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ABSTRACT
We propose a novel mechanism to manage platoons of autonomous
vehicles at traffic intersections. Our mechanism optimises the for-
mation forming vehicle platoons to minimises overall waiting time,
allowing the optimal platoon size to be determined dynamically,
thus minimising overall travel time. In addition, we introduce a con-
flict resolution algorithm, which dynamically authorises multiple
platoons to manoeuvre even when the majority are single vehi-
cles. Our empirical evaluation shows that, for single intersections,
our mechanism can reduce the average travel time by up to ≈65%
compared to conventional fixed-time traffic signals and up to ≈4%
compared to advanced non-platoon-based signal-less first-come-
first-served approaches. Moreover, from the corridor-level aspect,
our mechanism can reduce the weighted average trip duration up
to ≈22% compared to the fixed-time traffic signals and up to ≈45%
compared to the signal-less first-come-first-served approaches.
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1 INTRODUCTION
Traffic congestion is one of the key causes of air pollution and
losses in economic efficiency, having wider impacts on health and
climate change [26]. In the UK alone, traffic congestion cost the
drivers around £6.9 billion in 2019 [11]. With the impending de-
ployment of connected and autonomous vehicles (CAVs)1, there is

1CAVs are vehicles that are capable of driving themselves without human interference
and wirelessly exchange information with other devices (e.g. vehicles and external
networks) [27].
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an opportunity to make a step-change from the status quo (i.e. traf-
fic signals) to mitigate carbon emissions from road transportation.
As these vehicles will be powered either by electricity (potentially
from carbon-emitting sources) or by carbon-based sources, it will be
crucial to utilise their autonomy and connectivity to improve traffic
flow, minimising start-stop behaviours typically lead to congestion.

To this end, work in the AI community has sought to address
the problem of intersection management with CAVs since the early
2000s, following the seminal work by Dresner and Stone (2008).
They proposed a grid model of an intersection and a simple heuris-
tic following the First Come First Served (FCFS) principle, allo-
cating paths and time-slots to the incoming vehicles. Since their
work, a number of alternative approaches have emerged in the field
[6, 12, 21, 24, 32, 40]. In general, these approaches consider two
objectives: (i) to optimise the flow at an intersection, as expressed
by relevant metrics, such as traffic throughput (either based on
incentives or waiting time); and (ii) to scale up the solution to con-
sider multiple intersections or large numbers of vehicles. These
approaches also consider a centralised controller and do not allow
for any communication between vehicles.

In our work, we remove the latter constraint as vehicles are
increasingly being connected through radio vehicle-to-vehicle com-
munications. The goal is to allow them to dynamically form pla-
toons of multiple vehicles. Several studies suggest that travelling
in a platoon can significantly improve the efficiency of traffic, e.g.,
[10, 22, 23, 36–38]. However, these studies have only minimally
considered the delays caused/mitigated by platooning at road in-
tersections. Furthermore, these approaches have only considered
synthetic scenarios. In our work work, we look to use real-world
traffic data and real road intersection structures to stress test pla-
toon formation techniques.

Against this background, this paper proposes a new resource
reservation mechanism for signal-less intersection management,
which forms platoons dynamically. The mechanism optimises pla-
toon formation by calculating and balancing individual platoons’
waiting time cost at the intersection. In so doing, our mechanism
can minimise the overall travel time despite the large time slots re-
served by platoons. Our mechanism is tested using real-world data
on a real eight-intersection urban corridor microscopic simulation
model. In more detail, our contributions are as follows:
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(1) We introduce a novel waiting-time-based platoon formation
algorithm that allows the IMA to grant multiple platoon
formations dynamically considering their utility, weighing
the potential waiting time cost created by the platoons.

(2) We improve the state-of-the-art decentralised resource reser-
vation algorithm in [35] accounting for platoons to cover
extra space and time-slots and ensure multiple platoons’ safe
crossing even when most reservations are single CAVs.

(3) We present a realistically-calibrated traffic model of a real-
world eight-intersection corridor using the Simulation of
Urban MObility (SUMO) [14] tool by reproducing traffic
demand with heterogeneous vehicle types according to the
pNEUMA dataset, which comprises traffic data collected by
drones in Athens, Greece [1].

(4) We extensively test and evaluate the mechanism through
several scenarios on the calibrated simulation. The results
show that FCFS performs especially poorly under extreme
traffic conditions (poorer than conventional traffic signals),
while our approach demonstrates superior performance in
corridor-level aspect.

The rest of this paper is structured as follows. Section 2 provides
an overview of related literature. Section 3 presents the model de-
scription and relevant definitions and assumptions. The formulation
of our dynamic platoon formation algorithm and the resource reser-
vation mechanism is provided in Section 4. Then, our algorithm is
evaluated against conventional traffic lights and non-platoon-based
signal-less FCFS approach in Section 5. Lastly, Section 6 conclude
the paper and outline future work.

2 RELATEDWORK
In the past decades, a number of approaches have been proposed to
reduce traffic congestion by utilising intelligent and adaptive traffic
control. It has been shown that the performance of conventional
traffic signal programs can be significantly improved using various
approaches such as fuzzy logic [7], machine learning [18], and
multi-agent systems [8]. However, the traffic signals themselves
may not be the most efficient method for the not-to-distant future,
where CAVs become extensively used, as they rely on drivers and/or
vehicles making visual contact with the signal head. A signal-less
controller, on the other hand, which can directly communicate with
the vehicle and transmit signal indications to it, can much better
nurture the full potential of vehicle connectivity technology.

