𝑖𝑛𝑡 .
For simplicity, we omit the time 𝑡 in the notations:

𝒔 =

[
𝑝𝑥 , 𝑝𝑦, 𝑣𝑥 , 𝑣𝑦, 𝑟 , 𝑝𝑔𝑥 , 𝑝𝑔𝑦, 𝑣

𝑝𝑟𝑒 𝑓
𝑥 , 𝑣

𝑝𝑟𝑒 𝑓
𝑦 , 𝜓

]
(12)

𝒔𝑖𝑛 =

[
𝑝
𝑗
𝑥 , 𝑝

𝑗
𝑦, 𝑣

𝑗
𝑥 , 𝑣

𝑗
𝑦, 𝑟

𝑗
]
, 𝑗 ∈ {0, 1, · · · ,N𝑖 } (13)

The action of the robot is the velocity in the 𝑥 and 𝑦 plane,
𝒖 = [𝑣𝑥 , 𝑣𝑦], which is bounded by the robot’s motion constraint in
the range of minimum and maximum velocity, 𝒖 ∈ [𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥].

4.3 TTC-force Reward Shaping
The reward value is associated with each transition from 𝒔𝑡 to 𝒔𝑡+1
after taking action 𝒖𝑡 to evaluate the quality of this action. The
design of the reward function plays a vital role in reinforcement
learning-based policy learning. This is because the proper reward
function can obtain a satisfactory reward value, making learning
faster and converging to an optimal point. Therefore, to enforce the
multi-robot avoiding collision and reaching their goal positions, we
shape the reward to enable the robot to plan a collision-free action
which is termed as TTC-force reward, R𝑇𝑇𝐶 , and the reward to
allow robots reach their goal as quickly as possible which is termed
as goal-force reward, R𝐺𝑜𝑎𝑙 . Thus the total reward function of the
robot 𝑅𝑖 is represented as,

R =

N𝑖∑︁
𝑖≠𝑗

RTTC
(
Δ𝒑,Δ𝒗, 𝑟𝑖 𝑗

)
+ RGoal (𝒗𝑖) (14)

where Δ𝒑𝑖 𝑗 , Δ𝒗𝑖 𝑗 are the relative distance and velocity between
robot 𝑅𝑖 and 𝑅 𝑗 , respectively. N𝑖 is the number of neighbors of 𝑅𝑖 .

In particular, we first adopt the TTC model presented in Sec. 3.1,
in which the time of potential collision is quantified as 𝜏 in Eq. (3).
The TTC-force is inspired by the study of Karamouzas Ioannis et
al. [20], in which the interaction behavior of two agents follows
a power-law relationship [19] concerning the TTC 𝜏 . Thus the
collision avoidance behavior can be quantified as the TTC-force
between robots. Here, we define the interaction energy function as
U(Δ𝒑,Δ𝒗, 𝑟𝑖 𝑗) which is the function of 𝜏 and follows the power-law
relationship:

U = F (𝜏) = 𝑘𝜏−𝑚𝑒−𝜏/𝜏H (15)
where 𝑘 is a scaling constant, and𝑚 denotes the exponent of the
power-law. The time horizon 𝜏H models the time duration that
tends to ignore collisions. Δ𝒑 and Δ𝒗 are the relative position and
velocity between two robots. The intuition behind the power-law
relationship is that when 𝜏 is small, a collision is imminent, and a
large avoiding force should be used to prevent the collision. When
𝜏 is large, the collision occurs far in the future, and the avoidance
force should have a small magnitude and vanish to zero at the time
horizon 𝜏𝐻 .

Then, the TTC-force between the robot 𝑅𝑖 and 𝑅 𝑗 follows the
negative gradient of the interaction energy according to their posi-
tion 𝒑𝑖 and 𝒑 𝑗 . That is,

F𝑖 𝑗 = −
𝜕U
𝜕𝒑𝑖

= −F ′ (𝜏) 𝜕𝜏
𝜕𝒑𝑖

(16)

We can obtain F ′ (𝜏) from the derivative of Eq. (15),

F ′ (𝜏) = −𝑘𝑒
−𝜏/𝜏𝐻

𝜏𝑚+1

(
𝑚 + 𝜏

𝜏H

)
(17)

