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ABSTRACT
Multi-task learning improves data efficiency in cooperative multi-
agent reinforcement learning, since agents can learn multiple re-
lated tasks simultaneously and the cooperation knowledge in a task
can be utilized by others. However, existing methods mainly learn
multiple cooperation tasks uniformly, regardless of their complex-
ity and significance. In this paper, we propose a new framework
called Prioritized Tasks Mining (PTM) for multi-task cooperation
problems, which helps agents to identify and mine higher priority
cooperation tasks, so as to learn more effective coordinated strate-
gies for multiple cooperation tasks. Specially, agents will use the
hindsight during training to identify the priority of different tasks,
and make an exploration and exploitation in higher priority coop-
erative tasks to mine more sophisticated coordinated strategies. We
evaluate PTM in challenging multi-task StarCraft micromanage-
ment games with different scales, and results demonstrate that our
method consistently outperforms all strong baselines.
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1 INTRODUCTION
Cooperative multi-agent reinforcement learning (MARL) has drawn
increasing interest in recent years, since it can help address many
challenging cooperative games, such as football games and DOTA2
[2, 12]. However, most cooperative MARL algorithms focus on the
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cooperative tasks with fixed team composition, and when coop-
erating with varying quantities or types of teammates, they need
to retrain new coordinated strategies for agents from scratch. On
the other hand, multi-task learning remains promising to improve
the data efficiency in cooperative MARL, where a shared network
learns to master multiple related cooperative tasks, and common
cooperative knowledge can be transferred across these related tasks
to improve data efficiency. Thus, the research of multi-task cooper-
ative multi-agent reinforcement learning is important.

More recently, there are works focusing on the multi-task learn-
ing problem in cooperative MARL. Most approaches aim to design
network architecture for agents to fit tasks with different observa-
tion and action spaces in multi-task setting, and utilize common
cooperative knowledge in these related tasks by the shared network
directly [8, 9]. Besides, there are works introducing auxiliary tasks
to further help agents learn reusable cooperative pattern in related
tasks, where common cooperative patterns are learned by learn-
ing value of the factorization of the team entities [10]. However,
although the aforementioned approaches have made progress in
multi-task cooperative reinforcement learning, they mainly learn
different cooperative tasks uniformly and neglect the complexity
and contribution that can be derived by different tasks. For example,
in cooperative team-battle games 5 vs. 5 and 5 vs. 6, in the latter,
agents need to learn more samples to win this harder asymmetric
game. Moreover, more sophisticated coordinated strategies will also
be discovered when agents try to conquer this game. In other words,
the task 5 vs. 6 deserves more attention. Hence when learning in
multiple cooperative MARL tasks with limited learning resources,
an adjustment of the focus on different tasks is needed, and more
focus on those noteworthy tasks is likely to help agents find more
effective coordinated strategies that are suitable to the learning in
multiple tasks.

However, due to the complexity in multi-agent system, it is chal-
lenging to identify the value of different cooperation tasks. Besides,
how to effectively deal with those noteworthy cooperation tasks is
also unknown. In this paper, to address above challenges existing
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in multi-task cooperation problem, we propose a new framework
called Prioritized Tasks Mining (PTM), which can automatically
identify the priority of different tasks using the hindsight during
training, and encourages agents to make exploration and exploita-
tion in these preferential tasks to efficiently mine more effective
and general coordinated strategies.

More specifically, in order to determine the priority of differ-
ent cooperation tasks, we adopt the hindsight discovered during
training. By training with different tasks, agents will obtain their
performance corresponding to different tasks, which can be used
to help identify the priority of different tasks, where the tasks with
lower performance are more needed to be focused. This design
is inspired by human beings. When humans want to master mul-
tiple tasks, they will also check the learning process of different
tasks, and pay more attention to tasks they are not good at. And
when agents try to overcome tasks they are not capable, they will
discover more sophisticated skills [1, 5, 11, 15]. However in Co-
operative MARL, though the priority of tasks can be determined,
how to effectively utilize higher priority tasks to discover more
sophisticated coordinated strategies is still a problem. To this end,
we propose to do exploration and exploitation in higher priority
tasks separately. The exploration wants to help agents find effective
strategies. Considering that agents need to coordinate with differ-
ent teammates in multi-task cooperation problem, we encourage
agents to explore coordinated strategies that are robust to the varia-
tion of teammates by using the dropout method in the multi-agent
team. On the other hand, to effectively transfer the coordinated
knowledge learned in high priority tasks, we encourage agents to
learn cooperation patterns emerging in such tasks by learning the
randomized factorization of the team values.

Finally, we evaluate our method PTM with strong baselines in
challenging multi-task StarCraft micromanagement games with
different scales. Results demonstrate that PTM achieves a superior
performance when learning in multiple cooperation tasks, and
surpasses all strong multi-task learning baselines consistently.

We summarize our contributions as follow:
• We propose a novel method called Prioritized Tasks Mining
to adjust the learning focus of different tasks in multi-task
cooperation problem.

• We achieve an adaptive priority identification method with
the help of the hindsight during training.

• We achieve an effective mining of higher priority tasks from
the perspective of exploration and exploitation in such tasks,
which help find more sophisticated and general coordinated
strategies.

• Our method PTM consistently outperforms existing state-
of-the-art methods in multi-task cooperative games with
different scales.

