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ABSTRACT
The ability to shop independently, especially in grocery stores,
is important for maintaining a high quality of life. This can be
particularly challenging for people with visual impairments (PVI).
Stores carry thousands of products, with approximately 30,000
new products introduced each year in the US market alone, pre-
senting a challenge even for modern computer vision solutions.
Through this work, we present a proof-of-concept socially assis-
tive robotic system we call ShelfHelp, and propose novel technical
solutions for enhancing instrumented canes traditionally meant for
navigation tasks with additional capability within the domain of
shopping. ShelfHelp includes a novel visual product locator algo-
rithm designed for use in grocery stores and a novel planner that
autonomously issues verbal manipulation guidance commands to
guide the user during product retrieval. Through a human subjects
study, we show the system’s success in locating and providing ef-
fective manipulation guidance to retrieve desired products with
novice users. We compare two autonomous verbal guidance modes
achieving comparable performance to a human assistance baseline
and present encouraging findings that validate our system’s effi-
ciency and effectiveness and through positive subjective metrics
including competence, intelligence, and ease of use.
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1 INTRODUCTION
It is estimated that 295 million people have some form of vision
impairment, of whom 43.3 million are blind [8]. Currently, when en-
countering difficulty with shopping, they can get help from sighted
humans. This lack of independence has other negative connotations
such as loss of privacy [3]. Some PVI shoppers have also indicated
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Figure 1: ShelfHelp includes a robotic cane equipped with
RealSense D455 and T265 cameras. The system is powered
through a laptop in a backpack. Left: The system used as a
navigational device. It uses audio and haptic feedback for
navigation guidance. Right: The system used as a manipula-
tion device. It uses audio for manipulation guidance.

they are not willing to use store staffers for shopping for items that
require discretion such as medicine and personal hygiene items
[3, 20, 22]. Our work seeks to alleviate the dependence on guide
availability and to mitigate the loss of privacy encountered with
traditional support mechanisms. People have also expressed the
need to have a system that can help them locate items in a store
and even at their home [3]. Moreover, some environments present
additional challenges while solely relying on tactile sensing. For
example - 1) Kitchen counters may contain hot or sharp objects
and may pose a safety issue. 2) Grocery stores with similar items
shelved together or with an otherwise dense concentration of items
contributes to poor tactile differentiability.

Grocery shopping primarily consists of three main subtasks:
navigation, product retrieval, and product examination. This work
focuses on product retrieval. Prior research on spatial cognition
of PVI uses a dichotomous ontology where they distinguish the
space around the person in two categories: 1) locomotor and 2)
haptic [17]. Locomotor space is the space around the user whose
exploration and access requires locomotion whereas haptic space
is the immediate space around the user that can be sensed without
bodily translation. Our work addresses the research problem in the
haptic space of the user.
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We propose two fine-grain manipulation guidance systems that
use verbal instructions to guide the user towards retrieving the
desired item. We use the grocery store domain because of the repre-
sentative challenges it contains and the opportunity for immediate
positive broader impact. We also introduce a novel product detec-
tion algorithm to locate desired items in a grocery setting with a
hand-held camera system. In this work, we showcase the manip-
ulation guidance system as part of a grocery shopping assistant.
We define fine-grain manipulation guidance with respect to object
retrieval as guidance that brings the user close to the desired ob-
ject such that the object is in the haptic space of the user and is
accessible to the user’s grasp. Our solution aims to minimize the
exhaustive search of the object in the haptic space. This is especially
inefficient and a burden for PVI in a grocery store because of the
high density of products that could be present even in the limited
haptic space of the person.

The hardware choices for ShelfHelp are motivated by utility, cost,
and extensibility. Our system extends the capability of a robotic
smart cane [5] created originally for social navigation assistance
(Fig.1). This area has been extensively researched [9, 11, 18, 19, 24–
27, 30, 33–36, 38, 40–43, 45–48, 50], yet many important capabilities
are still rich for exploration. It is practical and prudent to utilize
the sensing and compute power of these existing devices to address
multitude of critical tasks for a more independent lifestyle.