As 𝜏 depends on Δ𝒑 = 𝒑𝑖 − 𝒑 𝑗 , thus

𝜕𝜏

𝜕𝒑𝑖
=

𝜕𝜏

𝜕Δ𝒑
=

Δ𝒑 + Δ𝒗𝜏
√
D

(18)

Combining Eq. (3) and Eq. (15), we can obtain the TTC-force of the
robot 𝑅𝑖 exerted by 𝑅 𝑗 ,

F𝑖 𝑗 =
𝑘𝑒−𝜏/𝜏H

𝜏𝑚+1

(
𝑚 + 𝜏

𝜏H

) (
Δ𝒑 + Δ𝒗𝜏
√
D

)
(19)

Session 4E: Robotics

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1452

Additionally, we construct the goal-force to attract the robots to
reach their goals quickly. Typically, a robot’s goal-force is inferred
from its goal velocity. No attraction is needed if the robot is cur-
rently moving in its desired direction and velocity. On the contrary,
if the robot is moving too fast, too slow, or in the wrong direction,
the goal-force can gradually drive the robot to its goal velocity with
the following:

FGoal = 𝑘g
(
𝒗
𝑝𝑟𝑒 𝑓

𝑖
− 𝒗𝑖

)
(20)

where 𝑘𝑔 is a tunable parameter controlling the strength of the
goal-force, and 𝑣𝑝𝑟𝑒 𝑓 denotes the preferred goal velocity.

To shape the reward, we cannot directly use the TTC-force F𝑖 𝑗
and the goal-force 𝐹Goal. This is because the TTC-force has the
direction, which is selected to push the robot’s predicted position
away from its neighbor’s predicted position. Thus, the negative
absolute value of F𝑖 𝑗 is regarded as the penalty if the robot 𝑅𝑖 has
a potential collision with 𝑅 𝑗 in time of 𝜏 . Similarly, to shape the
reward with the goal-force 𝐹Goal, we obtain the numeric reward
value by obtaining the negative absolute value of 𝐹Goal. Finally,
we shape the reward function Eq. (14) for each robot 𝑅𝑖 with 𝑁𝑖

neighbors as

R =

N𝑖∑︁
𝑖≠𝑗

RTTC
(
Δ𝒑,Δ𝒗, 𝑟𝑖 𝑗

)
+ RGoal (𝒗𝑖)

= −𝛼 |
N𝑖∑︁
𝑖≠𝑗

F𝑖 𝑗 (Δ𝒑,Δ𝒗, 𝑟𝑖 𝑗) | − 𝛽 |FGoal (𝒗𝑖) |

(21)

where | · | denotes the absolute value, 𝛼 and 𝛽 are constant values
that can be tuned to adjust the policy performance.

4.4 Training Algorithm
To train the multi-robot navigating in a 2D workspace, we use prox-
imal policy optimization (PPO) [31] to learn the navigation policy.
This is because PPO is a robust and popular optimization method
for multi-robot reinforcement learning. In this work, the detail of
the training algorithm is shown in Algorithm 1. The algorithm fol-
lows the centralized training distributed execution framework with
parameter sharing, where all robots share the same policy 𝜋𝜃 and
centralized value functionV𝜙 . Specifically, we begin with initializ-
ing the multi-robot training environment. In each episode, each of
N robots collect T timesteps of data by executing the policy model
𝜋𝜃old (line 3). Meanwhile, the trajectories data in terms of robot’s
state 𝒔𝑖𝑡 , action 𝒖𝑖𝑡 , and reward 𝑟 𝑖𝑡 are collected and stored into the
experience buffer B (lines 6 ∼ 8). We then construct the surrogate
loss L𝐶𝐿𝐼𝑃 (𝜃) = E𝑡 [min(R𝑡 (𝜃)𝐴𝑡 , clip(R(𝜃), 1−𝜖, 1+𝜖)𝐴𝑡)] (line
13) and mean square error of critic score LV (𝜙) =

(
𝑉𝜙 (𝑠𝑡) − R̂𝑡

)2
(line 14). The navigation policy network parameters 𝜋𝜃 are opti-
mized with Adam optimizer based on the total loss (lines 15− 16) in
the epoch number ofK𝑒𝑝𝑜𝑐ℎ learning. Finally, we update the policy
and value network model with the updated parameters (line 17).