2 RELATEDWORK
2.1 Multi-Task Reinforcement Learning
Multi-task reinforcement learning aims to help agents utilize com-
mon knowledge contained in multiple related reinforcement learn-
ing tasks and performs better than learning each task independently
[30]. There are two key factors in multi-task reinforcement learn-
ing. One is to identify the knowledge that can be shared or reused

across multiple tasks, and the other is to make a balance between
multiple tasks that are competing for limited resources of the learn-
ing system. In the first aspect, there are works proposing to learn
the shared representations across multiple complex tasks consider-
ing the strong ability of neural network in state abstraction [3], or
reusing partial neural network by designing progressive network or
modular network [20, 32]. In the second aspect, there are works fo-
cusing on the balance when facing multiple reinforcement learning
tasks. For example, in order to avoid the negative interference from
other tasks, [27] proposed to learn a shared policy that distills the
knowledge of each task policy instead of sharing parameters across
different tasks directly. Besides, there are works finding that differ-
ent density of magnitude of rewards in each task makes some tasks
more salient than others, and proposing PopArt to automatically
adapt the contribution of each task to the update of the network
[7]. However, although great progress has been made in multi-task
reinforcement learning, they all focus on the area of single-agent
decision problems, while how to abstract common cooperative pat-
tern and how to effectively balance multiple cooperative tasks are
still unknown.

2.2 Multi-Task Cooperative Multi-Agent
Reinforcement Learning

More recently, there are works beginning to study the problem
of multi-task cooperative multi-agent reinforcement learning, i.e.
learning coordinated policies in different but related cooperation
tasks parallelly. Considering the fact that in different cooperative
tasks, the quantity or the type of the teammates may be different,
making the state or action space change, there are works study-
ing the network design that is suitable to such varying state or
action space. Then common knowledge will be transferred by this
shared network [8, 9]. Besides, there are works studying how to
leverage common cooperative patterns emerging among different
cooperative tasks, by learning and transferring the value of ran-
domly factorized team groups in different tasks[10]. Although these
methods makes the learning of multi-task cooperative MARL more
efficiently, they ignore the complexity and potential contribution
of different tasks in multi-task cooperation problem. Due to the
complexity of multi-agent system, the requirement of cooperation
ability in different tasks is different. Besides, the potential of differ-
ent tasks for agents to find more effective and general coordinated
strategies is also different. However, existing methods make agents
learn different tasks with no difference, and with limited learning
resources, agents are likely to be dominated by tasks that are easy
to learn and lose passion to find more effective strategies. Thus in
this paper, we aim to take a step towards making a trade-off among
multiple tasks to help agents learn more sophisticated strategies.

3 BACKGROUND
3.1 Problem Formulation
Cooperative MARL is the extension of reinforcement learning to
help address cooperative multi-agent sequential decision problems,
which are usually modeled as Dec-POMDP [34]. In this paper we
consider the setting of Cooperative MARL with entities, described
as Dec-POMDP with entities by 𝐺 = ⟨𝑆,𝑈 , 𝑃, 𝑟,𝑂,𝐴, E, 𝜇, 𝛾⟩ [22].
E is the space of entities, including the agent entity 𝑎 ∈ 𝐴 ⊆
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E and non-agent entities, such as the landmark or obstacles in
the environment. For any 𝑒 ∈ E, it has a 𝑑𝑒 dimensional state
information 𝑠𝑒 ∈ R𝑑𝑒 , and the global state is the set 𝑆 = {𝑠𝑒 |𝑒 ∈ E}.
At each step, each agent 𝑎 chooses an action 𝑢𝑎 ∈ 𝑈 and the joint
action is u = {𝑢𝑎 |𝑎 ∈ 𝐴}. 𝑃 is the state transition function which
maps the current state 𝑠 and the joint action u to the next state 𝑠 ′, i.e.
𝑃 (𝑠 ′ |𝑠, u). All agents receive a shared reward 𝑟 (𝑠, u) ∈ R. Note that
the environment is partial observable, thus there is a observability
function: 𝜇 (𝑎, 𝑒) ∈ {0, 1}, indicating whether agent 𝑎 can observe
entity 𝑒 . The observation of the agent is 𝑜𝑎 = {𝑠𝑒 |𝜇 (𝑎, 𝑒) = 1, 𝑒 ∈
E}. The observation mask among agents and all entities is 𝑀𝜇 ∈
R |𝐴 |× |E | , where𝑀𝜇 [𝑎, 𝑒] = 𝜇 (𝑎, 𝑒). 𝛾 ∈ [0, 1) is the discount factor.

3.2 Cooperative MARL Methods
In order to address the non-stationary issue and the scalability prob-
lem in cooperative MARL [6, 14, 26, 34], existing cooperative MARL
algorithms mainly adopt centralized training and decentralized exe-
cution (CTDE) paradigm. CTDEmeans during training, the learning
algorithm has access to the full state and the action-observation
histories of all agents, while during execution each agent makes
decisions conditioning on its own local action-observation his-
tory. Based on CTDE paradigm, many value-based [17–19, 31] and
policy-based [4, 13, 33, 35] cooperative MARL algorithms have been
developed. Among these Cooperative MARLmethods, value decom-
position methods are the representative of value-based algorithms
and become predominant in this area. In this paper, we also adopt
the widely used paradigm CTDE, and base our method PTM on the
representative value decomposition method QMIX [19] introduced
later.