To summarize, this paper contributes,
• A robotic cane system that leverages computer vision to
assist in independent grocery shopping for PVI.
• A modular two stage computer vision pipeline to locate
desired products in a grocery setting.
• A novel fine-grain manipulation guidance system that opti-
mizes for guide time and the number of commands without
compromising legibility.
• A pilot study validating the system’s success in locating and
providing effective guidance to retrieve a desired object from
a dense cluster of objects with novice users.
• Findings on user preferences regarding desirable planner
properties.

2 RELATEDWORK
2.1 Manipulation guidance
Manipulation guidance is an area that has been explored within the
robotics community for over a decade. Vasquez et al.[44] showed
that saliency maps could be used to find regions of interest (ROI)
and directed users’ hand to the ROI. They found that their ver-
bal commands’ efficacy suffered because they did not utilize a
global frame of reference. Bonani et al. [7] showed promise for
the concept with an experimenter-controlled teleoperated system
and Bigham et al. [6] did so with a Mechanical Turk-based system,
but fully autonomous implementations were outside the scope of
their contributions. Their manipulation guidance guided people to
the general direction of the product but the system didn’t focus
on fine-grain manipulation guidance which is important in many
scenarios, for example a kitchen countertop or where tactile dif-
ferentiability makes exhaustive search inefficient such as grocery
stores which have similar items densely situated. The most popu-
lar solution in this problem domain is a human-powered service

called Be My Eyes [1], but this service suffers from scalability issues
due to its reliance on human availability, is not readily available
in developing countries, requires an active data connection, and
introduces nigh-unavoidable privacy concerns. We present a novel
verbal guidance solution wherein we learn a mapping of language
commands to human hand movements and map them to actions
within a Markov Decision Process (MDP) that can be solved with
well-established reinforcement learning techniques, informing our
guidance of the user.

2.2 Product identification
Existing techniques with a fixed number of output classes work
with a limited database of products in a grocery store, for exam-
ple, Feng et al. [13] trained a system for classifying 1329 products.
These techniques may be impractical for the scale required of a
solution for this domain because of the sheer amount of products
[29] available and the slight variations they come in. It is infeasi-
ble to require creation and maintenance of labeled data and the
training of an object classifier. Existing technology that is reliable
in product identification uses bar code scanning [2, 15]. This often
needs internet connectivity and can only identify a product once it
is in the person’s possession, making it inefficient for search over
the grocery shelves. Our work is inspired by the body of work in in-
stance retrieval, where the task is to find a target image in the scene
[10]. Our proposed product identification system does not require
re-training and works offline, making it scalable and practical.

2.3 Grocery assistant systems
Recent work on grocery assistant systems focuses largely on navi-
gation inside the store [15, 20–22, 28], also known as the locomotor
space of the user. Solutions that rely on environmental augmen-
tation, such as the addition of RFID tags and barcodes, introduce
barriers to adoption as they are inapplicable in uninstrumented
domains. Barcodes alone can not reliably be used to locate a product
from a dense cluster of products on a grocery shelf, as the shopper
can typically only scan a barcode once they have retrieved the
product. Prior research [15] has also focused on text-based product
selection as an input method. Researchers have also focused on
other issues around shopping, including identifying products that
users are running out of and organizing newly purchased products
at home [49], as well as “the last few meters” way-finding problem
[35] and solutions for people with low vision [51]. We focus on an
unsolved research area that primarily considers the haptic space of
the user.

To summarize, our solution addresses 1) the problem of locating
a desired product and 2) the challenge of providing effective fine-
grain verbal guidance to reach and grasp the product.

3 SYSTEM DESIGN
ShelfHelp extends the capabilities of an existing robotic cane orig-
inally developed as a navigational assistance device. This was a
design choice to re-purpose an existing hardware system since
many of the navigational assistance prototypes have the necessary
sensing and compute (Figure 1). The system is capable of locating
desired products and verbally guiding the user to retrieve them.
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The software system follows a serial architecture composed of three
main components - perception, planning, and guidance.