In this vein, [9] introduced FCFS, the first to signal-less multi-
agent intersection control algorithm. This algorithm introducing a
resource reservation mechanism with a central agent, suggesting
conflict-free time-slots for vehicle agents to cross the intersection.
Due to its flexibility and adaptability, this seminal work has been
extended by many studies. Notably, [6] introduces an auction-based
approach allowing the driver to bid for their time-slots, showing
a reduction in the overall waiting time. Similarly, [32] proposed a
market-inspired approach assuming different drivers have different
bidding power, imitating human society. Different approaches that
mainly focus on improving the intersection efficiency and scaling
up their studied areas can also be seen, such as token-based reser-
vation [24], Distributed Constraint Optimisation Problem (DCOP)
approaches [33], and deep reinforcement learning [12].

Meanwhile, there have been considerable developments in the
field of vehicle automation. Most notably, several cars nowadays are
equipped with Adaptive Cruise Control (ACC), a smart radar-based
system allowing cars to automatically maintain a safe gap to the
car or vehicle in front, which has demonstrated benefits in terms of
increasing road capacity, reducing delays and decreasing pollutant
emissions and fuel consumption [25]. An improved version of ACC
is Cooperative Adaptive Cruise Control (CACC), where automation
is combined with connectivity and vehicles communicate their in-
tention, speed and routes among themselves in order to behave as a
group – platooning. This has additional positive impacts involving,
not least, a reduced communication overhead due to the controller
only needing to pass signal indications to a single vehicle rather
than multiple ones, e.g., [5, 10, 19, 20, 22, 23, 29, 36–38]. ACC and
CACC have been explored within the context of various traffic man-
agement applications. For instance, [22] integrates platooning into
a network of 16 intersections, showing an improvement up to 300%
increase in traffic capacity (compared to fixed-time traffic lights).
Similarly, a study in [5] conducts a field test on five consecutive
traffic lights, showing an average of 5% reduction in travel times.

Due to these promising results, many researchers in modelling
automated intersection for CAVs have turned their attention to-
wards platooning, due to its cooperative controls. For example, [13]
propose a heuristic platoon reservation method, and their simula-
tion results show a significant reduction in the average travel time
by ≈ 8% compared to [9]. In the same vein, [2] propose a stop-sign
algorithm that allows platoons to cross the intersection one at a
time, reducing the fuel consumption by up to 13%, and [3] advance
the prior work by giving priority to the platoon that has the highest
waiting time. Furthermore, [17] propose a coordinator that opti-
mises the platoons’ arrival time (by accelerating/decelerating) in
order to avoid unnecessary queuing delays and fuel consumption.

However, the aforementioned studies are usually simulated and
evaluated in highly stylised and idealised scenarios, which are rarely
seen in real-world traffic. Several essential elements are rarely con-
sidered, including road geometry, turning manoeuvres, realistically
high traffic demand, heterogeneous vehicle types, and a variation
in vehicle speed. For example, in [13], the studied intersection is
an artificial 2-way-1-lane simulating relatively low traffic demand.
Similarly, [3] use a 4-way-1-lane intersection with pre-generated
platoons assuming the groups have been formed as arrival with
unchangeable size. In addition, [2–4, 13, 17, 39] implicitly and un-
realistically assume that vehicles are identical. Moreover, many
studies still have not scaled up their works to cover multiple in-
tersections. Thereby, the impact of platooning in a bigger aspect
has not been extensively explored. As such, while several studies
have shown that platooning works well in idealised and determin-
istic intersection management scenarios, it is unclear whether it
works equally well in practice, especially when platoons contain
longer vehicles that take up more time and space when crossing
the intersection.

Against this background, we present a multi-agent intersection
management algorithm with a platooning mechanism, where the
platoons are formed dynamically. Our flexible mechanism allows
multiple platoons to be formed and existing platoons to be extended
as long as they reduce the overall waiting time of the intersection.
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Moreover, we carefully consider the dynamism of real-world sce-
narios by testing and evaluating our approach on a calibrated micro-
scopic traffic simulation model of a real-world case study with real
traffic data. In this way, we can realistically evaluate our approach
and demonstrate a broader impact of platooning.

3 THE CALIBRATED TRAFFIC MODEL
We base our model on the original FCFS model [9] that considers
a road intersection managed by an Intersection Manager Agent or
IMA2. The IMA can grant its resource (time-slotted space in the
intersection) to each vehicle—Driver Agent or DA—to coordinate
each vehicle’s movement. We next describe how the intersection
and the vehicles are modelled.

Figure 1: The corridor in Athens, Greece, used in this study,
comprising of eight intersections (within the solid enclosure).

3.1 The Intersections
While [2, 13] only consider ideal intersection geometry, we consider
more practical intersections and use the SUMO simulation tool to
model these. Specifically, our study is modelled after a road network
in Athens, Greece, as it is a focus area in [1], which uses an array of
drones to capture real-world traffic data providing precise vehicle
movements. However, for the system’s simplicity and to save up
the simulation runtime, only two out of ten focus areas are used,
covering a corridor of eight intersections (see Fig. 1).

Additionally, another element that highly impact the realism
of the model is intersection geometry. Even though SUMO can
import a road network from OpenStreetMap directly, information
is partially inaccurate, e.g,. the number of lanes per road, free-turn
lanes, public transport lanes, and the possible driving direction of
each lane. To rectify this, TraVia [30], a traffic data visualisation
tool, allows us to reproduce the vehicle movements in pNEUMA
and adjust the road corridor accordingly and practically. Moreover,
as we also consider the actual fixed-time traffic signal program, the
red and green times or phases are extracted through TraVia instead
of using SUMO’s pre-generated signal programs.

Furthermore, for the intersection access, an individual vehicle or
a platoon is scheduled based on a cell-based reservation mechanism
similar to [9, 35]. To be specific, the centre of the intersection is
2The IMA typically sits within the infrastructure at the intersection and communicates
with nearby vehicles using typical radio frequency communications.

discretised into a grid of cells. These cells indicate DAs’ occupancy
and time-slots according to their manoeuvring paths. They are also
used to prevent conflicts among DAs’ reservations (see Fig. 4).