3.3 Value Decomposition Methods and QMIX
As the mainstream of value-based CTDE methods, value decom-
position methods try to learn a joint state-action value function
𝑄𝑡𝑜𝑡 (𝑠, u) to maximize the expected team rewards sum. 𝑄𝑡𝑜𝑡 (𝑠, u)
is usually represented by a neural network 𝑄𝑡𝑜𝑡

𝜃
(𝑠, u) or 𝑄𝑡𝑜𝑡

𝜃
(𝜏, u)

in a partial observable environment, where 𝜏 is the trajectory con-
sists of the observation and action of each agent. To learn this value
function, Q-learning [25] is used and the loss function is:

𝐿(𝜃 ) = 𝐸

[(
𝑦𝑡𝑜𝑡𝑡 −𝑄𝑡𝑜𝑡

𝜃
(𝜏𝑡 , ut)

)2
| (𝜏𝑡 , ut, 𝑟𝑡 , 𝜏𝑡+1 ∼ 𝐷)

]
𝑦𝑡𝑜𝑡𝑡 = 𝑟𝑡 + 𝛾𝑄𝑡𝑜𝑡

𝜃

(
𝜏𝑡+1, arg max

ut+1
𝑄𝑡𝑜𝑡
𝜃

(𝜏𝑡+1, ut+1)
) (1)

where𝐷 is the replay buffer and 𝜃 is the target network periodically
copied from 𝜃 for stable training [16]. The action input to the target
network is chose by 𝑄𝑡𝑜𝑡

𝜃
as advised by [28].

To enable decentralized execution, value decomposition meth-
ods factorize the 𝑄𝑡𝑜𝑡 (𝜏𝑡 , ut) into the combination of per agent
utility represented by 𝑄𝑎 (𝜏𝑎, 𝑢𝑎). For example, as a classical value
decomposition method, QMIX factors the joint action-value 𝑄𝑡𝑜𝑡

into a monotonic nonlinear combination of individual utilities 𝑄𝑎 .
Therefore,

𝑄𝑡𝑜𝑡 = 𝑔

(
𝑄1 (𝜏1, 𝑢1;𝜃𝑄 ), · · · , 𝑄 |𝐴 | (𝜏 |𝐴 |, 𝑢 |𝐴 | ;𝜃𝑄 );𝜃𝑔

)
(2)

where 𝜃𝑄 are the parameters of the agent utility network and 𝜃𝑔 are
the nonnegative parameters for the mixing network. Note that the

nonnegative parameters in 𝜃𝑔 are generated by a hyper-network
with the input of the global state, which making the utilities of
agents to be combined according to the current global state. The
nonnegativity in the mixing network ensures that 𝜕𝑄𝑡𝑜𝑡 ( (𝜏,u)

𝜕𝑄𝑎 (𝜏𝑎,𝑢𝑎) ≥ 0,
which in turn guarantees Individual-Global-Max (IGM) Condition
[23], i.e. the optimal joint actions across agents are equivalent to
the collection of individual optimal actions of each agent. QMIX
is effective for decentralized execution, since during execution,
each agent can independently make decisions by its own utility
network without considering any global information. Because of
the predominant performance in massive challenging multi-agent
cooperation tasks, QMIX is widely used in MARL area. In this paper
we build our work upon this method.

3.4 Attention QMIX
In particular, due to the varying state space in multi-task coopera-
tive MARL, we base our method on Attention QMIX [9], which can
deal with cooperative tasks with variable number of teammates.
Specifically, a multi-head attention (MHA) layer [29] is augmented
to the utility network of each agent. The input of the agent con-
sists of two entries, (𝑋,𝑀𝜇 ). 𝑋 ∈ R |E |×𝑑ℎ represents the input
features of each entity converted from the global state 𝑠 , and 𝑑ℎ
is the dimension of the feature of each entity. 𝑀𝜇 ∈ R |𝐴 |× |E | is
the observation mask, where𝑀𝜇 [𝑎, 𝑒] = 𝜇 (𝑎, 𝑒) indicates whether
agent 𝑎 can observe the entity 𝑒 . With these two entries, MHA layer
can integrates the information of observable agent and non-agent
entity with learnable attention weights. Then the integrated in-
formation of each agent is used to help calculate the agent utility
𝑄𝑎 . Besides, for the mixing network of QMIX, which requires the
input of the global state to generate weights, a MHA layer is also
used here to deal the global state with varying length. The input
of the mixing network is (𝑋,𝑀∗), where the full observation is
achieved by 𝑀∗ [𝑎, 𝑒] = 1. Then the integrated information of all
agent and non-agent entities is used to generate weights to help
mixing network combine the utility of each agent 𝑄𝑎 to calculate
the joint state-action value 𝑄𝑡𝑜𝑡 .

4 METHOD
As discussed above, PTM aims to adjust the focus on multiple
tasks considering the potential contribution and complexity of
different cooperation tasks, and focuses more on the mining of
tasks with higher priority. In this section, we will introduce how
to automatically identify the priority of different tasks, and how
to handle and utilize these higher priority tasks effectively. The
framework and pseudo-code are provided in Figure 1 and Alg. 1.

4.1 Higher Priority Tasks Identification
For multi-task cooperation problem, it is challenging to manually
construct a set of cooperation tasks that are both related and have
nearly same cooperation difficulty. Besides, due to the complexity
of multi-agent system, it is also hard to determine the priority of dif-
ferent cooperation tasks just from the team composition in advance.
In this paper, we propose a priority identification method inspired
by humans. In general, when humans want to master multiple tasks,
they will focus their studies on different tasks and pay more atten-
tion to those they learn not well [11, 15]. Similarly, in this paper,
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Figure 1: The framework of PTM. PTM aims to focus more on higher priority tasks. For the episode samples in the batch shown
in purple, first it will be used to calculate the original loss in attention QMIX shown in the first row. In attention QMIX, agents
in𝑚𝐴 will integrate all entities’ information according to the observation mask𝑀𝜇 in green, then output their utilities 𝑄𝑎 as
shown in the utility network 𝑄 (bottom right). Here MHA is the multi-head attention layer. Then the mixing network in QMIX
will combine all agent utilities to obtain the joint state-action value estimation 𝑄𝑡𝑜𝑡 to approximate the team return, where
the combination weights are generated by the attention to all entities with full observation mask 𝑀∗ as shown in the mixing
network 𝑀𝑖𝑥 (top right). Then to encourage the mining in higher priority tasks, the sample will also be used to calculate the
exploitation and exploration loss in the second and third branch. For exploration, agents need to learn with randomly dropped
or remaining entities to find more robust coordinated strategies, with the input of the attention mask 𝑀