3.1 Hardware System
The hardware (Fig 1) consists of a cane-mounted RealSense D455 for
RGB-Depth sensing and RealSense T265 for odometry. The sensors
are connected to a Dell G15 laptop with an RTX 3060 GPU carried
in a backpack worn by the user. As a navigational assistance device,
the system is held with a standard cane grip but as a manipulation
assistance device, a different, less collision prone grasp is used
behind the sensors.

3.2 Software System

Figure 2: System Diagram. Alignment, perception, planning,
and verbal conveyance are executed on a backpack-worn
laptop, while all the sensing is mounted on the cane.

Our work can best be partitioned into sections regarding inno-
vations in perception, solutions to the data association problem
for maintaining a consistent and persistent mapping of product
detections over time, product selection, fine-grain manipulation
planning to reach the selected product, and methods for conveying
this manipulation plan to the human user to complete the task.

3.2.1 Alignment. In order for the system to issue commands in
the user’s egocentric frame of reference, our system issues verbal
commands to align the user and the system with respect to the
shelf. We use the T265 camera’s IMU to guide the user to point the
system straight at the shelf in an upright way. We also align the
user so that they directly oppose the shelf normal. This is done
by locating the shelf after camera upright alignment via Hough
transform. The system issues commands to turn in place until the
largest horizontal line in the Hough transform is almost completely
horizontal in the camera frame.

3.2.2 Product Detection. The entire product detection pipeline
works in realtime making it appropriate for real world usage. To
use this system, we require that the user has only a single image of
the product that they want to find. This image can be acquired in a
number of ways, for example by taking a picture the first time it is
purchased or by downloading an image from the internet. We have
developed a novel two-stage product search system (Algorithm 1).
• In the first stage, our method proposes regions in form of
bounding boxes that are most likely to contain any product
(line 1 of Algorithm 1). We train the YoloV5 network on the
SKU-110K dataset [16] to create a product detector. This

Algorithm 1: Product Detection Procedure
Input: scene, target_product, camera_pose
Output: best_product
Parameters :similarity_threshold

1 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝑏𝑜𝑥_𝑙𝑖𝑠𝑡 ← 𝑟𝑒𝑔𝑖𝑜𝑛_𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 (𝑠𝑐𝑒𝑛𝑒)
2 𝑡𝑎𝑟𝑔𝑒𝑡_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 ← 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟 (𝑡𝑎𝑟𝑔𝑒𝑡_𝑝𝑟𝑜𝑑𝑢𝑐𝑡)
3 𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ← []
4 foreach 𝑏𝑏 ∈ 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝑏𝑜𝑥_𝑙𝑖𝑠𝑡 do
5 𝑏𝑏_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 ← 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟 (𝑏𝑏)
6 𝑏𝑏_𝑠𝑐𝑜𝑟𝑒 ← 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑡𝑎𝑟𝑔𝑒𝑡_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒, 𝑏𝑏_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒)
7 /* Scene has RGB and depth information
8 𝑏𝑏_𝑝𝑜𝑠𝑒 ← 𝑐𝑎𝑚𝑒𝑟𝑎_𝑡𝑜_𝑤𝑜𝑟𝑙𝑑 (𝑏𝑏, 𝑠𝑐𝑒𝑛𝑒, 𝑐𝑎𝑚𝑒𝑟𝑎_𝑝𝑜𝑠𝑒)
9 if 𝑏𝑏_𝑠𝑐𝑜𝑟𝑒 ≥ similarity_threshold then
10 𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑏𝑏_𝑝𝑜𝑠𝑒, 𝑏𝑏_𝑠𝑐𝑜𝑟𝑒)
11 𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 ← 𝑑𝑎𝑡𝑎_𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛(𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠)
12 𝑏𝑒𝑠𝑡_𝑝𝑟𝑜𝑑𝑢𝑐𝑡 ← 𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑠𝑐𝑜𝑟𝑖𝑛𝑔(𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠)
13 return best_product

