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ABSTRACT
An assembly of 𝑛 voters needs to decide on 𝑡 independent binary
issues. Each voter has opinions about the issues, given by a 𝑡-bit
vector. Anscombe’s paradox shows that a policy following the ma-
jority opinion in each issue may not survive a vote by the very
same set of 𝑛 voters, i.e., more voters may feel unrepresented by
such a majority-driven policy than represented. A natural resolu-
tion is to come upwith a policy that deviates a bit from themajority
policy but no longer gets more opposition than support from the
electorate. We show that a Hamming distance to the majority pol-
icy of at most ⌊(𝑡 − 1)/2⌋ can always be guaranteed, by giving a
new probabilistic argument relying on structure-preserving sym-
metries of the space of potential policies. Unless the electorate is
evenly divided between the two options on all issues, we in fact
show that a policy strictly winning the vote exists within this dis-
tance bound. Our approach also leads to a deterministic polynomial-
time algorithm for finding policies with the stated guarantees, an-
swering an open problem of previous work. For odd 𝑡 , unless we
are in the pathological case described above, we also give a simpler
and more efficient algorithm running in expected polynomial time
with the same guarantees. We further show that checking whether
distance strictly less than ⌊(𝑡 − 1)/2⌋ can be achieved is NP-hard,
and that checking for distance at most some input 𝑘 is FPT with
respect to several natural parameters.
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1 INTRODUCTION
Once upon a time there was a country that was ruled by a good
queen.The queen always asked her citizens about their opinions on
the current issues in the country, in the form of yes-no questions.
Then, she would form a policy following the majority opinion on
each individual issue. Some of her people would be unhappy with
the policy, because they disagreed with the policy more than they
agreed. As long as these unhappy citizens were in a minority, the
queen would not mind.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

𝑖1 𝑖2 𝑖3
𝑣1 1 0 0
𝑣2 0 1 0
𝑣3 0 0 1
𝑣4 1 1 1
𝑣5 1 1 1

Figure 1: Anscombe’s Paradox. Five voters (rows) express
their opinions on three equally important issues (columns).
On each issue, opinion 1 is the majority opinion, so it would
be natural to propose the policy 111. However, policy 111
would not survive a vote, since the first three voters would
vote against the policy. Example due to [3].

However, one day the queen noticed that the popular opinion
policy would not be supported by a majority (e.g., Fig. 1). Can the
queen come up with a policy which is going to be supported by
a majority of the people, while still respecting the opinion of the
people as much as possible?

We believe that this problem is relevant in various natural con-
texts. For example, a board of directorsmightmap out the complete
matrix on how each director thinks about each current issue. To-
gether they want to decide on the best policy. As much as possible,
this policy should reflect the majority opinion on each issue, but
it should also be agreeable to the board as a whole, in that it will
have not more opposition than support.

More formally, we model policy proposals and voters’ prefer-
ences using 𝑡-bit vectors, also known as approval ballots [22]. A
voter supports a proposal if the Hamming distance between their
vector and the policy vector is less than 𝑡/2. The voter opposes a
proposal if the distance is more than 𝑡/2. If 𝑡 is even, and the dis-
tance is exactly 𝑡/2, the voter abstains from voting. An issue-wise
majority proposal is formed by taking the majoritarian opinion on
each issue, breaking ties arbitrarily. Anscombe’s Paradox [2], illus-
trated in Figure 1, shows that issue-wise majority might not sur-
vive a final vote, even with no abstentions and each issue having
a strict majority for one of the options, making the problem non-
trivial and interesting to study.

Our Contribution. We give a probabilistic proof that a policy
at distance at most ⌊(𝑡 − 1)/2⌋ from issue-wise majority which is
not opposed by more people than supported always exists. This
bound is tight, as shown in [15]. To achieve this, we devise two
thought experiments: onewhose expected value is straightforward
to compute, but is not immediately instrumental in proving our as-
sertion, and one whose expected value can look daunting to com-
pute, but a non-negative expectation would easily imply the con-
clusion. By observing voter-wise symmetries of the policy space,
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we show that the two experiments actually have the same expec-
tation, implying the result. Moreover, unless for all issues the elec-
torate is evenly split between the two options, we can in fact guar-
antee that support of the proposal strictly exceeds opposition.