3.2 Vehicles
Let 𝐴𝑡 = {𝑎1 ...𝑎𝐼 } denote the set of DAs in the system at time 𝑡 .
Each 𝑎𝑖 ∈ 𝐴𝑡 has the following properties: position 𝑝𝑜𝑠𝑡𝑖 , velocity 𝑣

𝑡
𝑖
,

orientation 𝜃𝑡
𝑖
, length 𝑙𝑖 , width, and type 𝑡𝑦𝑝𝑒𝑖 . All agents in𝐴𝑡 have

the same minimum gap between each agent (2.5 m) but different
maximum velocity 𝑣𝑚𝑎𝑥

𝑖
and accelerating rate 𝛼𝑚𝑎𝑥

𝑖
depending

on their type. To simulate the most practical environments, the
dataset in [1] is derived to specify a population of vehicle types,
acceleration, and also a deviation in maximum speed. In particular,
the maximum speeds are assigned using a normal distribution given
minimum and maximum values of 95% spread (z=1.96). The full
details of the vehicle properties can be seen in Table 1.

Moreover, to model platoons, we use 𝑠𝑡𝑎𝑡𝑢𝑠𝑖 to represent/label
one of three states of a vehicle, which are:

(i) 𝑙𝑒𝑎𝑑𝑒𝑟 – A leader of a platoon.
(ii) 𝑓 𝑜𝑙𝑙𝑜𝑤𝑒𝑟 – A follower in a certain platoon.
(iii) 𝑛𝑢𝑙𝑙 – An ordinary DA that does not belong to any platoon,

henceforth referred to as a standalone DA.
Unlike existing work by [2, 3, 13] where all vehicles are labelled

as they enter the IMA’s communication range, in our approach,
platoons are formed dynamically only when they are queuing and
meet certain conditions ensuring the benefits to the overall system.
These conditions will be specified in Section 4.

Table 1: Vehicle properties, including share, length, accelera-
tion, and maximum velocity based on their type.

Type Share Length 𝛼𝑚𝑎𝑥 𝑣𝑚𝑎𝑥 (𝑚/𝑠)
(𝑚) (𝑚/𝑠2) avg SD

Bus 2.2% 12 2.90 9.98 2.33
Delivery 4.1% 6.5 3.03 10.91 3.01

Motorcycle 33.2% 2.1 4.14 13.90 3.95
Private 43.8% 5 3.32 12.09 3.25
Taxi 16% 5 3.10 11.5 3.03
Truck 0.7% 7.1 2.80 9.01 3.65

3.3 Traffic Demand
The most crucial element in the calibrated model is reproducing
the ground-truth traffic demand. Particularly, the pNEUMA dataset
provides vehicles’ latitude and longitude position as a snapshot per
time step (0.04 sec, 25 FPS), from staring point to the end of route.
We project these positions on the road corridor, recreating vehicles’
trajectory individually and acquiring their explicit route. In doing
so, a few discontinuities can be seen as several vehicles disappear-
ing and reappearing at certain spots. This is due to blind-spots,
where drones lose track of the vehicles moving behind tall build-
ings. In turn, all the routes passing these blind-spots are carefully
reconnected to ensure their continuity. Consequently, we acquire
the pattern of ground-truth traffic demand, in a series of routes:

𝑅𝑜𝑢𝑡𝑒𝑥 = < {𝑟𝑜𝑎𝑑𝑘 , ..., 𝑟𝑜𝑎𝑑𝐾 }, 𝑟𝑎𝑡𝑖𝑜 > (1)
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denoting route 𝑥 ∈ 𝑋 (total route) with a specific departure at 𝑟𝑜𝑎𝑑𝑘
travelling to 𝑟𝑜𝑎𝑑𝐾 through 𝑟𝑜𝑎𝑑𝑘+1, ..., 𝑟𝑜𝑎𝑑𝐾−1, while 𝑟𝑎𝑡𝑖𝑜 refers
to the ratio of the number of vehicles travelling on route 𝑥 to the
total number of vehicles. We next describe our core algorithm that
dynamically form platoons in consideration of their utility cost.

4 MULTI-AGENT INTERSECTION
MANAGEMENTWITH DYNAMIC PLATOON
FORMATION

Having defined the model elements, we next define our intersection
management mechanism that dynamically forms platoons while
minimising overall waiting time and continue describing the safe
passage reserving process for standalone DAs and platoons.

Due to the platoon synchronisation movements, follower DA(s)
can cross the intersection in a less interrupted manner than stan-
dalone ones, reducing unnecessary braking and accelerating. Thus,
the travel time and delays are reduced cumulatively with every pla-
toon formed. The larger the platoon size, the greater the reduction.
However, by doing this, the system may suffer cumulative delays
elsewhere, i.e. so-called externalities. For instance, as the platoon
requires large reserved space and time-slots, forming one on a lane
may prolong any future reservations and cause multiple DAs to
wait, leading to substantial delays to the flow. Therefore, forming
a platoon greedily, i.e. as soon as a DA enters the communication
range (as in [13]), is unlikely to be optimal or beneficial. To alleviate
this issue, we propose a dynamic platoon formation to ensure the
cost efficiency of every platoon formed.

4.1 Dynamic Platoon Formation
The cost in our study refers to the overall waiting time across the
intersection, which is greatly affected by the existence of platoons.
Specifically, the effect is categorised into two types: (i) the reduction
of waiting time 𝜆𝑝𝑙𝑡 and (ii) the increase in waiting time 𝑇𝑝𝑙𝑡 . As a
platoon forms, the reduction comes from the reduced stop-and-go
movements, while the increase comes from the cumulative delays
of multiple DAs on the other inbound lanes.