Figure 3: Our product search algorithm can reliably locate
desired products on a grocery shelf. Regions with a high
likelihood of containing any product are proposed in the
first stage. The features of these regions are then compared
against the target product image. Our data association solu-
tion is used to identify whether detections from incoming
camera frames are new or re-detections of existing products.
The above image shows our algorithm operating within an
actual grocery store, where the product classification aspect
of this work has been tested and validated. The data associa-
tion andmanipulation assistance components were validated
within a lab-based study.

network is robust and generates region proposals with 0.91-
precision and 0.77-recall upon cross-validation with the SKU-
110K dataset. Figure 3 (upper-right) shows a sample result
from a real grocery store.
• In the second stage, an encoder is used as a feature extractor
(line 2 and 5) that matches the features of the proposed
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regions and the target image, finding the best possible match
(Fig 3). We do this by training an autoencoder on MS-COCO
color images [23] and then utilizing the encoder portion as
the feature extractor (Fig 4). This method doesn’t require
any retraining and works in real-time. For each new image
added to the database, we pass it through the frozen encoder
and save the generated feature vector on disk. This avoids
requiring any retraining of the autoencoder. The encoder
finds the latent space representation of the target product
image and each of the proposed regions. We compare the
representation vectors using cosine similarity to find closer
vectors (line 6). We empirically determine a similarity score
threshold (0.6) that captures satisfactory performance across
real-world environments, but this value can easily be fine-
tuned in case there is a significant distribution shift between
the evaluation and deployment environments.

Figure 4: The architecture of the autoencoder trained for
feature extraction. ShelfHelp uses the encoder portion (top
layers outlined in red) as the feature extractor that creates a
latent space representation of the images.

To transform the information from the camera frame to a fixed
global frame, we use pose information obtained by a cane-mounted
RealSense T265 (which has minimal drift in indoor settings) run-
ning an onboard Simultaneous Localization and Mapping (SLAM)
algorithm, and fuse it with the depth information obtained from a
cane-mounted RealSense D455 (line 8). We use a Gaussian Mixture
Model (GMM) to refine detections and distinguish between the
foreground and background depth information, as the bounding
boxes can contain significant background pixels in case a product
and its bounding box are not overlapping significantly.

3.2.3 Data Association. We use data association techniques to iden-
tify each instance of the same product uniquely across subsequent
frames of camera capture (line 11). This is particularly challenging
because similar products exist in groups. We do this by defining
each product instance as a multivariate Gaussian defined by the
tuple 𝑝 = {𝑥𝑔, 𝑦𝑔, 𝑧𝑔,𝑤, ℎ} where 𝑥𝑔, 𝑦𝑔, 𝑧𝑔 is the 3D location of the
product in a global frame and𝑤,ℎ are width and height in meters.
Accounting for the width and the height helps us discard some in-
correct matches, as incorrectly proposed regions with our method
not only have to have similar features but also similar shape to
be incorrectly labeled (Fig. 3 - lower left). The IMU data from the
T265 sensor helps to calculate the object’s pose in a global frame

of reference and helps to create a persistent “map" of the product
location. This way we can align the verbal directional commands
with respect to the current hand pose and avoid the drawback of
formulating verbal commands generated with targets located only
in the camera frame of view, which is sensitive to hand movements
[44]. Product instance information is updated using a rolling mean
over associated detections. We also employ a lazy deletion strategy
to delete instances that have not been seen a sufficient number of
times (sparse detections) or recently (old detections).

3.2.4 Spatial Scoring. ShelfHelp then scores each detected product
instance of the target product and picks the one with the highest
score as its planning goal (line 12). It considers the rolling similarity
with the target image and the spatial information. This allows the
system to utilize important information that is absent without an
explicit physics model, namely selecting an instance from the top
level of stacked items to minimize the risk of toppling (Fig 5).

Figure 5: The spatial scoring system clusters all the found
instances spatially and gives preference to the closest cluster
to the current hand pose. Ties are broken arbitrarily.

3.2.5 Planning. We have developed two different guidance mecha-
nisms to provide verbal instruction once the target has been located:
1) continuous, for example, “keep on going right"...“stop” and 2) dis-
crete, for example, “move 6 inches to the right”. The decision to create
a discrete guidancemodewas inspired by study results showing that
PVI have been known to perceive length units better than sighted
people [4] and the criteria of minimizing verbal feedback for the
task as research has shown that PVI prefer not being provided with
excessive information [39].