𝜇

𝐷
in yellow in the

agent utility network 𝑄 and mixing network𝑀𝑖𝑥 . For exploitation, agents learn their utilities in two disjoint groups shown
in red and blue, which are the factorization of the team value, by inputting the in-group attention mask 𝑀

𝜇

𝐼
and out-group

attention mask𝑀
𝜇

𝑂
to the network 𝑄 and𝑀𝑖𝑥 . Finally, PTM combines the original loss 𝐿𝑜𝑠𝑠𝑜𝑟𝑖 and the loss 𝐿𝑜𝑠𝑠𝑒𝑥𝑝 and 𝐿𝑜𝑠𝑠𝑡𝑎𝑠𝑘

used for higher priority tasks mining, according to the training performance of the task the sample belonging to.

instead of learning all tasks uniformly, we also encourage agents
to focus their learning on different tasks, and give more priority to
tasks they cooperate not well. Actually, compared to other learning
tasks, the task with a lower cooperation rate often requires more
sophisticated coordinated strategies, and thus the focus on them is
likely to help agents discover more effective coordination [1, 5].

Concretely, the mastery of different tasks can be seen as the
hindsight during human learning process. Similarly, when agents
learn in multiple cooperation tasks, this kind of hindsight also
emerges during training. When trained in multiple cooperation
tasks, agents will obtain cooperation-related indicators of different
tasks provided by the environment, such as the success rate of
cooperation in full cooperation game or the win rate in team-battle
game. We use 𝑐𝑖 to represent this kind of cooperation indicator for
task 𝑖 , which is recorded and updated during training. Then for the
episode sample 𝑥𝑖 in the training batch, its priority 𝜔𝑖 is defined as:

𝜔𝑖 =
𝑒𝑥𝑝 (1 − 𝑐 𝑓 (𝑥𝑖 ) )∑𝐵
𝑖 𝑒𝑥𝑝 (1 − 𝑐 𝑓 (𝑥𝑖 ) )

(3)

where 𝑓 is the function mapping the sample 𝑥𝑖 to its task index,
and 𝐵 is the number of samples in the batch.

Thus with the hindsight during training discussed above, we
can obtain the priority of different tasks. Then in order to achieve
a full use of these higher priority tasks, we encourage agents to
mine these tasks from the perspective of exploration and exploita-
tion separately, which are beneficial to the discovery and reuse of
effective coordinated strategies in higher priority tasks.

Algorithm 1 PTM
Init: parameters for the agent network and mixing network 𝜃𝑄 , 𝜃ℎ
Init: buffer 𝐷 = {}, 𝜖 , 𝛼 , 𝜆, task cooperation indicators {𝑐𝑖 }𝑁𝑖=1 = 0
1: for each episode iteration do
2: Agents interact with the environment based on their current

policies 𝜃𝑄 with 𝜖-greedy strategy
3: Update the cooperation indicators {𝑐𝑖 }𝑁𝑖=1 according to the

performance of agents in each task
4: Add tuples {𝜏𝑡 , 𝒖𝒕 , 𝑠𝑡 , 𝜏𝑡+1, 𝒖𝒕+1, 𝑟𝑡 } to 𝐷
5: for each gradient step do
6: Sample {𝜏𝑡 , 𝒖𝒕 , 𝑠𝑡 , 𝜏𝑡+1, 𝒖𝒕+1, 𝑟𝑡 } from replay buffer 𝐷
7: Calculate the priority 𝜔𝑖 for samples by Eq. (3)
8: Calculate the original QMIX loss 𝐿𝑜𝑠𝑠𝑜𝑟𝑖 by Eq. (7)
9: Calculate the exploration loss 𝐿𝑜𝑠𝑠𝑒𝑥𝑝 by Eq. (10)
10: Calculate the exploitation loss 𝐿𝑜𝑠𝑠𝑡𝑎𝑠𝑘 by Eq. (13)
11: Update 𝜃𝑄 , 𝜃ℎ by the overall loss with𝜔𝑖 , 𝐿𝑜𝑠𝑠𝑜𝑟𝑖 , 𝐿𝑜𝑠𝑠𝑒𝑥𝑝 ,

𝐿𝑜𝑠𝑠𝑡𝑎𝑠𝑘 by Eq. (15)
12: end for
13: end for

4.2 Exploration in Higher Priority Tasks
As discussed above, tasks with higher priority means that agents
with current policies are not good at cooperating in such tasks, and
thus they need to find other more effective coordinated policies.
To this end, we encourage agents to do exploration in such tasks.
However, it is worth noting that the problem is in a multi-task
setting, where the state space of each task is different, and the joint

Session 5A: Multiagent Reinforcement Learning III
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1618



exploration in the whole state space is challenging. Thus, it is not
tractable to apply traditional exploration methods which encourage
agents to explore more novel or uncertain state. More importantly,
whether novel states are helpful in such multi-task cooperation
problem is unknown. To avoid the challenges above and achieve a
more effective exploration that is suitable to multi-task cooperation
setting, we propose a new exploration mechanism, which encour-
ages agents to find more robust strategies to the variation of other
entities.