By virtually grouping consecutive queuing DAs into multiple
groups and calculating their 𝜆𝑝𝑙𝑡 and𝑇𝑝𝑙𝑡 , the algorithm can decide
on platoon formation in real-time. If any groups of DAs make the
reduction higher than the increase, i.e., 𝜆𝑝𝑙𝑡 > 𝑇𝑝𝑙𝑡 , those DAs
will be logically merged together, effectively forming a platoon.
DAs in a platoon will adjust their driving behaviour according to
𝑠𝑡𝑎𝑡𝑢𝑠𝑖 (see later Section 4.2). It should be noted that merging can be
done only in two scenarios: merging two standalone DAs together
and creating a new platoon, or merging a standalone DA with an
existing platoon, thus making it longer. We emphasise that, using
our approach, the platoon size is non-static and can be extended
dynamically as long as a net benefit is obtained (unlike [2, 3, 13]).

Example cases of platoon formation can be seen in the left part
of Fig. 2. Here, lane01 shows a typical case where two vehicles are
one possible platoon. In lane02, the IMA is considering extending
the size of an existing platoon by including the vehicle behind. In
lane03, the vehicle with granted reservation is no longer considered
in the platoon formation while the rest still do. Lastly, in lane04,
the IMA considers vehicles even when they are still moving. Fur-
thermore, the right hand side of Fig. 2 shows the overall process

of DAs handling platoon formation, including sharing some basic
information with the IMA, retrieving a labelling response from the
IMA, and adjusting their driving behaviour.

Next, we explain how the IMA calculates the cost of platoon
formation, starting with the reduction of waiting time, 𝜆𝑝𝑙𝑡 .

lane01

lane02

granted

lane03

 platoon 

lane04

 platoon 

Dynamic Platoon Formation

Sharing basic vehicle info

E.g. position, velocity, length,

type, ...., maximum velocity 

Labelling its status

 and adjust driving behaviour

Yes

No

Is labelled?

Continue 

moving

Start

Intersection Agent Driver Agents

Label

laneXX

Figure 2: The interaction between the IMA and DAs where
vehicle icons representDA in certain lanes. Dashed rectangles
represent a group of DAs possible for platoon formation,
while the solid rectangles represent DAs that are already in
platoons. Square dots represent additional lanes and DAs
being considered in the platoon formation algorithm.

4.1.1 Calculating the Reduction of Waiting Time. Whenever a pla-
toon can be formed, i.e. a DA approaches another queuing DA that
shares a similar route, the IMA can suggest two possible choices:

(i) Merging the approaching DA with its preceding one(s) into
a platoon.

(ii) Doing nothing, and leaving the approaching DA as a stan-
dalone one.

Assuming the platoon cooperate via CACC, as suggested in [28], the
follower DAs only follow the trajectory and speed recommended
by their leader. Once the leader acquires a reservation, in situation
(i) the follower DAs are less likely to perform stop-and-go move-
ments to cross such intersection, which is where the reduction
in waiting time comes from. In situation (ii), the approaching DA
must slow down and wait for its reservation slots, which is more
time-consuming. Therefore, the amount of reduced waiting time is
the travel time difference between situations (i) and (ii).

To calculate this time difference, an estimated time of arrival
(ETA) and estimated clearance time (ECT) – the amount of time
vehicles need to manoeuvre and completely leave the intersection
– will be used. We first focus on computing the travel time between
two points, that incorporates ETA and ECT.

DA Travel Time:We build on [13] to calculate the time that the
DA requires to travel a certain distance without exceeding 𝑣𝑚𝑎𝑥 .
The function, called 𝑐𝑟𝑢𝑖𝑠𝑒 (𝑑, 𝑎𝑖 ), is defined as:

𝑐𝑟𝑢𝑖𝑠𝑒 (𝑑, 𝑎𝑖 ) =
𝑣𝑚𝑎𝑥
𝑖

− 𝑣𝑡
𝑖

𝛼𝑚𝑎𝑥
𝑖

+ 1
𝑣𝑚𝑎𝑥
𝑖

𝑑 −

(
(𝑣𝑚𝑎𝑥
𝑖

)2 − (𝑣𝑡
𝑖
)2
)

2 · 𝛼𝑚𝑎𝑥
𝑖

 (2)
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where 𝑑 is the travel distance, and 𝑣𝑡
𝑖
is the velocity of an input DA

𝑎𝑖 at time 𝑡 . The first term denotes the acceleration time, and the
second term denotes the time that vehicle travels a constant speed
(𝑣𝑚𝑎𝑥
𝑖

). We next expand on this to compute the ETA and ECT.
ETA: In [13], a vehicle’s ETA does not account for any braking,

as the focus was only on a two-way intersection with light traffic.
Our model involves more complex situations with higher traffic
volumes, where vehicles regularly slow down approaching a stop
line. Hence, a DA’s ETA has to account for braking. Let 𝑑𝑙𝑖𝑛𝑒

𝑖
be the

distance between the stop line and the front bumper of 𝑎𝑖 , 𝑑𝑏𝑟𝑎𝑘𝑒

be the braking distance (to stop before the stop line) and 𝑡𝑏𝑟𝑎𝑘𝑒
𝑖

be
the braking time. The DA’s and platoon’s ETA are given by:

𝑡𝐸𝐴𝑖 = 𝑐𝑟𝑢𝑖𝑠𝑒

(
𝑑𝑙𝑖𝑛𝑒𝑖 − 𝑑𝑏𝑟𝑎𝑘𝑒 , 𝑎𝑖

)
+ 𝑡𝑏𝑟𝑎𝑘𝑒𝑖 (3)

𝑡𝐸𝐴
𝑝𝑙𝑡

= 𝑐𝑟𝑢𝑖𝑠𝑒

(
𝑑𝑙𝑖𝑛𝑒𝑖 , 𝑎𝑙𝑒𝑎𝑑

)
(4)

respectively. In the case of the platoon’s ETA (𝑡𝐸𝐴
𝑝𝑙𝑡

), the preceding
agent can be either an ordinary agent or a member in the platoon.
The input 𝑎𝑙𝑒𝑎𝑑 in Equation (4) is the actual platoon’s leader of
a new platoon or the extended one assuming the DA joins with
another preceding it.