3.2.6 Continuous Planner. The continuous guidance operates by
calculating the relative position of the target and the device (Fig.
1), providing continuous cues along each individual axis of move-
ment until the next is aligned. It generates the commands with the
following template: “keep on going {direction}" where direction can
be {left, right, up, down, forward, backward}. The system issues the
command “keep on going" if it notices the hand slow down suffi-
ciently in anticipation of the next command. Once the error on the
current guidance axis is lower than a threshold the system issues
the command “stop”.
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3.2.7 Dataset fromHuman Demonstrations: To develop the discrete
guidance method, we collected a dataset mapping verbal movement
commands from a fixed command-set, recording participants’ net
handmovements upon reacting to that command (Fig 6). We formed
36 discrete commands and issued 1250 instances of the commands
in total to 25 volunteers (50 commands per person) while they
were blindfolded. The hand movement data were recorded using an
OptiTrack motion capture system. Figure 6 shows a sample from
this dataset illustrating commands pertaining to left movement. We
can see that the hand movement caused by these commands is close
to a Gaussian distribution and the mean increases for the verbal
commands that convey a larger movement. We fitted Gaussians to
characterize the movement caused by each command as

𝑋𝑐 ∼ N(𝜇𝑐 , 𝜎2𝑐 )

where 𝜇𝑐 and 𝜎𝑐 are the mean and standard deviation of the move-
ment caused by command 𝑐 .

3.2.8 Discrete Planner. Through the human-subjects demonstra-
tions, we find that the hand movement following the commands
was not deterministic. Moreover, a greedy approach would not
guarantee an optimal solution, akin to the 0-1 Knapsack problem.
We solve this sequential decision-making problem by modeling it as
an MDP formulated with (𝑆,𝐴,𝑇 , 𝑅) where 𝑆 is the set of states in
the MDP,𝐴 is the set of actions,𝑇 is a stochastic transition function
describing the action-based state transition dynamics of the model,
and 𝑅 is a reward function.

• 𝑆 is the tuple (Δ𝑥,Δ𝑦,Δ𝑧, 𝑎𝑥𝑖𝑠) where the first three terms
are the difference in distance of the target and the hand pose,
and axis defines the axis of motion for the previous command
which could be any of three values corresponding to the X
(horizontal), Y (vertical), or Z (depth) axis and a direction
{left, right, up, down, forward, backward}. This formulation is
dependent on the relative distance between the target and
the hand and thus it finds a plan for all the potential states
that can be encountered. We discretized the states at 5 cm
resolution and considered a cuboid region of 0.8m as the
operational space for the human hand. The system assumes
the hand to be at the boundary of our cuboid in case it was
outside of the region. In practice, a region bigger than this
produced the same policy for regions that were further away.
• 𝐴 is the set of discrete verbal commands such as “Move 6
inches to the left".
• 𝑇 is calculated from 𝑋𝑐 as the movement caused by each
command is not deterministic. We use the Euclidean differ-
ence between the states and Gaussian 𝑋𝑐 associated with
the command 𝑐 to find out the probability of the transition
between those states when command 𝑐 is issued.
• The reward function 𝑅 encourages reaching the target and
discourages issuing superfluous commands. It also discour-
ages a sequence of commands that could be illegible or frus-
trating by penalizing axis changes.
Table 1 shows the reward values and their description. The
𝑎𝑥𝑖𝑠_𝑜𝑟𝑑𝑒𝑟_𝑟𝑒𝑤𝑎𝑟𝑑 rewards adherence to a prescribed or-
dering of guidance with respect to the axes. For example,
we set the initial guidance axis as vertical and the planner

Figure 6: (Left to right) A sample of discrete commands. The
movement (in meters) each command caused. MDP and solu-
tion definition. We train a model of human hand movement
from demonstrations that inform the transition probabilities
𝑇 . 𝑆 defines the state space, 𝐴 defines the discrete set of ver-
bal actions, and 𝑅 is the reward function. A policy is learned
offline that can be used across reaching tasks.