Subsequently, we show that a policy satisfying our guarantees
can be computed deterministically in polynomial time, by deran-
domizing our argument. Furthermore, for the odd 𝑡 case, aside
from the pathological case above, an application of Markov’s in-
equality shows that a simpler andmore efficient algorithm achieves
expected polynomial time: proceed in rounds, at each round sam-
pling and checking policies (𝑝𝑘 )𝑡/2<𝑘≤𝑡 such that 𝑝𝑘 agrees with
issue-wise majority in exactly 𝑘 places and is sampled uniformly
at random among proposals with this property.

Additionally, we consider the question of determining the mini-
mum distance to issue-wise majority that a policy surviving a vote
can achieve. We show that it is NP-hard to decide even whether
distance at most ⌊(𝑡 − 1)/2⌋ − 1 is possible, even when both the
number of voters and issues are odd. We also investigate the prob-
lem from a parameterized perspective, showing that it is tractable
with respect to three natural parameters.

1.1 Related Work
Alon et al. [1] consider the problem of finding a policy supported by
amajority of the voters from the perspective of parameterized com-
plexity. However, in their case a voter supports a policy if and only
if they approve of a majority of the issues approved in the policy.
Our objective of minimizing distance to issue-wise majority is also
not part of their formulation. Their model of which proposals are
supported by a voter is a special case of “threshold functions”, in-
troduced and first studied computationally by Fishburn and Pekeč
[13, 14].The search for compromise outcomes when issue-wise ma-
jority is defeated is studied by Laffond and Lainé [19], where they
introduce the concepts of majoritarian and approval compromises.
The latter can be seen as a dual to our optimization objective: in-
stead of optimizing for the number of agreements with issue-wise
majority, they optimize for the number of voters supporting the
outcome. Elkind et al. [10] perform an algorithmic study of coali-
tion formation in a model similar to ours: voters support policies
which are closer to their vector than to a given “status quo” policy.

Voting in combinatorial domains, where the set of admissible
outcomes is a subset of some cartesian product, is surveyed from
a computational perspective by Lang and Xia [21]. In our case,
this domain is the hypercube {0, 1}𝑡 . When issues are symmetric
and independent, as in our case, the setup is known as multiple
referenda. The computational study of multiple referenda so far
has predominantly concerned the lobbying problem, where a self-
interested third-party wants to manipulate the outcome by chang-
ing ballots [4–6]. In [7], Conitzer et al. consider a setup where is-
sues are voted on sequentially, one at a time, and show that it is
computationally demanding for a chairperson to influence the out-
come by selecting the order the issues are presented in.

Judgement aggregation [12] is the generalization of multiple
referenda to non-independent issues, and its computational study
has been a recently active area of research. Slater’s rule is one of
the well-known aggregators considered in judgement aggregation,

bearing a similar flavour to the topic of our work, in that it com-
putes the closest to issue-wise majority logically-consistent pro-
posal. However, for independent issues, it degenerates to just issue-
wise majority, while in our case we additionally require that the
selected proposal gets more support than opposition, which is a
global constraint incompatible with Slater-like rules. Multiwinner
elections are also often studied for approval ballots, leading to a
number of prominent computational results [17], but they differ
from multiple referenda fundamentally in that each issue is equiv-
alent to a corresponding “negated issue”, while there is no such
concept as negating a candidate.

Anscombe’s paradox has a number of different interpretations;
e.g., read Figure 1 as follows: a government consists of three seats
(columns), and two parties (0 and 1) compete. Each voter (row) has
preferences for each seat, denoting whose party’s nominee they
prefer. In a direct democracy, voters vote on each seat, party 1’s
candidates winning all seats. However, when voting for a single-
party government (representative democracy), more voters prefer
party 0 over party 1, so party 0 wins all seats. This discrepancy be-
tween the outcomes of the two forms of democracy is illustrated
through Anscombe’s and other related compound majority para-
doxes [23].