ECT: Let 𝑑𝑡𝑟𝑔
𝑙𝑖𝑛𝑒,𝑎𝑖

and 𝑑
𝑡𝑟𝑔

𝑙𝑖𝑛𝑒,𝑎𝑙𝑒𝑎𝑑
be the distance between the

target lane and the stop line of 𝑎𝑖 and 𝑎𝑙𝑒𝑎𝑑 respectively, 𝑙𝑝𝑙𝑡 =∑𝑁−1
𝑗=1 ℎ 𝑗 + 𝑙𝑁 be the total length of the platoon where ℎ 𝑗 is the

headway distance between the 𝑗-th vehicle’s front bumper and the
( 𝑗 + 1)-th vehicle’s front bumper and 𝑙𝑁 be the length of the last
DA of the platoon with 𝑁 size. In a respective order, the DA’s and
platoon’s ECT are given by:

𝑡𝐸𝐶𝑖 = 𝑡𝐸𝐴𝑖 + 𝑐𝑟𝑢𝑖𝑠𝑒
(
𝑙𝑖 + 𝑑𝑡𝑟𝑔𝑙𝑖𝑛𝑒,𝑎𝑖 , 𝑎𝑖

)
(5)

𝑡𝐸𝐶
𝑝𝑙𝑡

= 𝑡𝐸𝐴
𝑝𝑙𝑡

+ 𝑐𝑟𝑢𝑖𝑠𝑒
(
𝑙𝑝𝑙𝑡 + 𝑑

𝑡𝑟𝑔

𝑙𝑖𝑛𝑒,𝑎𝑙𝑒𝑎𝑑
, 𝑎𝑙𝑒𝑎𝑑

)
(6)

Lastly, the platoon’s reduction in waiting time, 𝜆𝑝𝑙𝑡 , is given by:

𝜆𝑝𝑙𝑡 = 𝑡𝐸𝐶𝑖 − 𝑡𝐸𝐶
𝑝𝑙𝑡

(7)

Next, we proceed to calculate the effects of a platoon in terms of
increasing the waiting time for the rest of the intersection.

4.1.2 Calculating the Increase of Waiting Time. Due to the large
reserved space and time-slots of the platoon, waiting time can
gradually build up for multiple DAs. Here, we introduce a method
to calculate the waiting time across all DAs.

By projecting the platoon’s path and other DAs’ paths on the
intersection, the conflict points/areas between the platoon’s path
and the DAs’ paths can be located. Assuming the platoon is crossing,
other DAs have to wait for a certain amount of time until these
conflict areas become unoccupied, which means more cost to the
platoon formation. We denote these conflict areas between the
platoon and the DAs by placing virtual circles with a predefined
diameter (one lane’s width) on these intersecting points (see Fig. 3).

Given one particular circle, we can specify two occupancy time
periods generated by both the platoon and a DA. The overlap be-
tween these two time periods represents the increased waiting time

X

X

Platoon

X

Figure 3: The example situation when the platoon’s path
(solid line) cuts through several DAs’ paths (dashed lines);
the vehicles on the left represent the platoon, while the rest
are standalone DAs, and the circles represent the conflict
areas between the platoon and DAs.

of this DA. However, one platoon’s path usually overlaps with mul-
tiple DAs, causing an cumulative increase in waiting time across
the intersection. We next explain how to calculate the increase from
multiple DAs using the ETA and ECT.

Let 𝐴𝑜𝑣𝑝 ⊂ 𝐴𝑡 be a set of DAs having paths that overlap with
the platoon’s path, 𝐴𝑜𝑣𝑝 = {𝑎1 ...𝑎𝑀 }. Each overlapping DA is de-
noted as 𝑎𝑚 ∈ 𝐴𝑜𝑣𝑝 , while 𝑐𝑚 denotes the circle area at the point
where the platoon’s path and the 𝑎𝑚 ’s path overlap. Additionally,
𝑑𝑚
𝑙𝑖𝑛𝑒,𝑎𝑖

and𝑑𝑚
𝑙𝑖𝑛𝑒,𝑎𝑙𝑒𝑎𝑑

is the distance from the edge of 𝑐𝑚 to the stop
line respect to 𝑎𝑖 and 𝑎𝑙𝑒𝑎𝑑 . For a better understanding of terms
representation, please see Fig. 3 accordingly.

Then, the DA 𝑎𝑚 ’s ETA on 𝑐𝑚 and the platoon’s ETA on 𝑐𝑚 are
calculated as follows:

𝜏𝐸𝐴𝑚 = 𝑡𝐸𝐴𝑚 + 𝑐𝑟𝑢𝑖𝑠𝑒
(
𝑑𝑚
𝑙𝑖𝑛𝑒,𝑎𝑖

, 𝑎𝑚

)
(8)

𝜏𝐸𝐴
𝑚, 𝑝𝑙𝑡

= 𝑡𝐸𝐴
𝑝𝑙𝑡

+ 𝑐𝑟𝑢𝑖𝑠𝑒
(
𝑑𝑚
𝑙𝑖𝑛𝑒,𝑎𝑙𝑒𝑎𝑑

, 𝑎𝑙𝑒𝑎𝑑

)
(9)

Similarly, the DA 𝑎𝑚 ’s ECT on 𝑐𝑚 and the platoon’s ECT on 𝑐𝑚 are
calculated as follows:

𝜏𝐸𝐶𝑚 = 𝜏𝐸𝐴𝑚 + 𝑐𝑟𝑢𝑖𝑠𝑒 (2𝑟𝑚 + 𝑙𝑚, 𝑎𝑚) (10)