5 EXPERIMENTS AND RESULTS
In this section, we conduct extensive experiments to evaluate our
approach in the Gazebo simulator [7] and real-world environments,
comparing our proposed approach with three different methods in

Algorithm 1: Training Algorithm of Navigation Policy.
Input: Number of robots N; Reward weights 𝛼, 𝛽 ∈ [0, 1];

Initialize the policy actor 𝜋𝜃 and critic V𝜙 ;
Experience buffer B for storing trajectories.

Output: A trained navigation policy model 𝜋𝜃 .

1 Initialize the multi-robot training environment ;
2 for episode← 1 to N𝑒𝑝𝑠 do
3 // Collect trajectory data with 𝜋𝜃old.
4 for robot 𝑅𝑖 ← 1 to N do
5 Run policy 𝜋𝜃old for𝑇 timesteps ;
6 Collect trajectories (𝒔𝑖𝑡 , 𝒖𝑖𝑡 , 𝑟 𝑖𝑡 (𝐸𝑞. 21)) for𝑇 timesteps ;
7 Compute advantage estimates 𝐴̂𝑖

1, · · · , 𝐴̂𝑖
𝑇
;

8 Store the data B ← B ∪ (𝒔𝑡 , 𝒖𝑡 , 𝑟𝑡) ;
9 end

10 // Update policy and value network models.
11 for batch← B do
12 for 𝑘 ← 1 to K𝑒𝑝𝑜𝑐ℎ do
13 Compute clipped surrogate objective L𝐶𝐿𝐼𝑃 (𝜃) ;
14 Compute the mean square error LV (𝜙) ;
15 Total loss = L𝐶𝐿𝐼𝑃 (𝜃) + LV (𝜙) ;
16 Update parameters 𝜃 and 𝜙 with Adam optimizer ;
17 𝜋𝜃old ← 𝜃 , 𝜙𝑜𝑙𝑑 ← 𝜙 ;
18 end
19 end
20 end

terms of evaluation metrics. Specifically, we establish a simulator
to train the navigation policy, then deploy and test the learned
policy model in the simulator and the real-world multi-robot en-
vironment. Finally, we discuss the experimental results of Tfresh
against baselines in different scenarios to show the benefits of our
approach.

5.1 Experimental Settings
We design a multi-robot system consisting of a group of heteroge-
neous robots, in which different types of robots have different sizes
and motion constraints in terms of maximum velocity. Specifically,
we use three types of robots, i.e., Burger, Waffle, and PolyCar [2],
as shown in Fig. 3 (a), in which the size and motion constraints
of Burger and Waffle robots are different. The Burger and Waffle
are differential drive [17] robots with 2 independently driven mo-
tors and 1 caster wheel for stability, and PolyCar is an Ackerman
wheel robot with four independently driven motors. The size of
Burger, Waffle, PolyCar in terms of radius are 0.15 m, 0.22 m, and
0.24 m, respectively. The maximum linear velocity is 0.5 m/s, and
the maximum angular velocity is between −1.0 rad/s and 1.0 rad/s,
respectively.

5.2 Implementation Details
The proposed Tfresh has state encoders, one actor network, and
one critic network. The additional details of them are provided
within the supplementary. We train the policy in simulation en-
vironments, and the well-trained model is tested in the simulator

Session 4E: Robotics

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1453

(c) Crossing Scenario(b) Circle Scenario

Burger

Waffle

PolyCar
(a) Robots (d) Random Scenario

Figure 3: (a) Three types of robots, i.e., Burger, Waffle, and PolyCar. (b) 12 robots navigate in a circle scenario, and all the
robots exchange antipodal locations. (c) 8 robots navigate a crossing scenario in which the start and goal positions are selected
randomly. (d) 8 robots navigate in a random scenario, where the start and goal positions are randomly generated in an 8 by 8
square region. The black arrow indicates the forward direction of the robots at the start position.

Table 1: Comparison of navigation performance (𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑑) of different methods, i.e., NH-ORCA [1], UTTC [12], RL-RVO [13],
Tfresh, in the circle, crossing, and random scenarios, with varied scene sizes and different numbers of mobile robots.

