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ABSTRACT
Real-world sequential decision-making tasks are usually complex,
and require trade-offs between multiple – often conflicting – objec-
tives. However, the majority of research in reinforcement learning
(RL) and decision-theoretic planning assumes a single objective, or
that multiple objectives can be handled via a predefined weighted
sum over the objectives. Such approaches may oversimplify the un-
derlying problem, and produce suboptimal results. This extended
abstract outlines the limitations of using a semi-blind iterative
process to solve multi-objective decision making problems. Our
extended paper [4], serves as a guide for the application of explicitly
multi-objective methods to difficult problems.
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1 INTRODUCTION
Real-world sequential decision-making tasks can have multiple,
often conflicting, objectives [1, 3, 5, 8, 21]. Reinforcement learning
(RL) and decision-theoretic planning have been used extensively
to solve such problems by maximising a scalar reward signal [16].
In settings with multiple objectives, RL approaches assume the
objectives can be combined into a single scalar reward using a
predefined weighted sum. An iterative process is used to tune the
weights for each objective. During learning the algorithm is tuned,
turned on, then the reward function is re-engineered until the
behaviour is satisfactory. However, such an approach may produce
suboptimal results in practical settings [2, 18, 20].

Here, we argue an iterative process is problematic for a number
of reasons: (a) it is a semi-blind manual process, (b) it prevents
people who should take the decisions from making well-informed
trade-offs, (c) it damages the explainability of the decision-making
process, (d) it cannot handle different types of preferences that
human decision makers might actually have, and finally (e) prefer-
ences between the objectives may change over time and a single
objective agent will have to be retrained when this happens.

Motivating Example. Planning a journey involves a number of
objectives (such as minimising travel time and cost whereas max-
imising comfort and reliability [6, 7, 11, 12]), together with sequen-
tial decisions that need to be made along the trip. For instance, if
your trip relies on multiple transportation modes, you may need
to promptly switch to another mode when facing delays or mal-
functions. Moreover, given the competitive nature of traffic, your
objectives are usually affected by other users, which increases the
uncertainties associated with your decision. If you cannot articulate
your preferences explicitly in a single formula, or if this formula
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is non-linear, then you have a genuine multi-objective problem,
which requires a multi-objective approach.

2 A MULTI-OBJECTIVE APPROACH
As highlighted above, single objective RL and planning methods
utilise an iterative process to linearly combine objectives when
solving multi-objective problems. Such an approach has several
limitations, and as a result an explicitly multi-objective approach
should be followed. To motivate a multi-objective approach, we
briefly discuss the aforementioned limitations.

First, let us discuss reason (a). If we engineer a scalar reward
function through an iterative process until we reach an acceptable
behaviour, we try out multiple reward functions, each of which is a
scalarisation of the actual objectives. However, we do not systemat-
ically inspect all possible reward functions. In other words, we may
meet our minimal threshold for acceptable behaviours, but we only
observe a subset of all possible scalarisations. Therefore, although
an acceptable solution may be found, it can be arbitrarily far away
from optimal utility.

Next, let us discuss reason (b), given the reward function needs
to be engineered a priori, there is uncertainty as to the effects a
reward function may have on the policy. Additionally, the decision
power is put where it does not belong: with the AI engineers, since
they are the ones tasked with adjusting the associated weights
for the reward function and, thus, effectively making assumptions
about the preferences of the actual decision makers. In practical
settings this is not a responsibility that can be left to AI engineers.
By taking an explicitly multi-objective approach it is possible to
remove such responsibilities from the AI engineer. Multi-objective
algorithms can be used to compute all possibly optimal policies
[13, 14, 19, 23], where the computed policies can be inspected by a
system expert before making a decision.

Another issue with scalar reward functions is the lack of (a
posteriori) explainability (c). Not taking an explicitlymulti-objective
approach can rob us of essential information that we might need
to evaluate or understand our agents. Consider the case in which
a robot collided with and destroyed a vase and we would like to
input an alternative decision, such as swerving away from the vase.
An agent with a single all encompassing objective that has learnt
a scalar value function will then, for example, tell us there was a
3.451 reduction in value for this other policy, which provides little
insight. If instead, the agent could have told us that in the objective
of damage to property the probability of damaging the vase would
have dropped to practically 0, but the probability of running into
the family dog increased by 0.5% (a different objective), this would
give us insight into what went wrong. We might also think that
a 0.5% increase in the likelihood of bumping into the dog would
have been acceptable – especially if this would not have been an
actual danger to it, but rather an inconvenience – if the robot could
have definitely avoided destroying the vase, signaling an error in
the utility function. We may also disagree for different reasons: we
may think that the agent has overestimated the risk of colliding
with the dog, i.e., an error in the value-estimate for that objective.

Furthermore (d), not all human preferences can be handled by
scalar additive reward functions [13]. In certain settings, a user’s
preferences ought to be modelled with a non-linear utility function.

For non-linear utility functions, an a priori scalarisation becomes
mathematically impossible within many reinforcement learning
frameworks, as scalarisation would break the additivity of the re-
ward function. For some domains, this might still be acceptable, as
the resulting loss of optimality may not have a major impact. How-
ever, in important domains where ethical or moral issues become
apparent, single-objective approaches require explicitly combining
these factors together with other objectives (such as economic out-
comes) in a way that may be unacceptable to many people [22].
Similarly, designing single-objective rewards may be difficult or
impossible for scenarios where we wish to ensure fair or equitable
outcomes for multiple participants [15, 17].

Finally (e), humans are known to change their minds from time
to time. Therefore, preferences between trade-offs in the differ-
ent objectives may well change over time. An explicitly multi-
objective system can train agents to be able to handle such prefer-
ence changes, thereby preempting the need to discover a new policy
whenever such changes occur. This increases the applicability of
multi-objective decision-making agents, as agents do not need to
be taken out of operation to be updated and they can simply switch
policy to match the new user preferences.

3 THE UTILITY-BASED APPROACH
Early work in multi-objective sequential decision-making largely
adopted an axiomatic approach in which the optimal solution set
is assumed to be the Pareto front (see [4] for all definitions). An
advantage of this approach is that it leads to a solution set whichwill
contain an optimal policy for any possible monotonically increasing
utility function, and axiomatic methods can derive these solutions
without any need to explicitly consider the details of those potential
utility functions. However, this set is typically large, and may be
prohibitively expensive to retrieve.

In practical applications, a lot more might be known about the
utility function of the user, due to domain knowledge. Using an
axiomatic approach would make it difficult to exploit this knowl-
edge, and a lot of time and effort might be spent on computing a
solution set which contains some members with very low utility
for the user. The utility-based approach aims to derive the optimal
solution set from the available knowledge about the utility function
of the user, and which types of policies are allowed. This knowledge
allows constraints to be placed on the solution set, reducing its size
and thereby improving learning efficiency and making it easier for
users or systems to select their preferred policy [13]. Considering
the user utility first is key to the successful application of any AI
in decision problems. In multi-objective problems, it is especially
important, as the properties of the user’s utility may drastically
alter the desired solution, what methods are available, and even—in
some cases [9, 10]—whether stable solutions even exist.

4 CONCLUSION
Considering the reasons outlined above, a multi-objective approach
to decision making is necessary in many practical settings. In this
work, we briefly outline why taking an explicitly multi-objective
utility-based approach to planning and learning may be essential
to deploying AI-based solution for real-world sequential decision
problems.
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