𝜏𝐸𝐶
𝑚, 𝑝𝑙𝑡

= 𝜏𝐸𝐴
𝑚, 𝑝𝑙𝑡

+ 𝑐𝑟𝑢𝑖𝑠𝑒
(
2𝑟𝑚 + 𝑙𝑝𝑙𝑡 , 𝑎𝑙𝑒𝑎𝑑

)
(11)

Here, 𝑟𝑚 is the radius of 𝑐𝑚 , equal to half of lane’s width. If 𝑎𝑚 is a
platoon, the 𝑙𝑚 will be this platoon length. Any DA that has 𝜏𝐸𝐴𝑚
(ETA on 𝑐𝑚 ’s) overlapping with

(
𝜏𝐸𝐴
𝑚, 𝑝𝑙𝑡

, 𝜏𝐸𝐶
𝑚, 𝑝𝑙𝑡

)
, in other words,

about to overlap with platoon’s time slot. will receive some increase
in waiting time, 𝛿𝑚 , that can be calculated as:

𝛿𝑚 =𝑚𝑎𝑥 (0, 𝜏𝐸𝐶
𝑚, 𝑝𝑙𝑡

− 𝜏𝐸𝐴𝑚 ) (12)

If 𝜏𝐸𝐴𝑚 does not fall in this interval, 𝛿𝑚 will be 0 rather than a
negative value. This means no extra cost caused by the DA 𝑎𝑚 .
Now, as a platoon’s path can overlap with multiple DAs, all the
DAs in 𝐴𝑜𝑣𝑝 need to be considered and calculate the cumulative
waiting time caused by the platoon, 𝑇𝑝𝑙𝑡 , which is equal to:

𝑇𝑝𝑙𝑡 =

𝑀∑︁
𝑚=1

𝛿𝑚 (13)
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Consequently, having the reduction of waiting time and the cumu-
lative increase in waiting time computed, we can calculate the cost
efficiency of forming a platoon, 𝛽 , as follows:

𝛽 = 𝜆𝑝𝑙𝑡 −𝑇𝑝𝑙𝑡 (14)

If 𝛽 is positive, the platoon will be formed. Note that 𝛽 can be a
negative value, representing an increase in overall waiting time.
This situation usually occurs when the DA is about to join a large
platoon (four to five vehicles long), causing more delays on the
others, i.e. more externalities, while reducing only a fair amount
of stop-and-go movements. We next explain how the DAs and
platoons secure their reservations with the IMA.

4.2 The Resource Reservation Mechanism
This section introduces our reservation-based management mech-
anism, which supports the dynamic platoon formation approach
from the previous sections. Next, we describe the DAs’ and the
IMA’s protocols.

4.2.1 Driver Agents Protocols. The DAs in our system behave dif-
ferently depending on their label, 𝑠𝑡𝑎𝑡𝑢𝑠𝑖 . While the protocols of
the leader and the standalone DAs are straightforward, follower
DAs need to consider more parameters while crossing the inter-
section. As followers need to synchronise their movements as a
group, the followers’ speed cannot exceed the speed computed by
the car-following model, maintaining the minimum gap with their
preceding DAs. Therefore, the speed of any followers at time 𝑡 is:

𝑣𝑡𝑛 =𝑚𝑖𝑛(𝑣𝑡−1𝑛 + 𝛼𝑚𝑎𝑥 , 𝑣𝑐 𝑓 ) (15)

where 𝑣𝑐 𝑓 indicates the speed of the car-following model [16] used
by SUMO, and 𝑛 ∈ {1, . . . , 𝑁 } is the position of a follower DA in a
size-𝑁 platoon. With this speed computed, the follower DAs will
not request a reservation with the IMA while the standalone and
leader DA still have to.

Specifically, any leader or standalone DA has to execute the
following operations to reserve the time-slotted space:

(1) Request information of the target lane (for path prediction),
and the reservation map (i.e. previously occupied cells) from
the IMA once it enters the communication range.

(2) Execute a path prediction process calculating a potential
trajectory given the target lane. This process provides a path
vector 𝑝𝑖 = {< 𝑝𝑜𝑠𝑡+1

𝑖
, 𝜃𝑡+1
𝑖

>, ..., < 𝑝𝑜𝑠𝑡+𝑠
𝑖

, 𝜃𝑡+𝑠
𝑖

>}, where
𝑡 + 1 and 𝑡 + 𝑠 is the start and end timestamp of this path.

(3) Resolve any conflicts of 𝑝𝑖 that may arise due to overlapped
reservations by postponing its reservation time in case of
conflict, utilising the reservation map in (1).

(4) Send a request message containing the required path and
DA properties to the IMA and then wait for a confirmation.
• If reject, repeat from step (1) again.
• If confirm, begin the crossing.

(5) Notify the IMA that it has completely executed the manoeu-
vre and has left the intersection.

Note that, in step (3), the cell-based method that we build upon
the work [35] is not designed to handle vehicles crossing as a group,
which requires more space and longer time-slots. When an DA
arrives as the platoon’s leader, extra cells are explicitly required
for the followers. These extra cells are calculated by assuming a

trace that the leader leaves behind (see Fig. 4). In essence, this trace
behaves as the followers covering additional space. The length of
this trace (including the leader’s length) is equal to 𝑙𝑝𝑙𝑡 .

Figure 4: A example conflict between two pathswhere oneDA
is the platoon’s leader that leaves its trace behind, represents
occupying cells.

4.2.2 Intersection Manager Agent Protocols. Even though IMA will
directly receive the conflict-free path through the request message,
the IMA cannot approve the path/request immediately due to con-
currency issues that occur in practice. For example, the IMA may
have already accepted a request from 𝑎𝑖 and updated the reserva-
tion map, and, later, a request message by 𝑎𝑖+1 constructed with
an out-of-date reservation map arrives. To ensure safety and the
agents’ synchronisation, the IMA must verify the validity of the
requested path against the current state of the reservation map.