A large body of literature sets to understand the conditions un-
der which Anscombe’s paradox and its generalization, the Ostro-
gorski Paradox [24], occur and how they can be mitigated. Wagner
[25] observes the “Rule of 3/4” (and later [26] the generalized “Rule
of 1 − 𝛼𝛽”), showing that the paradox requires many contested is-
sues. In particular, if the average issue-wise majority margin is at
least 3/4, then Anscombe’s paradox does not occur. This is one
reason why certain high-stake votes, like constitutional amend-
ments, require a 3/4-majority to pass. Similarly, Laffond and Lainé
[20] note that the paradox requires a non-cohesive group of voters.
Namely, if the opinions of any two voters differ in less than a frac-
tion of

√
2−1 ≈ 41.4% of the issues, then the paradox again does not

occur (moreover, decreasing this constant gives higher guarantees
on the fraction of voters agreeing with issue-wise majority). Deb
and Kelsey [9] give necessary and sufficient conditions in terms
of combinations of the number of voters and issues that permit
Anscombe’s paradox: unless either is small, the paradox is always
possible; they also consider generalizations. Gehrlein and Merlin
[16] study the probability of the paradox occurring. Laffond and
Lainé [18] define the domain of single-switch preferences, which is
the maximal domain avoiding Ostrogorski’s paradox under a mild
richness assumption. In essence, this constraint, similar to extremal
interval domains for approval voting [11], states that the issues can
be ordered and possibly negated such that each voter approves of
either a prefix or a suffix of issues.

Fritsch and Wattenhofer [15] show non-constructively that in
our setup a proposal that at most half the voters oppose always
exists within distance ⌊(𝑡 − 1)/2⌋ . If there are no abstentions (odd
𝑡 ), this also implies that the opposition can not exceed the sup-
port, but with abstentions a problematic case would be when all
but three voters abstain, the remaining three being split two on
one against our proposal. We improve on their result by tackling
both parities of 𝑡 . Our main difference, however, is that we provide
polynomial-time means of computing such policies.
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2 PRELIMINARIES
For any non-negative integer𝑚, write [𝑚] = {1, 2, . . . ,𝑚} and B =
{0, 1}. An assembly of 𝑛 voters, numbered from 1 to 𝑛, expresses
preferences over 𝑡 independent binary issues (also topics, or mo-
tions), numbered from 1 to 𝑡 , and collectively known as the agenda.
Each voter 𝑖’s opinions on the issues are represented as a vector
(ballot) 𝑣𝑖 ∈ B𝑡 , where 𝑣𝑖, 𝑗 is 1 iff voter 𝑖 is in favor (approves) of
motion 𝑗 .Thematrix P = (𝑣𝑖, 𝑗 )𝑖∈[𝑛], 𝑗∈[𝑡 ] is called the voter judge-
ments matrix, or the preference profile/matrix. Write 𝑑𝐻 : B𝑡 ×
B𝑡 → Z≥0 for the Hamming distance 𝑑𝐻 (𝑥,𝑦) =

∑𝑡
𝑗=1 |𝑥 𝑗 − 𝑦 𝑗 |.

A policy (also policy proposal, or outcome) is an element 𝑝 ∈ B𝑡 ;
we write 𝑝 for the opposite policy; i.e., 𝑝 𝑗 + 𝑝 𝑗 = 1 for all issues
𝑗 . Voter 𝑖 supports (approves) 𝑝 if 𝑑𝐻 (𝑣𝑖 , 𝑝) < 𝑡/2, opposes (disap-
proves) 𝑝 if 𝑑𝐻 (𝑣𝑖 , 𝑝) > 𝑡/2, and is being indifferent (abstains) for 𝑝
if 𝑑𝐻 (𝑣𝑖 , 𝑝) = 𝑡/2.Write 𝑏𝑣𝑖 ,𝑝 = 𝑡 − 2𝑑𝐻 (𝑣𝑖 , 𝑝) for the number of is-
sues in which 𝑣𝑖 and 𝑝 match minus the number of issues in which
𝑣𝑖 and 𝑝 mismatch. Then, 𝑖 approves 𝑝 if 𝑏𝑣𝑖 ,𝑝 > 0, disapproves 𝑝 if
𝑏𝑣𝑖 ,𝑝 < 0, and is indifferent if 𝑏𝑣𝑖 ,𝑝 = 0.