rewards transitioning from the vertical axis to the horizon-
tal axis and not the depth axis. This helps to hone in on
the product on the XY plane and then reach out for the
product in the depth axis. The 𝑙𝑖𝑣𝑖𝑛𝑔_𝑝𝑒𝑛𝑎𝑙𝑡𝑦 penalizes ex-
cessive number of commands. The 𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑖𝑛𝑔_𝑝𝑒𝑛𝑎𝑙𝑡𝑦 pe-
nalizes excessive interleaving of axes that could make the
guidance illegible. It is necessary and suitable to transition
once the distance to the target on the current axis of guid-
ance is reduced and short enough. We ensure this by setting
𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦_𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛_𝑟𝑒𝑤𝑎𝑟𝑑 inversely proportional to the
distance remaining (error) on the current guidance axis.

Table 1: Outline of MDP Reward values

Reward Description
𝑔𝑜𝑎𝑙_𝑠𝑡𝑎𝑡𝑒_𝑟𝑒𝑤𝑎𝑟𝑑 = +10000 reward for reaching the goal
𝑙𝑖𝑣𝑖𝑛𝑔_𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = −10 penalty for using a command
𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑒_𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = −100 penalty for changing axis of

command
𝑎𝑥𝑖𝑠_𝑜𝑟𝑑𝑒𝑟_𝑟𝑒𝑤𝑎𝑟𝑑 = +100 reward for transitioning from

vertical to horizontal axis
𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦_𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛_𝑟𝑒𝑤𝑎𝑟𝑑 =

(0.001 + current axis error)−1
reward for axis transition
when current axis error is
removed

The MDP is then solved using value iteration to generate a
general reaching policy that can be queried online to guide the user
toward arbitrary target locations.
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3.2.9 Guidance. The verbal guidance has two components. It be-
gins with a plan overview that is followed by hand movement
instructions.

1) Plan Overview: The actual guidance is preceded by a plan
overview which serves to set the expectations for the general direc-
tion of the forthcoming instructions. We do so by computing the
initial heading direction to the target. We project and discretize the
heading direction to the target onto the plane of the shelf and use
clock-based direction. The overview has the following template: “I
found the product at about { } o’clock direction".

2) Hand Movement Instructions: The plan overview is followed
by guidance instructions. The instructions to convey to the user
(actions) are computed online when using the continuous guidance
mode and queried online from the policy learned in the discrete
guidance mode. Based on the relative position of the target and the
hand, a command is formulated (or retrieved from the policy) and
issued aloud from a speaker that is part of the robotic cane system.
In an effort to reduce frustration, the system issues new commands
only when the user’s hand has slowed down sufficiently to show
that they are ready for the next command. The user is asked to
grasp the target object with their non-occupied hand if they are
close to it with the system.

4 PILOT STUDY
We conducted an IRB-approved study with novice users (n=15)
for system testing and validation. Participants were all sighted
students who were blindfolded for the testing. At this stage of
design and technical readiness, we follow prior work in performing
preliminary validations using blindfolded users [12, 14, 31, 32, 40,
45] as a precursor to engaging with the PVI community.

4.1 Hypotheses
We test the following hypotheses in our comparison of the two
planner modes.
• H1: Participants will retrieve products with a lesser number
of commands in the discrete guidance mode compared to
the continuous guidance mode.
• H2: Participants will retrieve the products in less time with
the discrete guidance mode as compared to the continuous
guidance mode, once the products are located.
• H3: Participants will retrieve the products with less net hand
movement with the discrete guidance mode compared to the
continuous guidance mode.

4.2 Experiment Design
We use the experimental setup shown in Figure 7 to test the sys-
tem. While we test the system as a whole, we do so with a specific
focus on the two proposed guidance planners - 1) Continuous and
2) Discrete. As a baseline, we also compare our system against a
human caller (university research staff separate from the experi-
menters) guiding over a video call. The caller gave freeform verbal
guidance with the aim of helping the participant reach the goal
on the shelf. The users performed each of these 3 conditions (con-
tinuous, discrete, and human) 5 times. We had a set of 5 different
products for each of the conditions and the same set of 5 products
with the same spatial configuration was used for each condition.