Circle Scenarios Crossing Scenario Random Scenario
Metrics Methods 8 robots (8 m) 12 robots (8 m) 8 robots (6 m) 8 robots

Success Rate
NH-ORCA 1 1 0.8 0.76
UTTC 1 1 0.9 0.8
RL-RVO 1 0.98 0.9 0.92
Tfresh 1 1 1 1

Travel Distance (m)
NH-ORCA 10.202 ± 0.028 11.508 ± 0.712 6.190 ± 0.912 5.378 ± 1.924
UTTC 9.045 ± 0.6995 10.264 ± 2.609 9.269 ± 1.393 7.676 ± 3.241
RL-RVO 8.610 ± 0.452 8.863 ± 0.708 7.726 ± 0.62 6.283 ± 2.094
Tfresh 8.536 ± 0.052 8.237 ± 0.013 6.963 ± 0.117 6.105 ± 2.521

Travel Time (s)
NH-ORCA 19.588 ± 1.402 34.258 ± 18.293 21.984 ± 4.941 21.476 ± 7.757
UTTC 17.487 ± 0.294 22.758 ± 2.145 30.878 ± 10.297 16.810 ± 5.629
RL-RVO 18.413 ± 0.512 20.328 ± 1.854 16.548 ± 0.792 14.783 ± 4.836
Tfresh 17.375 ± 0.136 17.837 ± 0.249 16.232 ± 0.545 14.122 ± 5.231

and the real-world environment. Tfresh is implemented with Py-
torch [28] framework using Python language and runs on an Intel
(R) Xeon(R) CPU E5-2680 V2@2.8GHz and 32G RAM.

5.3 Compared Methods
In particular, we compare our method with three baselines in the
same environments. The technical details of them are introduced
in the following.

• NH-ORCA [1], which is the velocity obstacle-based method
that extends the method of ORCA [37] to non-holonomic
robots. We use the open-source NH-ORCA implementation
from [8] in the evaluation.
• UTTC [12], which is a TTC-based collision avoidance model
considering uncertainty in the future trajectories of inter-
acting robots. We implement the method according to the
details presented in the paper.
• RL-RVO [13], the current state-of-the-art learning-based col-
lision avoidance method, in which the reward function is
designed based on the area of reciprocal velocity obstacle.

5.4 Evaluation Metrics
We evaluate the navigation performance with three metrics regard-
ing success rate, travel distance, travel time, and computational
cost in the experiments.

• Success rate - The success rate is a ratio of the successful
cases without collision or being stuck during navigation,
which measures the policy’s collision avoidance ability.
• Travel distance - The travel distance refers to the average
trajectory distance of robots from the start position to the
goal position, reflecting the navigation policy’s efficiency.
• Travel time - The travel time refers to the amount of average
time taken by the robot from the start to the goal positions,
reflecting the navigation policy’s efficiency.
• Computational cost - The computation time of the collision
avoidance method takes when executing on target platforms.

5.5 Results and Discussion
In this section, we present the experimental details and discuss the
experimental results by deploying heterogeneous robots in both
simulators and real-world environments.

Session 4E: Robotics

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1454

5.5.1 Performance in the Simulator. In the simulator, we evalu-
ate the performance of different methods in the circle, crossing, and
random scenarios. We conduct 50 times of test for each scenario by
performing the navigation task, and the experimental results are
shown in Table. 1.

Circle Scenario. To evaluate the performance of Tfresh in han-
dling the imminent head-on collision, we design circle scenarios
with the numbers of 8 and 12 robots, including Burger, Waffle, and
PolyCar robots. As shown in Fig. 3 (b), there are a total number of 12
robots (4 for each type) that form a circle at their start position. The
goal of each robot is the position of the robot opposite to them. The
joint line distance (ground truth distance) from the start location to
each robot’s goal location is 8 m. We can observe that the head-on
direction of the robots may hit each other when they travel close
to the center of the circle in opposite directions. Thus, all robots
should plan optimal actions to avoid imminent collisions and reach
their goal positions.

As shown in Table. 1, compared to NH-ORCA, UTTC, and RL-
RVO methods, Tfresh is superior to them in terms of success rate,
average distance, and average time. The trajectories of robots ex-
ecuting Tfresh and the baselines are shown in the supplementary.
The results of Tfresh are also superior to the baselines regarding the
travel trajectories’ smoothness and distance, indicating that Tfresh
can efficiently control the robots.