Inspired by Dropout [24], which is used to mitigate the over-
fitting problem in neural network by randomly dropping units
from the network during training, we encourage agents to learn
their utilities in the team with randomly dropped entities. We
use this dropout mechanism to prevent the co-adaption between
entities, and aim to train more effective coordinated strategies
that are robust to the variation of other entities, which is the
typical problem existing in multi-task setting. Specifically, for an
episode sample from higher priority tasks with |E | entities, the
team with randomly dropped entities can be represented by a bi-
nary vector𝑚𝐷 ∈ {0, 1} |E | , where𝑚𝑒 indicates whether entity 𝑒 is
dropped, and the subset of agent entities in all entities is denoted
as𝑚𝐴 : [𝑚𝑎]𝑎∈𝐴 . Recall that in attention QMIX, agents need to
integrate the information of all entities in the team to make de-
cisions, while in team with dropped entities, agents can only use
information from remaining entities. We achieve this by calculate
the attention mask in team with dropped entities, which is:

𝑀𝐷 =𝑚𝐴𝑚
𝑇
𝐷 ∨ ¬𝑚𝐴¬𝑚𝑇

𝐷 (4)

where ¬𝑚𝐴 is the negation of𝑚𝐴 , and𝑀𝐷 [𝑎, 𝑒] indicates whether
𝑎 can observe the information of the entity 𝑒 in the dropout team.
Then considering the problem is partial observable, the attention
mask𝑀𝐷 need to be processed by the observation mask𝑀𝑢 as:

𝑀𝑢
𝐷 = 𝑀𝐷 ∧𝑀𝑢 (5)

which will be used to help agents integrate the information from
remaining entities.

Note that in attention QMIX discussed above, agents integrate
the information of entities they can observe by inputting the fea-
ture of entities and the observation mask𝑀𝜇 to the MHA layer in
the agent utility network, which will then output agents utilities
𝑄1 (𝑠 ;𝜃𝑄 , 𝑀𝜇 ), · · · , 𝑄 |𝐴 | (𝑠 ;𝜃𝑄 , 𝑀𝜇 ) separately. Then with the help
of the mixing network in attention QMIX, the utilities of agents
𝑄1, · · · , 𝑄 |𝐴 | are combined to calculate the joint state-action value
𝑄𝑡𝑜𝑡 , i.e.

𝑄𝑡𝑜𝑡 = 𝑔(𝑄1, · · · , 𝑄 |𝐴 | ;ℎ(𝑠;𝜃ℎ, 𝑀∗)) (6)

where 𝜃ℎ are the parameters of the hyper-network ℎ to generate
the weights of the mixing network 𝑔, and 𝑀∗ is a full observable
mask to help integrate the global state information in the hyper-
network. Then the network parameters 𝜃𝑄 , 𝜃ℎ will be optimized by
the original loss in QMIX:

𝐿𝑜𝑠𝑠𝑜𝑟𝑖 = 𝐸

[ (
𝑦𝑡𝑜𝑡𝑡 −𝑄𝑡𝑜𝑡 (𝜏𝑡 , ut)

)2 | (𝜏𝑡 , ut, 𝑟𝑡 , 𝜏𝑡+1 ∼ 𝐷)
]

(7)

𝑦𝑡𝑜𝑡𝑡 = 𝑟𝑡 + 𝛾𝑄𝑡𝑜𝑡

𝜃

(
𝜏𝑡+1, arg max

ut+1
𝑄𝑡𝑜𝑡
𝜃

(𝜏𝑡+1, ut+1)
)

(8)

where 𝜃 consists of 𝜃𝑄 and 𝜃ℎ .

Similarly, the attention mask 𝑀𝑢
𝐷
is used to calculate the utili-

ties of agents in dropout team,𝑄1
𝐷
(𝑠 ;𝜃𝑄 , 𝑀

𝜇

𝐷
), · · · , 𝑄 |𝐴 |

𝐷
(𝑠 ;𝜃𝑄 , 𝑀

𝜇

𝐷
).

Then these agent utilities in dropout team will be combined directly
to approximate the team value, i.e.

𝑄𝑡𝑜𝑡
𝐷 = 𝑔(𝑄1

𝐷 , · · · , 𝑄
|𝐴 |
𝐷

;ℎ(𝑠;𝜃ℎ, 𝑀𝐷 )) (9)

and the exploration loss is defined as:

𝐿𝑜𝑠𝑠𝑒𝑥𝑝 = 𝐸 [(𝑦𝑡𝑜𝑡𝑡 −𝑄𝑡𝑜𝑡
𝐷 (𝜏𝑡 , ut))2 | (𝜏𝑡 , ut, 𝑟 , 𝜏𝑡+1) ∼ 𝐷] (10)

where 𝑦𝑡𝑜𝑡 is calculated using real episode samples as introduced
in Equation (8).

By optimizing the loss above, agents learn their utilities in a
dropout team, and will try to find strategies that are not overfitted
to fixed team composition, thus the co-adaptation between agents
and other entities is mitigated. This exploration mechanism which
avoids co-adaptation is suitable to the multi-task cooperation set-
ting, since the overfitting to one fixed team composition with strong
cooperation performance is at the cost of other cooperation tasks.

4.3 Exploitation of Higher Priority Tasks
Once the higher priority tasks are identified and the exploration
in such tasks are implemented, more sophisticated coordinated
strategies will be discovered in such tasks. Now the problem is how
to utilize the effective cooperation experience found in such higher
priority tasks to help the learning in multiple tasks.

In the following, we will introduce how PTM exploits these
higher priority tasks. Specifically, instead of straightly learning the
cooperative knowledge in higher priority tasks by directly reweight-
ing the loss from its samples, we encourage agents to explicitly
learn cooperative patterns existing in such tasks. Note that learning
a task by directly reweighting the loss of its samples only encour-
ages agents to learn the value or contribution of each agent in the
whole team, which is unlikely to be reused in other related but dif-
ferent tasks. Hence we encourage agents to learn value of the agent
in a sub-group within the team, where such smaller cooperative
patterns might also exist in related cooperative tasks and thus the
learning of them is more likely to be useful in other tasks.