Figure 7: The experimental setup approximating a grocery
store shelf, used for evaluating the efficacy of our manipula-
tion guidance system.

The products were picked from the top two rows. We randomly
shuffled the 3 conditions, counterbalancing as needed to achieve
parity of orderings to avoid training/familiarity biases. We ensured
that the users have the shelf in the frame at the starting pose and
they were approximately 0.9m to 1.5 away from the target product
in all the runs of the experiment. Each user was oriented on how
to use the system, how to hold it, and how many runs they would
perform. We asked them to keep their locomotion to a minimum
and primarily move their hand. We also informed them about the
alignment process and how to interpret the alignment guidance in-
structions that precede the actual guidance. The orientation process
took about 3-4 minutes on average for each user.

4.3 Results
4.3.1 System Success Rate. Each participant retrieved 5 different
products in each condition (continuous, discrete, human). Perhaps
unsurprisingly, the human condition was successful 75/75 times.
We observed a few scenarios where participants picked up the
wrong product initially but were corrected by the human caller.
The product locator system was the same for both the continuous
and the discrete modes. The product detection failed 21/150 times
in locating the desired product in the participant’s first attempted
scan of the shelf. This mostly happened when the desired product
was not in the camera frame. If similar enough products are in
frame (above threshold), the system selects the most visually similar
product it can find. In some cases, when the desired target product
is not facing straight or is occluded, the system might locate a
visually similar product that may be incorrect (Figure 9). While
inconvenient, these errors are ultimately correctable using existing
work (e.g., barcode based methods). The system showed promise in
dealing with overexposure and blur due to the data association as
shown in the example (Figure 8).

Both of our planners guided the user to the desired product
150/150 (100%) times. In the continuous mode, the participant
picked up the adjacent item 8/75 times, and in the discrete mode
that happened 6/75 times. It is important to note that the guidance
algorithm took the participant close to the product, but since the
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Figure 8: A sample product detection result that was robust to
blurring and overexposure with the help of data association.

Figure 9: The product detection algorithm in a real grocery
store. The system detects an incorrect product which is visu-
ally similar to the target. The expected products were either
not facing straight or occluded partially by price tags ham-
pering their visual similarity with the target.

users used their non-dominant hand to pick up the product they
picked up a product immediately adjacent to the desired one (which
was usually just 1-2 inches away). We include these data in our
subsequent analysis, as the high level guidance was still successful
in minimizing the exhaustive search required in the haptic space of
the participant.

4.3.2 Hypotheses Testing. Post-hoc comparisons using Tukey’s
HSD test revealed that participants retrieved the products with
significantly fewer commands in the discrete mode as compared
to the continuous mode, confirming H1 (Figure 10). In fact, the
number of commands was similar for the human caller and the
discrete mode. Using the same test we found that the participants
could retrieve the products significantly faster in the discrete mode
compared to the continuous mode, thus confirming H2 (Figure
11). The guidance time for the discrete was also similar to the hu-
man caller. We ran a TOST (two one-sided test) which confirms
distributional equivalence for the number of commands and guidance
time between the discrete planner and human caller. Although the
same doesn’t hold true if we consider the total time which includes:

alignment, searching for the product, reporting the plan, and guid-
ing. We can see (Figure 13) that both proposed modes incur some
time in aligning and reporting the plan. We did not classify all of
these activities for the human caller because they would interleave
these instructions into their guidance, so we classify the time prior
to providing actual movement instructions as ‘search time’. We did
not find any statistical difference between the net hand movement
caused by either planner, thus we could not confirm H3. To our
surprise, we see that the human caller had significantly higher
net movement (Figure 12). We think that this is due to the fact
that the human caller relied on tracking the dominant hand of the
participant in order to give them instructions with respect to the
dominant hand position. The dominant hand would often go out
of the cell phone camera frame and the human caller would have
to issue instructions in order to gauge where the hand is causing
these superfluous movements.