For a preference profile P and a proposal 𝑝 we define the for-
against balance 𝑏𝑝,P = 𝑎𝑝,P −𝑑𝑝,P of 𝑝 under P to be the number
𝑎𝑝,P of voters supporting 𝑝 minus the number 𝑑𝑝,P of voters op-
posing 𝑝 . As such, we say that a policy 𝑝 wins/ties/loses the vote if
𝑏𝑝,P is positive/zero/negative, 𝑝 being a winning/tying/losing pro-
posal. Note that 𝑝 survives the vote if it is not losing. A proposal
𝑝 is unanimously winning if 𝑏𝑝,P = 𝑛. For use later on, any ballot
(i.e., vote or policy) 𝑝 ∈ B𝑡 can be seen as a function 𝑝 : [𝑡] → B,
or as a set 𝑝 ⊆ [𝑡] of approved issues; let |𝑝 | be the set cardinality
and𝑏𝑝 = |𝑝 |− (𝑡−|𝑝 |) = 2|𝑝 |−𝑡 the difference between the number
of approved and disapproved issues in 𝑝.

Given a preference profileP, the issue-wisemajority policy (short
IWM) is the policy 𝑝 ∈ B𝑡 such that 𝑝 𝑗 is 1 if more than 𝑛/2 voters
are in favour of motion 𝑗 , is 0 if less than 𝑛/2 voters are, and can
be either in case of a tie. For our purposes, we arbitrarily choose
the value 1 in case of equality. Note that any profile P where IWM
returns 0 for some issues can be turned into a logically equivalent
profile P′ by flipping ones and zeros for such issues. This does not
modify the electoral landscape because we are just logically negat-
ing some of the issues, and all issues are independent; voters should
naturally answer by negating their original answers. Henceforth,
we assume without loss of generality that all profiles that we con-
sider have all-ones as their IWM outcome.

We study the problem of finding a non-losing proposal 𝑝 which
minimizes distance to IWM; i.e., maximizes |𝑝 |. More formally, let
Win-OR-Tie-PRop be the decision problem “Given a preference
profile P with IWM being all-ones and a number 𝑘 , does there
exist a non-losing proposal 𝑝 with |𝑝 | ≥ 𝑘?” Similarly, define 𝑘-
Win-OR-Tie-PRop, where the value of 𝑘 is a fixed integer function
of 𝑡 ; e.g., (⌊𝑡/2⌋+2)-Win-OR-Tie-PRop. Additionally, we define the
analogous problem Una-Win-PRop, where the sought proposal 𝑝
has to win unanimously; i.e., be supported by everyone; and also
𝑘-Una-Win-PRop, similarly.

For odd 𝑡 , Fritsch and Wattenhofer [15] show that the answer
to (⌊𝑡/2⌋ + 1)-Win-OR-Tie-PRop is always yes, which they show
to be tight for all 𝑡 :

Lemma 1. Consider profiles P𝑡 with 𝑛 = 2𝑡 − 1 voters, where 𝑣𝑖 =
{𝑖} for 𝑖 ≤ 𝑡 and 𝑣𝑖 = [𝑡] for 𝑖 > 𝑡 . Then, a proposal 𝑝 with |𝑝 | ≥
⌊𝑡/2⌋ + 2 satisfies 𝑏𝑝,P𝑡 = −1. Profile P3 is illustrated in Figure 1.

PRoof SKetch. The last 𝑡 − 1 voters always approve of 𝑝 , while
the first 𝑡 always disapprove of 𝑝 , so 𝑏𝑝,P𝑡 = (𝑡 − 1) − 𝑡 = −1. □

Full Version.The full paper [8] provides the omitted proofs and
an additional result showing that the space of non-losing proposals
can be, in a certain sense, highly disconnected.

3 FINDING NON-LOSING PROPOSALS IS
HARD

In this section we show that (⌊𝑡/2⌋ + 2)-Win-OR-Tie-PRop is NP-
hard and as a corollary that 𝑘-Win-OR-Tie-PRop is NP-hard for
𝑘 ≥ (⌊𝑡/2⌋ + 2), unless 𝑘 is subpolynomially close to 𝑡 . We then
show that Win-OR-Tie-PRop is tractable with respect to three nat-
ural parameters.

TheoRem 2. For any function 𝑘 ≥ ⌊𝑡/2⌋ +2, there is a polynomial
Karp reduction from 𝑘-Una-Win-PRop to 𝑘-Win-OR-Tie-PRop.