Here we learn cooperative patterns in hard tasks referring to
[10], where the cooperative patterns can be learned by learning
the value of the agent in a randomly selected sub-group within
the whole team. In multi-agent cooperative games, agents need
to make decisions based on the agent and non-agent entities in
its observation, and reward feedback teaches them their value in
such team and how to cooperate with these observed entities. Thus
we can also learn the value of agents in a smaller sub-group, by
"imaging" that agents only observe a subset of the entities they
actually observe, which helps them learn the cooperation patterns
in this sub-group and this knowledge can be utilized in other tasks.

Specifically, for an episode sample from higher priority tasks
with |E | entities, its entities will be randomly partitioned into two
disjoint groups, indicated by a binary vector𝑚 ∈ {0, 1} |E | , where
𝑚𝑒 indicates whether entity 𝑒 is in the first group and ¬𝑚𝑒 related
the second group. The subset of agent entities in all entities is
denoted as 𝑚𝐴 as introduced above. Then the attention masks
between the entities can be constructed as:

𝑀𝐼 =𝑚𝐴𝑚
𝑇 ∨ ¬𝑚𝐴¬𝑚𝑇 , 𝑀𝑂 = ¬𝑀𝐼 (11)
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where 𝑀𝐼 [𝑎, 𝑒] indicates where agent 𝑎 and entity 𝑒 are in the
same group and𝑀𝑂 [𝑎, 𝑒] indicates the opposite. Considering the
environment is partial observable, then the attention masks also
need to be combined with the observation mask as:

𝑀
𝜇

𝐼
= 𝑀𝜇 ∧𝑀𝐼 , 𝑀

𝜇

𝑂
= 𝑀𝜇 ∧𝑀𝑂 (12)

The size of these matrices are |𝐴| × |E |. Then the matrices 𝑀𝜇

𝐼

and 𝑀
𝜇

𝑂
will be used in the MHA layer of the agent network as

the imaginary observation masks to help calculated the value in
the sub-group, and obtain 𝑄1

𝐼
(𝑠;𝜃𝑄 , 𝑀

𝜇

𝐼
), · · · , 𝑄 |𝐴 |

𝐼
(𝑠;𝜃𝑄 , 𝑀

𝜇

𝐼
), as

well as the out-group values 𝑄1
𝑂
(𝑠;𝜃𝑄 , 𝑀

𝜇

𝑂
), · · · , 𝑄 |𝐴 |

𝑂
(𝑠;𝜃𝑄 , 𝑀

𝜇

𝑂
),

which are the potential interaction values affected by the out-group
entities. Due to the lack of the returns of such in-group or out-group
utilities, these estimation are grounded by the observed returns,
and are optimized by the exploitation loss as:

𝐿𝑜𝑠𝑠𝑡𝑎𝑠𝑘 = 𝐸 [(𝑦𝑡𝑜𝑡𝑡 −𝑄𝑡𝑜𝑡
𝑎𝑢𝑥 (𝜏𝑡 , ut))2 | (𝜏𝑡 , ut, 𝑟 , 𝜏𝑡+1) ∼ 𝐷]

𝑄𝑡𝑜𝑡
𝑎𝑢𝑥 = 𝑔(𝑄1

𝐼 , · · · , 𝑄
|𝐴 |
𝐼

, 𝑄1
𝑂 , · · · , 𝑄

|𝐴 |
𝑂

;ℎ(𝑠;𝜃ℎ, 𝑀𝐼 ), ℎ(𝑠;𝜃ℎ, 𝑀𝑂 ))
(13)

By optimizing the loss above, agents will learn their values in
each sub-group, thus learn the smaller cooperation patterns emerg-
ing in this small group. Note that there is an obvious difference
between the exploration loss and the exploitation loss. In the ex-
ploration, the loss aims to use the utilities of agents with randomly
dropped entities to directly approximate the team returns, which
helps avoid the co-adaptation between agent entities and other
entities. While in exploitation, the loss aims to help agents learn
the value of the sub-group existing in the team, and the utilities of
agents in one sub-group are used to approximate the portion of the
team value instead of the whole team returns with the help of the
out-group agent utilities.

4.4 Learning in Multiple Cooperative Tasks
Here we introduce the overall optimization objective of PTM. In
multi-task cooperation learning, wewant to emphasize that all tasks
are important while some tasks are more worthy of attention. Thus
the learning loss in PTM consists of two parts, the uniform training
loss 𝐿𝑜𝑠𝑠𝑜𝑟𝑖 in all tasks as proposed by QMIX in Equation (1) or
Equation (7), and the mining loss of higher priority tasks 𝐿𝑜𝑠𝑠ℎ𝑝𝑡 .
Besides, considering that both exploration and exploitation are
important in the mining of higher priority tasks, here we encourage
agents to learn a mixture of them with a weight 𝛼 , which decreases
linearly from 1 to 0, and the higher priority tasks training loss is:

𝐿𝑜𝑠𝑠ℎ𝑝𝑡 = 𝛼𝐿𝑜𝑠𝑠𝑒𝑥𝑝 + (1 − 𝛼)𝐿𝑜𝑠𝑠𝑡𝑎𝑠𝑘 (14)

Then, the total loss used for the learning in multiple cooperative
tasks is:

𝐿𝑜𝑠𝑠 =𝐿𝑜𝑠𝑠𝑜𝑟𝑖 + 𝜆

𝐵∑︁
𝑖=1

𝜔𝑖𝐿𝑜𝑠𝑠
𝑖
ℎ𝑝𝑡

=𝐿𝑜𝑠𝑠𝑜𝑟𝑖 + 𝜆

𝐵∑︁
𝑖=1

𝜔𝑖 (𝛼𝐿𝑜𝑠𝑠𝑖𝑒𝑥𝑝 + (1 − 𝛼)𝐿𝑜𝑠𝑠𝑖
𝑡𝑎𝑠𝑘

)

(15)

where 𝐵 is the number of episode samples in the batch, and 𝜆

weights the importance of the uniform training loss and higher
priority tasks mining loss.