Crossing Scenario. To evaluate the performance of Tfresh in
handling the imminent collision from three perpendicular direc-
tions. We design the crossing scenario with 8 robots, including 2
Burger, 3 Waffle, and 3 PolyCar robots. As shown in Fig. 3 (c), cross-
ing scenarios require each robot to move from the start position
and reach the robot’s position opposite to them. For each opposite
pair, the initial directions are mutually parallel. Each robot must
take action to avoid imminent collisions from the front-end half
plane and cross the surrounding robots to reach its goal position.

As shown in Table. 1, the Tfresh has a 100% success rate which
outperformed all the baselines. Compared to the trajectories with
baselines, as shown in the supplementary, Tfresh still achieves a
shorter trajectory distance and the highest success rate without
getting stuck. The results indicate that Tfresh is more efficient when
controlling the heterogeneous mobile robots’ in the navigation.

Random Scenario. To evaluate the performance of Tfresh in
complex environments with dense robots. We define robot density
as the number of agents divided by the area of the workspace. Here,
the density is 8/16 = 0.5, meaning 0.5 agent per𝑚2. This density is
high in automated warehouses and fulfillment centers because of
the large size of the robots. We experiment with random scenarios
with heterogeneous robots as shown in Fig. 3 (d), in which 2 Burger,
3 Waffle, and 3 PolyCar robots are deployed. We conduct 50 times
of test by randomly setting each robot’s non-overlapping start and
goal positions. From the experimental results, we can observe that
our proposed Tfresh can achieve a high success rate and efficient
navigation in terms of average travel distance and travel time. This
is because the proposed approach can enable the robots to catch
important state information in the dynamic environment.

We have taken video demos for different scenarios which are
available at https://youtu.be/H4cEQ4Fhc0k.

Waffle

Burger

Localization marker

Figure 4: A real-world environment that deploys four robots
includes two Burgers and two Waffles.

Table 2: The comparison of the computational cost of differ-
ent approaches in milliseconds (ms).

NH-ORCA UTTC RL-RVO Tfresh
10.05 11.20 103.76 90.51

5.5.2 Performance in the Real-world. The real-world environ-
ment is shown in Fig. 4, we use the OptiTrack localization sys-
tem [29] which consists of 6 cameras. Four physical robots includ-
ing 2 Burger and 2 Waffle robots are used to perform the navigation
tasks. Each mobile robot holds four markers to locate itself, and
the localization error is around ±0.4 mm in the environment. Each
robot is armed with a Raspberry Pi 3 Model B, an embedded com-
puting platform consisting of a 32-bit ARM Cortex-M7 core. We
evaluate the computational cost as shown in Table. 2. The results
indicate that our proposed Tfresh has a lower computational cost
than RL-RVO. This is because of the lightweight design of the policy
network in our method.

6 CONCLUSIONS AND FUTUREWORK
This work presents a new navigation approach mitigating immi-
nent collision in heterogeneous multi-robot systems, allowing the
robots to move safely with each other and reach their goal posi-
tions efficiently. The proposed Tfresh overcomes the limitations in
quantifying the collision risk of heterogeneous robots when adopt-
ing a reinforcement learning-based framework and the ineffective
state representation under dynamic environments. We use the TTC-
force to quantify the collision risk and shape it as the reward signal,
which provides dense reward feedback to facilitate the convergence
of robot learning. We use the dynamic adjacent matrix to allow the
robots to pay more attention to the most important state represen-
tations, which helps to capture more effective state representations
even with dynamically changing neighbors. The learned policy is
deployed in numerous comprehensive experiments in both sim-
ulation and real-world environments. The experimental results
indicate that Tfresh outperforms the baselines regarding navigation
efficiency and lower computational cost. Our work currently con-
siders the reward shaping between mobile robots. In the future, we
will consider extending the TTC-force reward shaping approach
for robots avoiding static obstacles or surrounding humans.

Session 4E: Robotics

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1455

https://youtu.be/H4cEQ4Fhc0k

ACKNOWLEDGMENTS
This work was supported by the Research Institute for Artificial
Intelligence of Things, The Hong Kong Polytechnic University, HK
RGC Research Impact Fund No. R5009-21 and R5034-18, Innovation
and Technology Fund-Mainland-Hong Kong Joint Funding Scheme
No. MHP/013/21, and the National Key Research and Development
Program of China No. 2022YFF1101100.