PRoof. Consider an 𝑛×𝑡 instance P of 𝑘-Una-Win-PRop. From
P we construct in polynomial time a new instance P′ by vertically
concatenating 𝑛 copies of the gadget 𝐺 = P𝑡 defined in Lemma
1. Formally, P′ = P | 𝐺1 | . . . | 𝐺𝑛 , where | denotes vertical
concatenation of preferencematrices and (𝐺𝑖 )𝑖∈[𝑛] are copies of𝐺.
To show correctness, let 𝑝 be a proposal with |𝑝 | ≥ 𝑘. Proposal 𝑝 is
unanimously winning in P iff 𝑏𝑝,P = 𝑛, or equivalently 𝑏𝑝,P ≥ 𝑛.
This is equivalent, by adding𝑛·𝑏𝑝,𝐺 to both sides, to𝑏𝑝,P+𝑛·𝑏𝑝,𝐺 ≥
𝑛 +𝑛 · 𝑏𝑝,𝐺 , which is the same as 𝑏𝑝,P′ ≥ 0 by Lemma 1. Crucially,
observe that IWM is also all-ones for P′, since each column of 𝐺
has more ones than zeros. □

TheoRem 3. (⌊𝑡/2⌋ + 2)-Una-Win-PRop is NP-hard even when
restricted to the odd 𝑛, odd 𝑡 case or the even 𝑛, odd 𝑡 case.

PRoof. Before proceeding, we make a few observations and no-
tational conveniences. Namely, we see votes 𝑣𝑖 as sets 𝑣𝑖 ⊆ [𝑡], and
we see potential proposals 𝑝 as vectors in {±1}𝑡 , with the corre-
spondence 0 ↦→ −1, 1 ↦→ 1. Under these assumptions, a voter with
vote 𝑣 approves of proposal 𝑝 if and only if

∑
𝑖∈𝑣 𝑝𝑖 −

∑
𝑖∉𝑣 𝑝𝑖 > 0.

Note that possible inequalities induced by a voter, being of the
form

∑
𝑖∈𝑣 𝑝𝑖 −

∑
𝑖∉𝑣 𝑝𝑖 > 0, correspond bijectively with inequali-

ties of the form
∑
𝑖 𝑐𝑖𝑝𝑖 > 0, where 𝑐 ∈ {±1}𝑡 .

Armed as such, we proceed by reduction from Independent Set,
similarly to [10]. Assume we have a graph𝐺 = (𝑉 , 𝐸), with |𝑉 | = 𝑛
vertices and |𝐸 | = 𝑚 edges, and a number 𝑘 . We will show how
to construct a profile P in polynomial time such that 𝐺 has an
independent set of size at least 𝑘 if and only if there is a proposal
𝑝 with |𝑝 | ≥ ⌊𝑡/2⌋ + 2.

For the agenda, we introduce two issues per vertex of𝑉 , namely
𝑥1, 𝑥

′
1, 𝑥2, 𝑥

′
2, . . . , 𝑥𝑛, 𝑥

′
𝑛 . Moreover, for some ℓ to be chosen later,

we also introduce issues 𝑎1, 𝑎′1, 𝑎2, 𝑎
′
2, . . . , 𝑎ℓ , 𝑎

′
ℓ . Finally, we intro-

duce an additional issue 𝑎0. For convenience, let 𝐴 = {𝑎0, 𝑎1, 𝑎′1,
𝑎2, 𝑎

′
2, . . . , 𝑎ℓ , 𝑎

′
ℓ }.

Votes to be added as rows of P will be presented in the linear
inequality notation from above.We add toP the following inequal-
ities:
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Set 1. We enforce that for all 𝛼 ∈ 𝐴 it holds that 𝛼 = 1. To do
this, write𝐴 arbitrarily as𝐴 = {𝛼}∪𝐴0∪𝐴1, where |𝐴0 | = |𝐴1 | = ℓ
and add votes corresponding to the following inequalities:

𝛼 +
∑
𝑦∈𝐴0

𝑦 −
∑
𝑦∈𝐴1

𝑦 +
∑
𝑖∈[𝑛]

(𝑥𝑖 − 𝑥 ′𝑖 ) > 0 (1)

𝛼 −
∑
𝑦∈𝐴0

𝑦 +
∑
𝑦∈𝐴1

𝑦 −
∑
𝑖∈[𝑛]

(𝑥𝑖 − 𝑥 ′𝑖 ) > 0 (2)

Note that adding together the two inequalities gives 2𝛼 > 0, which
happens iff 𝛼 = 1. However, having 𝛼 = 1 for all 𝛼 ∈ 𝐴 is so far not
enough to guarantee that all inequalities in Set 1 hold.