5 EXPERIMENTS
In this section, we design experiments to answer the following
questions: 1) Is PTM more effective for learning in multi-task co-
operation problems? 2) What is the influence of PTM to agents
learning in multiple cooperation tasks? 3) What is the importance
of different modules, such as the priority identification module,
the exploitation module and exploration module in PTM? 4) Is the
generalization ability of PTM also improved in related but unseen
cooperative tasks compared to baseline methods? In the following,
we will answer the questions above one by one in the challenging
micromanagement tasks in StarCraft [21]. The StarCraft microman-
agement task is a two-team battle game, where the algorithm needs
to guide controlled alley agents to eliminate all enemy units in the
other team. More details can be found in Appendix A.

In order to evaluate the effectiveness of PTM, we compare it to
current state-of-the-art methods that are applicable to multi-task co-
operative problems. We provide the performance of QMIX_ATTEN
[9], which designs attention-based network to learn in multi-task
setting, as well as REFIL [10], which helps agents utilize common
cooperative patterns in multiple cooperative tasks. Besides, we
also provide an extension of a strong multi-task single-agent rein-
forcement learning method PopArt [7] in cooperative setting i.e.
QMIX_ATTEN_PopArt, which aims to normalize rewards in differ-
ent tasks to adjust their contribution and balance the competence
of different tasks. Each algorithm is evaluated using 3 independent
training runs with different random seeds, and the resulting plots
include the median performance shown in dark color as well as the
25%-75% percentiles shown in the shaded area. Besides, in PTM,
the probability of being dropped in the exploration module or in
the first group in exploitation module is obtained by that, we first
draw 𝑝 ∈ (0, 1) uniformly, then the probability for each entity
is sampled from a Bernoulli(𝑝) distribution. This design makes a
uniform distribution over all possible sub-groups within the team
as discussed in [10]. Besides, 𝜆 is 10 fixed for all tested tasks. The
exploration annealing period for 𝛼 is 2 million time steps. We use
the winrate (the number of successful episodes diveded by the total
interaction episodes) of agents in each StarCraft task as their related
cooperation indicator. More details can be found in Appendix B.

5.1 Performance in Multi-Task Cooperation
To answer the first question, we evaluate PTM and baseline meth-
ods in a customized StarCraft environment [10]. Concretely, we
consider a multi-task setting, where the method is trained in mul-
tiple related tasks simultaneously, and demonstrate their average
performance in multi-task tasks with different scales as shown in
Figure 2. In Figure 2, the small_mt environment consists of 3 multi-
agent cooperative tasks: 5𝑚_𝑣𝑠_5𝑚, 6𝑚_𝑣𝑠_6𝑚 and 5𝑚_𝑣𝑠_6𝑚 (𝑚
is the abbreviation of marine units in StarCraft), where the first two
are symmetric tasks while the last is asymmetric and is more chal-
lenging for agents to learn coordinated strategies. The medium_mt
environment includes 6 cooperative tasks, where in each task the
composition of two teams is symmetric, but the number of units in
each task is varying from 6𝑚_𝑣𝑠_6𝑚 to 11𝑚_𝑣𝑠_11𝑚. In medium_mt
environment, the variation in the number of teammates affects the
cooperation difficulty of the cooperative task and requires different
cooperation ability. The large_mt environment contains a richer
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Figure 2: Test win rate during training of different algorithms in multi-task StarCraft environment, where the curve represents
the median performance and the shaded areas show 25%-75% percentiles.
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Figure 3: Performance of different algorithms in each cooperative task, where the error bar represents the standard deviation.

Figure 4: Snapshots of episode samples in different tasks
trained by different methods. The ally agents are shown in
blue while the enemies shown in orange. The red lines are
attacks launched by ally agents and the green bar shows the
health of the related agent. In this figure, agents trained by
PTM learn to use the loose cooperation pattern found in
5𝑚_𝑣𝑠_6𝑚 to solve 6𝑚_𝑣𝑠_6𝑚 tasks and obtain an advantage
in health in the last few snapshots.

variety of cooperative tasks, where tasks are different in symme-
try or the number of teammates or both, such as 5𝑚_𝑣𝑠_6𝑚 and
10𝑚_𝑣𝑠_10𝑚. In such multi-task environments, though all tasks are
related, the cooperation ability they require are not the same, thus
learning difficulty and the potential contribution to the emerging
of effective coordinated strategies is also different.

The results in Figure 2 show that PTM consistently outperforms
all baselines in multi-task cooperation environment with different

scales, demonstrating its effectiveness for learning in multi-task
setting. Besides, we note that though compared to QMIX_ATTEN,
REFIL improves the performance by reuse the cooperation patterns
existing in multiple tasks, it still treats all tasks equally and thus
can not share more effective cooperation patterns in higher prior-
ity tasks, which makes it weaker than PTM. Moreover, although
PopArt-related method also focuses on the balance among tasks,
it is mainly used to mitigate the unbalance caused by the magni-
tude of the in-task rewards, which is not permanent in our tested
environments, thus the effectiveness of QMIX_ATTEN_PopArt is
limited. Specially, we also demonstrate the detailed performance
of these methods in each task in Figure 3. The results in Figure 3
of different methods verify that, due to the complexity in multi-
agent system, though the team composition is nearly the same, the
training difficulty of them varies greatly in different tasks. More
importantly, we note that the performance of PTM in each concrete
task is higher than baselines, which justifies that, when training
in multiple related tasks, the adjustment of the focus on different
tasks and paying more attention to unlearned tasks are helpful to
find more effective and general strategies.