Specifically, the IMA cross-checks all the movements of the re-
questing DA against previous reservations in the reservation map.
If no conflict is found, the IMA will update the reservation map
accordingly and send an approval message to the requesting DA
with reservation details. Otherwise, the request will be rejected; in
such a case, the requesting DA has to perform the path prediction
and conflict resolution again using the updated reservation map.

5 EMPIRICAL EVALUATION
This section describes how our proposed mechanism’s performance
is evaluated with simulation, along with the simulation setup and
results. Specifically, we use the traffic simulator SUMO version 1.6.0
[15]. The client-server-based Traffic Control Interface (TraCI) [34]
available in SUMO enables the coordination between the DAs and
the IMA, and so both FCFS and our method can be implemented.

Based on the simulation outputs, we compare our proposed
method against FCFS and fixed-time traffic signals (TFL) in terms
of two average values: intersection delay and trip duration. The
purpose of evaluating using these two values is to demonstrate the
performance of each intersection control in different aspects. Specif-
ically: the intersection delay expresses the performance at the level
of individual intersections; whereas the trip duration reflects the
performance from a higher perspective at the network or corridor
level, where the whole trip through a network is considered instead.
Note that, to see the change in values over time, the intersection
delay results are captured in 15-minute intervals (simulation time)
with a time step of 0.25 seconds.

5.1 Simulation Setup
To evaluate our method, we examined five traffic volume scenarios,
from 6,000 to 14,000 veh/hr (increasing by 2,000 veh/hr). In par-
ticular, traffic volumes 6,000 - 10,000 veh/hr represent light traffic,
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Table 2: The table shows the highest results of intersection delay of different intersection controls: TFL, FCFS and our platooning
mechanism. The plus and minus indicate 95% confidential interval. The bottom part compares the difference in percentage,
where negative and positive values indicate a decrease and increase, respectively.

Intersection delay

Methods &
comparison

Traffic volumes (veh/hr)

6,000 8,000 10,000 12,000 14,000

TFL 17.06 ±2.56 19.19 ±1.86 23.83 ±3.91 25.35 ±2.62 38.18 ±4.72
FCFS 10.04 ±0.27 10.38 ±0.32 11.13 ±0.63 12.58 ±1.77 13.08 ±0.9

Platoon 10.1 ±0.34 10.38 ±0.53 10.89 ±0.45 11.99 ±1.04 13.25 ±1.27
TFL vs FCFS -41.15% -45.91% -53.29% -50.37% -65.74%

TFL vs Platoon -40.80% -45.91% -54.30% -52.70% -65.30%
FCFS vs Platoon 0.60 % 0.00 % -2.16 % -4.69 % 1.30%

similar to what is usually encountered in early mornings or inter-
peaks. On the other hand, traffic volumes between 12,000 - 14,000
veh/hr represent heavy traffic, similar to morning and evening peak
times. Each traffic volume scenario was simulated over 20 runs.

The purpose of having multiple scenarios is not only to represent
traffic at different times of the day but also to demonstrate the
impact of our dynamic platoon formation under different conditions.
For example, in light traffic, the resource reservation mechanism
alone can resolve the waiting vehicles effectively and constantly
maintain a short queue. On the other hand, in heavy traffic the
resource reservation mechanism can no longer maintain the short
queue due to the increase in the number of vehicle arrivals. As the
queue grows longer, the platoon has a higher chance of forming, but
the externalities’ cost of the platoon increases as well. Therefore,
we can evaluate how our method performs both in simple scenarios
when the externalities are relatively low and in more challenging
conditions, where the externalities are substantially higher.

Note that, a similar pattern of the ground-truth demand can
be achieved as the 𝑟𝑎𝑡𝑖𝑜 of each route remains unchanged (see
Equation 1). For example, in a 10,000 veh/hr scenario, when 𝑅𝑜𝑢𝑡𝑒1
has a ratio of 5%, the number of vehicles using this route will be
500 vehicles. We next describe our evaluating results, which are
intersection delays and trip duration.

5.2 Intersection Delay Results
We measured the intersection delay through the average travel
time (in seconds) on the inbound roads over eight intersections
and compared our method against TFL and FCFS. It is noted that
the term “travel time” refers to the amount of time that DAs need
before accessing one intersection within a time interval, not the
amount of time DAs need from all passing intersections within their
routes, thereby it only captures the performance per intersection.
Additionally, the outbound roads of one intersection can be the
inbound roads of its nearby intersections.

In light traffic scenarios, FCFS and our mechanism can shorten
the intersection delay by up to 53-54% compared to TFL. Likewise,
FCFS and our mechanism still outperform TFL by reducing the
intersection delay by up to 65% even with heavy traffic scenarios. In
comparison with non-platoon mechanism, our platoon mechanism
slightly outperforms FCFS in only few scenarios, decreasing the

delay by 2.16% at 10,000 veh/hr and 4.69% at 12,000 veh/hr. The full
results of the different mechanisms can be seen in Table 2.

However, the results here only reflect the performance at the
single intersection level. We next continue to evaluate our proposed
mechanism from the higher point of view.

5.3 Trip Duration Results
To evaluate our method further, we also measured the average trip
duration on all vehicles. The trip duration measures (in seconds)
how long vehicles take to drive from their departure to their des-
tination, in other words, completing their designated trips. This
means that the queuing delays are also accumulated as they jour-
ney through intersection(s), expressing the performance of the
whole network. It should be noted that the average results here
are weighted averages, as vehicles in our simulation are heteroge-
neous. Results are weighted using an estimation of passengers/loads
according to the cost-effectiveness study in [31]. To be precise, es-
timated values are 20.80 passengers on buses, 1.56 on deliveries,
personal & taxis, 1.186 on motorcycles, and 3.07 tons on trucks.