REFERENCES
[1] Javier Alonso-Mora, Andreas Breitenmoser, Martin Rufli, Paul Beardsley, and

Roland Siegwart. 2013. Optimal reciprocal collision avoidance for multiple non-
holonomic robots. (2013), 203–216. https://doi.org/10.1007/978-3-642-32723-
0_15

[2] Robin Amsters and Peter Slaets. 2019. Turtlebot 3 as a robotics education platform.
(01 2019), 170–181. https://doi.org/10.1007/978-3-030-26945-6_16

[3] T. Balch and M. Hybinette. 2000. Social potentials for scalable multi-robot
formations. 1 (2000), 73–80. https://doi.org/10.1109/ROBOT.2000.844042

[4] Daman Bareiss and Jur Van den Berg. 2015. Generalized reciprocal collision
avoidance. The International Journal of Robotics Research 34, 12 (2015), 1501–1514.
https://doi.org/10.1177/0278364915576

[5] Jur van den Berg, Stephen J Guy, Ming Lin, and DineshManocha. 2011. Reciprocal
n-body collision avoidance. In Robotics research. Springer, 3–19.

[6] Changan Chen, Yuejiang Liu, Sven Kreiss, and Alexandre Alahi. 2019. Crowd-
robot interaction: Crowd-aware robot navigation with attention-based deep
reinforcement learning. (2019), 6015–6022. https://doi.org/10.1109/ICRA.2019.
8794134

[7] Jinlin Chen, Jiannong Cao, Zhixuan Liang, Zhiqin Cheng, and Jia Wang. 2022.
GraphWare: A graph-based middleware enabling multi-robot cooperation. Con-
currency and Computation: Practice and Experience 34, 17 (2022), e6995. https:
//doi.org/10.1002/cpe.6995

[8] Daniel Claes, Daniel Hennes, Karl Tuyls, and Wim Meeussen. 2012. Collision
avoidance under bounded localization uncertainty. (2012), 1192–1198. https:
//doi.org/10.1109/IROS.2012.6386125

[9] Michael Everett, Yu Fan Chen, and Jonathan PHow. 2018. Motion planning among
dynamic, decision-making agents with deep reinforcement learning. (2018), 3052–
3059. https://doi.org/10.1109/IROS.2018.8593871

[10] Tingxiang Fan, Pinxin Long,Wenxi Liu, and Jia Pan. 2020. Distributed multi-robot
collision avoidance via deep reinforcement learning for navigation in complex
scenarios. The International Journal of Robotics Research 39, 7 (2020), 856–892.
https://doi.org/10.1177/0278364920916

[11] Paolo Fiorini and Zvi Shiller. 1998. Motion planning in dynamic environments
using velocity obstacles. The international journal of robotics research 17, 7 (1998),
760–772. https://doi.org/10.1177/027836499801700706

[12] Zahra Forootaninia, Ioannis Karamouzas, and Rahul Narain. 2017. Uncertainty
models for TTC-based collision-avoidance. 7 (2017). https://doi.org/10.15607/
RSS.2017.XIII.002

[13] Ruihua Han, Shengduo Chen, Shuaijun Wang, Zeqing Zhang, Rui Gao, Qi Hao,
and Jia Pan. 2022. Reinforcement learned distributed multi-robot navigation
with reciprocal velocity obstacle shaped rewards. IEEE Robotics and Automation
Letters 7, 3 (2022), 5896–5903. https://doi.org/10.1109/LRA.2022.3161699

[14] John C Hayward. 1972. Near miss determination through use of a scale of danger.
(1972).

[15] Brian Heater. 2022. Amazon debuts a fully autonomous warehouse ro-
bot. https://techcrunch.com/2022/06/22/amazon-debuts-a-fully-autonomous-
warehouse-robot/

[16] Dirk Helbing, Illés Farkas, and Tamas Vicsek. 2000. Simulating dynamical features
of escape panic. Nature 407, 6803 (2000), 487–490. https://doi.org/10.1038/
35035023

[17] Daniel Hennes, Daniel Claes, Wim Meeussen, and Karl Tuyls. 2012. Multi-robot
collision avoidance with localization uncertainty. (2012), 147–154.