5.2 Visualization of Strategies Trained by PTM
Further, we want to investigate the influence of PTM to agents
learning in different tasks. To this end, we visualize the episode
samples in small_mt environment. Concretely, we render the sam-
ples trained by QMIX_ATTEN in 6𝑚_𝑣𝑠_6𝑚 and PTM in 6𝑚_𝑣𝑠_6𝑚
and 5𝑚_𝑣𝑠_6𝑚 in Figure 4. In each plot, the blue units are alley
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Figure 5: Ablation study of PTM, where QMIX_ATTEN_REW
means directly reweighting the loss of samples from prior
tasks, and PTM w/o exp (task) means only exploiting (explor-
ing) the prior tasks without exploration (exploitation).
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Figure 6: Generation performance of different multi-task
cooperation methods in related but unseen tasks.

agents controlled by the evaluated method and the orange units are
enemy agents controlled with build-in algorithms in StarCraft. The
red lines are attacks launched by our alley agents and the green bar
represents the health of the related agent. We show the snapshots
in each episode every 5 time steps.

Note that QMIX_ATTEN is a method which learns different tasks
uniformly, and achieves the knowledge sharing by the shared neural
network in multiple tasks. In the first row of Figure 4, we can found
when learning these tasks uniformly, agents are likely to be domi-
nated by symmetry tasks and stuck in naive coordinated patterns,
i.e. getting together to attack enemies, since such strategies can
always obtain rewards in partial tasks. And with limited learning
resources, agents lose passion to find other more effective strategies.
Different from QMIX_ATTEN, agents trained by PTM will adjust
the focus on different tasks, and in small_mt environment, they will
focus more on the task 5𝑚_𝑣𝑠_6𝑚. This is a asymmetric game, and
to win the game, agents need to form a loose cooperation pattern to
create a larger attack range, and avoid being surrounded by enemies
due to the lack of quantity advantage, as shown in the third row
in Figure 4. From Figure 3(a) and the medium row in Figure 4, we
find that although the discovered cooperation pattern in 5𝑚_𝑣𝑠_6𝑚
can not help them win the game by a landslide, these strategies
are still more advanced and the utilization of them in other tasks
like 6𝑚_𝑣𝑠_6𝑚 improves the task performance. In summary, the
visualization of training samples show that the focus adjusted by
PTM encourages agents to focus more on tasks they are not capable,

where they can find more effective coordinated strategies to guide
the cooperation in multiple tasks.

5.3 Ablation Study
We make an ablation study to verify the importance of different
modules used in PTM. The contribution of PTM comes from its
priority identification module and higher priority tasks mining
loss. Thus we mainly make ablation studies about these two factors
and show results in Figure 5. We find that directly reweighting
the loss of samples from higher priority tasks with the priority
𝜔𝑖 (QMIX_ATTN_REW) hardly improves the performance. As dis-
cussed above, this reweighting only makes agents learning more
of the agent utilities facing the whole team, which is less useful
than learning the emerging cooperation patterns. Thus the higher
priority tasks mining is relatively more important to the perfor-
mance improvement. Besides, we notice that only mining the higher
priority tasks with exploitation (PTM w/o exp) indeed improves
the performance, while exploration is also necessary to find more
effective strategies. More details can be found in Appendix C.

5.4 The Generalization Ability of PTM
In this section we investigate the generalization ability of PTM
since it is more applicable if the model trained on multiple tasks
can generalize well to other related but unseen tasks. Specially, we
design 3 tasks to test the generalization ability of PTM and baseline
models that trained in symmetric medium_mt environment, which
are 3𝑚_𝑣𝑠_3𝑚, 5𝑚_𝑣𝑠_5𝑚 and 8𝑚_𝑣𝑠_9𝑚, and show the results in
Figure 6. The results show that in more related symmetric tasks
like 3𝑚_𝑣𝑠_3𝑚 and 5𝑚_𝑣𝑠_5𝑚, PTM demonstrates a higher gener-
alization ability compared to other multi-task methods, which also
justifies the effectiveness of the agents strategies mined by PTM
in such symmetric tasks. Besides, we also found that when applied
to the asymmetric task 8𝑚_𝑣𝑠_9𝑚, both PTM and other baselines
are not that useful. As discussed above, asymmetric tasks always
need more sophisticated cooperation that can not be discovered
by training in symmetric tasks. The results in Figure 6 shows this
phenomenon, and illustrates that a reasonable adjustment of focus
on different tasks is necessary, where focusing on the tasks with
more potential to generate sophisticated coordinated strategies is
beneficial, but the opposite is not.

6 CONCLUSION
In this paper, we propose PTM for multi-task cooperative multi-
agent reinforcement learning, which adjusts the focus on different
tasks based on their complexity and potential in emerging effective
coordinated strategies. By encouraging agents to make exploration
and exploitation of higher priority tasks to mine effective strategies,
PTM outperforms all strong multi-task cooperation methods in
challenging multi-task cooperative games. Note that in this paper
we assume that in multi-task setting, multiple tasks are related and
the effective strategies found in higher priority tasks is beneficial
to multiple tasks. However, there may be multiple tasks where
the relationship among them is like a zero-sum game, and the
performance improvement of some tasks is at the cost of the others.
How to learn in such multi-task cooperation setting efficiently and
effectively is worthy of future study.
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