Figure 10: Average number of commands used by the differ-
ent planners.

Figure 11: Average guide time used by the different planners.

4.3.3 Subjective Evaluation. We administered a survey after each
condition. Participants rated both of our planners high on met-
rics concerning: human-like, interactive, competent, and intelligent
(Figure 14). The two planners and the human performance were not
statistically different on the competence and intelligence metrics.
Both of the planners were rated less humanlike than our human
baseline. The discrete planner was rated slightly lower in the inter-
active metric which could be because the discrete planner did not
provide any affirmations, which is an area of future investigation.
The participants rated the plan overview’s helpfulness as 4.2 (std
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Figure 12: Average net hand movement caused by the differ-
ent planners.

Figure 13: Average time taken by each planner. The align-
ment, search, and report durations are similar for Continu-
ous and Discrete but the guidance time is lower for Discrete,
comparable to human levels.

1.01) out of 5, indicating that this component was valuable to them.
The large standard deviation is attributed to two participants rating
this feature very low and in the exit interview they mentioned that
it was hard and confusing for them to understand the overview tem-
plate. We noticed participants mentioning a clear preference for one
or the other planner. Some participants who liked the continuous
mode mentioned that they liked that it provided some affirmation in
the form of “Stop" command. We also noticed the human caller us-
ing some kind of affirmation along with the movement instructions,
for example, “Alright", “Good", “That one". Participants who liked
the discrete planner more mentioned that they liked getting precise
movement instructions and not relying on the system to stop them
without much certainty about how much they would have to move.
Participants also rated ShelfHelp favorably on metrics such as ease
of use, confidence, mental demand, temporal demand, frustration.

5 DISCUSSION AND FUTUREWORK
We caution the reader to exercise care to avoid drawing strong
conclusions about device readiness based solely on pilot tests with
blindfolded, non-BVI participants, as these are not necessarily a
reliable proxy for the (eventual) target population of this device
[12, 37], but we find the preliminary results promising and indica-
tive of value in further investigation. With this pilot study, we have
shown a proof-of-concept with regard to the hardware and software
features of our proposed self-contained system (i.e., not dependent
on external compute or data connection), alongside a validation

Figure 14: Average rating on subjective metrics: (clockwise
from upper-left) Interactive, Humanlike, Intelligent, Compe-
tent. Both planners performed well on all the metrics com-
pared to the human guide except for Humanlike.

of a novel product locator system coupled with a novel fine-grain
manipulation guidance system, demonstrating that the system is
able to locate a target product, plan to reach it, and effectively
guide retrieval in real-time. The discrete planner performs quanti-
tatively better than the continuous and is on par with the human
in our study. The continuous planner elicited a positive response as
well, in part due to the affirmations it provides by using the “Stop"
command. It could be beneficial to add this feature to the discrete
planner, effectively grounding the user during the execution of the
plan. The product locator system relies on visual features which do
not effectively leverage all of the available semantic information
on product packaging, and a future direction would be real-time
incorporation of semantic information as well.

6 CONCLUSION
In this work, we present our system ShelfHelp which enhances
an instrumented cane meant for navigational assistance with the
addition of manipulation assistance capabilities. It includes a novel,
maintenance-free product locator system that does not need regular
re-training as new products are introduced, and works offline mak-
ing it scalable and practical. We present a novel fine-grain manipu-
lation guidance planner that effectively guides manipulation-based
reachability in the haptic space of the user. We tested aspects of
the system using a pilot study with novice users that provided an
initial validation for ShelfHelp and show that our discrete guidance
planner optimizes for guide time and the total number of commands
without compromising legibility. We tested two guidance systems
with a quantitative and qualitative comparison against each other
and a human baseline. The discrete guidance mode was on par with
the human caller in terms of guide time, the number of commands,
perceived competence, and intelligence but lacked in terms of inter-
activeness in form of affirmation. The study also surfaced positive
feedback for qualitative metrics such as ease of use, confidence,
mental demand, temporal demand, frustration, intelligence, and
competence for the system with both of the guidance planners.
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