[18] Samaneh Hosseini Semnani, Anton H. J. de Ruiter, and Hugh H. T. Liu. 2022.
Force-based algorithm for motion planning of large agent. IEEE Transactions on
Cybernetics 52, 1 (2022), 654–665. https://doi.org/10.1109/TCYB.2020.2994122

[19] Ioannis Karamouzas, Brian Skinner, and Stephen J Guy. 2014. Universal power
law governing pedestrian interactions. Physical review letters 113, 23 (2014),
238701. https://doi.org/10.1103/PhysRevLett.113.238701

[20] Ioannis Karamouzas, Nick Sohre, Rahul Narain, and Stephen J Guy. 2017. Implicit
crowds: Optimization integrator for robust crowd simulation. ACM Transactions
on Graphics (TOG) 36, 4 (2017), 1–13. https://doi.org/10.1145/3072959.3073705

[21] Adam Daniel Laud. 2004. Theory and application of reward shaping in reinforce-
ment learning. University of Illinois at Urbana-Champaign.

[22] Qingbiao Li, Fernando Gama, Alejandro Ribeiro, and Amanda Prorok. 2020. Graph
neural networks for decentralized path planning. (2020), 1901–1903.

[23] Qingbiao Li, Weizhe Lin, Zhe Liu, and Amanda Prorok. 2021. Message-aware
graph attention networks for large-scale multi-robot path planning. IEEE Robotics
and Automation Letters 6, 3 (2021), 5533–5540. https://doi.org/10.1109/LRA.2021.
3077863

[24] Minghua Liu, Hang Ma, Jiaoyang Li, and Sven Koenig. 2019. Task and path
planning for multi-agent pickup and delivery. In Proceedings of the International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS).

[25] Pinxin Long, Tingxiang Fan, Xinyi Liao, Wenxi Liu, Hao Zhang, and Jia Pan. 2018.
Towards optimally decentralized multi-robot collision avoidance via deep rein-
forcement learning. In IEEE International Conference on Robotics and Automation
(ICRA). 6252–6259. https://doi.org/10.1109/ICRA.2018.8461113

[26] Yuexin Ma, Dinesh Manocha, and Wenping Wang. 2018. Efficient reciprocal
collision avoidance between heterogeneous agents using CTMAT. In Proceedings
of the 17th International Conference on Autonomous Agents and MultiAgent Sys-
tems. International Foundation for Autonomous Agents and Multiagent Systems,
1044–1052.

[27] Nima Moshtagh, Nathan Michael, Ali Jadbabaie, and Kostas Daniilidis. 2009.
Vision-based, distributed control laws for motion coordination of nonholonomic
robots. IEEE Transactions on Robotics 25, 4 (2009), 851–860. https://doi.org/10.
1109/TRO.2009.2022439

[28] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. Curran Associates Inc.

[29] Tong Qin, Peiliang Li, and Shaojie Shen. 2018. Vins-mono: A robust and versatile
monocular visual-inertial state estimator. IEEE Transactions on Robotics 34, 4
(2018), 1004–1020. https://doi.org/10.1109/TRO.2018.2853729

[30] Alexander Schperberg, Stephanie Tsuei, Stefano Soatto, and Dennis Hong. 2021.
SABER: Data-driven motion planner for autonomously navigating heterogeneous
robots. IEEE Robotics and Automation Letters 6, 4 (2021), 8086–8093. https:
//doi.org/10.1109/LRA.2021.3103054

[31] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[32] Samaneh Hosseini Semnani, Hugh Liu, Michael Everett, Anton De Ruiter, and
Jonathan P How. 2020. Multi-agent motion planning for dense and dynamic
environments via deep reinforcement learning. IEEE Robotics and Automation
Letters 5, 2 (2020), 3221–3226. https://doi.org/10.1109/LRA.2020.2974695

[33] Naman Shah and Siddharth Srivastava. 2022. Using deep learning to bootstrap
abstractions for hierarchical Robot planning. International Foundation for Au-
tonomous Agents and Multiagent Systems, 1183–1191. https://doi.org/10.5555/
3535850.3535982

[34] Weixian Shi, Yanying Zhou, Xiangyu Zeng, Shijie Li, and Maren Bennewitz.
2022. Enhanced spatial attention graph for motion planning in crowded, partially
observable environments. In International Conference on Robotics and Automation.
IEEE, 4750–4756. https://doi.org/10.1109/ICRA46639.2022.9812322

[35] David Silver, Satinder Singh, Doina Precup, and Richard S Sutton. 2021. Reward
is enough. Artificial Intelligence 299 (2021), 103535.