However, the trip duration results alone do not completely record
the actual trip duration. During simulation, as the traffic volumes
increase, some vehicles cannot depart according to their schedule
due to unavailable space preventing them from entering the net-
work. These vehicles are kept delayed outside of the simulation
area, waiting to depart when the space becomes available. The issue
is that SUMO starts capturing the trip duration only when vehicles
enter the simulation, meaning that any prior departure delays are
entirely ignored. According to this, the trip duration does not in-
dicate the actual time of each journey. To cope with this issue, we
consider additional output value named trip departure delay, which
indicates “the time the vehicle had to wait before it could start his
journey” according to SUMO manual3. In this way, the journey’s
departure delay is not overlooked.

Therefore, to fully cover all the usage time, the sum of trip du-
ration and trip departure delay is used instead, which we refer
to as “total trip duration”. The weighted average of the total trip
duration is shown in Table 3. It can be seen that, in light traffic
scenarios, FCFS can outperform TFL by up to 20.77%, and, similarly,
platooning can also outperform TFL even by up to 22.35%. On the

3https://sumo.dlr.de/docs/Simulation/Output/TripInfo.html
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Table 3: This table shows the weighted average total trip duration results of different intersection controls: TFL, FCFS and our
platooning mechanism. The plus and minus indicate 95% confidential interval. The negative values here indicate a decrease
while positive values indicate an increase.

Total trip duration

Methods &
comparison

Traffic volumes (veh/hr)

6,000 8,000 10,000 12,000 14,000

TFL 63.4 ±0.53 66.89 ±0.21 70.68 ±0.2 76.97 ±0.16 125.46 ±0.46
FCFS 51 ±0.12 52.48 ±0.12 56 ±0.16 111.2 ±1.24 154.9 ±1.08

Platoon 50.8 ±0.16 52.6 ±0.2 54.88 ±0.13 61.04 ±0.2 112.9 ±0.78
TFL vs FCFS -19.56% -21.54% -20.77% 44.47% 23.47%

TFL vs Platoon -19.87% -21.36% -22.35% -20.70% -10.01%
FCFS vs Platoon -0.39% 0.23% -2 % -45.11% -27.11%

other hand, in heavy traffic, FCFS cannot outperform TFL and even
increases the total trip duration by up to 44.47%. In contrast, our
platooning can reduce the total trip duration by 20.7% compared
to TFL. Moreover, our proposed mechanism also outperforms the
FCFS, decreasing the total trip duration by up to 2% with light traffic
and by 45% with heavy traffic.

5.4 Discussion
By evaluating a range of settings, and comparing both platooning
and non-platooning-based mechanisms, we gain several insights.
Initially, from the intersection delay aspect, FCFS works well in
many scenarios and significantly outperforms TFL. However, the
trip duration results, which express the performance in a corridor
aspect, show otherwise. As the traffic becomes considerably high,
FCFS starts to perform poorly and cannot even outperform TFL.

In more detail, the downside of FCFS is that it prioritises the
sequence of releasing DAs over the impact on the intersection as
a whole. The FCFS principle always grants reservations in order
of arrival regardless of whether it creates significant delay costs
to the other DAs (i.e., the externalities). The amount of delay may
seem relatively small and negligible as FCFS can still achieve good
performance over conventional traffic lights, as shown in many
studies, especially in light traffic or idealised predictable situations.
However, under realistically-high traffic and more dynamic situ-
ations, the delays become more noticeable, and they negatively
affect the traffic flow, as highlighted by our findings.

On the other hand, the advantage of our method lies in the core
algorithm that minimises the externalities across the intersection
while reducing unnecessary vehicle movements in the form of pla-
tooning. As a result, our method can significantly improve the
performance from the network-level aspect and outperform both
TFL and FCFS, even when traffic volumes increase. To demonstrate
that the performance improvement is the results of our platoon for-
mation, we provide the average number of platoon formed during
the experiment in Table 4.

However, in the intersection-level aspect, despite our attempt to
minimise the externalities caused by platoons, they still causes a
slight negative effect to the intersection (see 14,000 veh/hr Table
2). Apparently, small externalities are unavoidable in exchange for
forming platoons. They seem significant enough to create chain

Table 4: This table shows the average number of platoon
formed and average number of vehicles per platoon in dif-
ferent traffic volume scenarios.

Traffic volumes (veh/hr)

6000 8000 10,000 12,000 14,000

Platoon 11.6 53.66 244.6 748.14 1105.5
Vehicles per platoon 2.06 2.09 2.23 2.41 2.47

delays to the end of the queue, increasing the average travel time
delays, especially in such extreme traffic. Moreover, this issue also
cause a performance drop in the network-level aspect.

6 CONCLUSION AND FUTUREWORK
In this paper, we presented a multi-agent intersection manage-
ment algorithm with a systematic dynamic platoon formation that
avoids collisions with other DAs and aims to minimise intersec-
tion delay and improve trip duration. Our empirical evaluation on
a realistic microscopic traffic simulation model shows that, from
the intersection perspective, FCFS and our platooning can reduce
the intersection delay by up to 53-54% with light traffic and by up
to 65% with heavy traffic. However, by considering the weighted
average trip duration results that capture performance through-
out the network, FCFS cannot even outperform TFL and actually
increases the trip duration by up to 44%. While our platooning,
which ensures minimal impact on the intersection in every platoon
formed, can outperform the traffic lights and FCFS in any scenario.
Specifically, our platooning can decrease the trip duration by up to
22% compared to TFL and by up to 45% compared to FCFS.

Future work will investigate chain delays caused by the exter-
nalities and the addition of pedestrians to intersections, which is
essential for deploying autonomous intersection controls in many
urban areas. We plan to optimise the platooning performance con-
taining crosswalk phases by considering different parameters such
as the estimated number of pedestrians, walking speed, and the
cost of each phase. In this way, the algorithm will be more practical
and able to adapt to dynamic real-world situations.
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