[36] Jamie Snape, Jur Van Den Berg, Stephen J Guy, and Dinesh Manocha. 2011. The
hybrid reciprocal velocity obstacle. IEEE Transactions on Robotics 27, 4 (2011),
696–706.

[37] Jur VanDen Berg, Stephen J Guy,Ming Lin, andDineshManocha. 2011. Reciprocal
n-body collision avoidance. In Robotics research. Springer, 3–19.

[38] Richard Van Der Horst and Jeroen Hogema. 1993. Time-to-collision and collision
avoidance systems. (1993).

[39] Wei Wang, Prosanta Gope, and Yongqiang Cheng. 2022. An AI-driven secure and
intelligent robotic delivery system. IEEE Transactions on Engineering Management
(2022), 1–16. https://doi.org/10.1109/TEM.2022.3142282

[40] Xi Vincent Wang and Lihui Wang. 2021. A literature survey of the robotic
technologies during the COVID-19 pandemic. Journal of Manufacturing Systems
60 (2021), 823–836. https://doi.org/10.1016/j.jmsy.2021.02.005

Session 4E: Robotics

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1456

https://doi.org/10.1007/978-3-642-32723-0_15
https://doi.org/10.1007/978-3-642-32723-0_15
https://doi.org/10.1007/978-3-030-26945-6_16
https://doi.org/10.1109/ROBOT.2000.844042
https://doi.org/10.1177/0278364915576
https://doi.org/10.1109/ICRA.2019.8794134
https://doi.org/10.1109/ICRA.2019.8794134
https://doi.org/10.1002/cpe.6995
https://doi.org/10.1002/cpe.6995
https://doi.org/10.1109/IROS.2012.6386125
https://doi.org/10.1109/IROS.2012.6386125
https://doi.org/10.1109/IROS.2018.8593871
https://doi.org/10.1177/0278364920916
https://doi.org/10.1177/027836499801700706
https://doi.org/10.15607/RSS.2017.XIII.002
https://doi.org/10.15607/RSS.2017.XIII.002
https://doi.org/10.1109/LRA.2022.3161699
https://techcrunch.com/2022/06/22/amazon-debuts-a-fully-autonomous-warehouse-robot/
https://techcrunch.com/2022/06/22/amazon-debuts-a-fully-autonomous-warehouse-robot/
https://doi.org/10.1038/35035023
https://doi.org/10.1038/35035023
https://doi.org/10.1109/TCYB.2020.2994122
https://doi.org/10.1103/PhysRevLett.113.238701
https://doi.org/10.1145/3072959.3073705
https://doi.org/10.1109/LRA.2021.3077863
https://doi.org/10.1109/LRA.2021.3077863
https://doi.org/10.1109/ICRA.2018.8461113
https://doi.org/10.1109/TRO.2009.2022439
https://doi.org/10.1109/TRO.2009.2022439
https://doi.org/10.1109/TRO.2018.2853729
https://doi.org/10.1109/LRA.2021.3103054
https://doi.org/10.1109/LRA.2021.3103054
https://doi.org/10.1109/LRA.2020.2974695
https://doi.org/10.5555/3535850.3535982
https://doi.org/10.5555/3535850.3535982
https://doi.org/10.1109/ICRA46639.2022.9812322
https://doi.org/10.1109/TEM.2022.3142282
https://doi.org/10.1016/j.jmsy.2021.02.005

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries and Problem Formulation
	3.1 Time to Collision
	3.2 Reward Shaping
	3.3 Problem Formulation

	4 Our Approach
	4.1 Framework Overview
	4.2 Observation and Action Space
	4.3 TTC-force Reward Shaping
	4.4 Training Algorithm

	5 Experiments and Results
	5.1 Experimental Settings
	5.2 Implementation Details
	5.3 Compared Methods
	5.4 Evaluation Metrics
	5.5 Results and Discussion

	6 Conclusions and Future Work
	Acknowledgments
	References