Set 2. We enforce that for all 𝑖 ∈ [𝑛] it holds that 𝑥𝑖 = 𝑥 ′𝑖 . To do
this, we add votes corresponding to the following inequalities:

𝑥𝑖 − 𝑥 ′𝑖 +
∑

𝑗∈[𝑛]\{𝑖 }
(𝑥 𝑗 − 𝑥 ′𝑗 ) + 𝑎0 +

∑
𝑗∈[ℓ ]
(𝑎 𝑗 − 𝑎′𝑗 ) > 0 (3)

𝑥𝑖 − 𝑥 ′𝑖 −
∑

𝑗∈[𝑛]\{𝑖 }
(𝑥 𝑗 − 𝑥 ′𝑗 ) + 𝑎0 −

∑
𝑗∈[ℓ ]
(𝑎 𝑗 − 𝑎′𝑗 ) > 0 (4)

Note that adding together the two inequalities gives 2(𝑥𝑖 − 𝑥 ′𝑖 +
𝑎0) > 0, which is equivalent to 𝑥𝑖 − 𝑥 ′𝑖 + 𝑎0 > 0, which is the
same as 𝑥𝑖 − 𝑥 ′𝑖 ≥ 0 since 𝑎0 = 1 holds in the presence of Set 1.
By changing the signs of 𝑥𝑖 and 𝑥 ′𝑖 in (3) and (4) we get analogous
inequalities (5) and (6) enforcing that 𝑥 ′𝑖 − 𝑥𝑖 ≥ 0, which we also
add to P:

𝑥 ′𝑖 − 𝑥𝑖 +
∑

𝑗∈[𝑛]\{𝑖 }
(𝑥 𝑗 − 𝑥 ′𝑗 ) + 𝑎0 +

∑
𝑗∈[ℓ ]
(𝑎 𝑗 − 𝑎′𝑗 ) > 0 (5)

𝑥 ′𝑖 − 𝑥𝑖 −
∑

𝑗∈[𝑛]\{𝑖 }
(𝑥 𝑗 − 𝑥 ′𝑗 ) + 𝑎0 −

∑
𝑗∈[ℓ ]
(𝑎 𝑗 − 𝑎′𝑗 ) > 0 (6)

Altogether, we get that 𝑥𝑖 = 𝑥 ′𝑖 . Now, assuming both Set 1 and
Set 2 have been added, we can see that not only they imply that
𝛼 = 1,∀𝛼 ∈ 𝐴 and 𝑥𝑖 = 𝑥 ′𝑖 ,∀𝑖 ∈ [𝑛], as we have shown, but also
the other way around. In particular, substituting 𝛼 = 1,∀𝛼 ∈ 𝐴 and
𝑥𝑖 = 𝑥 ′𝑖 ,∀𝑖 ∈ [𝑛] into (1)–(6) will each time yield 1 > 0, so Sets 1
and 2 are satisfied if and only if 𝛼 = 1,∀𝛼 ∈ 𝐴 and 𝑥𝑖 = 𝑥 ′𝑖 ,∀𝑖 ∈ [𝑛].

Set 3. We enforce the independent set constraints. For each edge
(𝑎,𝑏) ∈ 𝐸 wewant to enforce the constraint that 𝑥𝑎+𝑥𝑏 < 1, which
is equivalent over the integers to 𝑥𝑎 +𝑥𝑏 < 0.5. This is the same as
2(𝑥𝑎 + 𝑥𝑏 ) < 1, or 𝑥𝑎 + 𝑥𝑏 + 𝑥 ′𝑎 + 𝑥 ′𝑏 < 1, equivalently. Multiplying
with −1, this is the same as −𝑥𝑎 − 𝑥𝑏 − 𝑥 ′𝑎 − 𝑥 ′𝑏 > −1. Finally, this
is equivalent to −𝑥𝑎 −𝑥𝑏 −𝑥 ′𝑎 −𝑥 ′𝑏 +𝑎0 > 0. Introducing 0 terms to
ensure variables are used exactly once, we get the equivalent form,
which we add to P:

−𝑥𝑎 − 𝑥𝑏 − 𝑥 ′𝑎 − 𝑥 ′𝑏 + 𝑎0+∑
𝑗∈[𝑛]\{𝑎,𝑏}

(𝑥 𝑗 − 𝑥 ′𝑗 ) +
∑
𝑗∈[ℓ ]
(𝑎 𝑗 − 𝑎′𝑗 ) > 0 (7)

Set 4. Finally, let us enforce the constraint that the independent
set has size at least 𝑘 . To do this, note that:∑

𝑖∈[𝑛]:𝑥𝑖=1
𝑥𝑖 ≥ 𝑘 ⇐⇒ 2

∑
𝑖∈[𝑛]:𝑥𝑖=1

𝑥𝑖 ≥ 2𝑘

⇐⇒
∑

𝑖∈[𝑛]:𝑥𝑖=1
𝑥𝑖 + ©­«𝑛 +

∑
𝑖∈[𝑛]:𝑥𝑖=−1

𝑥𝑖
ª®¬ ≥ 2𝑘

⇐⇒
∑
𝑖∈[𝑛]

𝑥𝑖 ≥ 2𝑘 − 𝑛

⇐⇒
∑
𝑖∈[𝑛]

(𝑥𝑖 + 𝑥 ′𝑖 ) + 𝑎0 > 4𝑘 − 2𝑛 (8)

The last line can be written as
∑
𝑖∈[𝑛] (𝑥𝑖 +𝑥 ′𝑖 ) +𝑎0 + 2(𝑛 − 2𝑘) > 0,

so, as long as ℓ ≥ |𝑛 − 2𝑘 |, we can write 2(𝑛 − 2𝑘) as a linear ±1
combination of the variables in𝐴 \ {𝑎0}, thus getting an inequality
that uses all variables exactly once, which we can then add to P.

These being said, let us now investigate the (implicit in the defi-
nition of (⌊𝑡/2⌋+2)-Una-Win-PRop) constraint that at least ⌊𝑡/2⌋+
2 of the variables in the sought outcome have to take value 1. In
our case, 𝑡 = 2𝑛 + 2ℓ + 1. Like before, the first step is to translate
from the number of ones to the sum of the variables. Doing so, at
least ⌊𝑡/2⌋ + 2 ones in the outcome is equivalent to:∑
𝑖∈[𝑛]

(𝑥𝑖 + 𝑥 ′𝑖 ) + 𝑎0 +
∑
𝑖∈[ℓ ]

(𝑎𝑖 + 𝑎′𝑖 ) ≥ 2(⌊𝑡/2⌋ + 2) − (2𝑛 + 2ℓ + 1)

⇐⇒
∑
𝑖∈[𝑛]

(𝑥𝑖 + 𝑥 ′𝑖 ) + 𝑎0 ≥ 3 − 2ℓ

The quantity in the left-hand side is the same as in (8), and note
that 4𝑘 − 2𝑛 ≥ 3 − 2ℓ ⇐⇒ ℓ ≥ 𝑛 + 3/2 − 2𝑘 . When this happens,
the inequality in Set 4 is stronger than the constraint on the total
number of ones, so we can ignore the constraint on the number of
ones. Therefore, assuming that 𝑘 ≥ 1, we can set ℓ = 𝑛 such that
both ℓ ≥ |𝑛 − 2𝑘 | and 4𝑘 − 2𝑛 ≥ 3 − 2ℓ hold true.

There is onemore thing to take care of: we need to ensure that in
the so-constructed judgements matrix P every column has more
ones than zeros, and this is not yet true for our construction. To
mitigate the issue, note the following for constraint Sets 4 and 1:

Set 1. In Equations (1) and (2) every variable appears once pos-
itive and once negative, except for 𝛼 itself, which appears twice
positive. This being said, if at the end we are left with a matrix
violating the required property in some column corresponding to
a variable in 𝐴, we can add copies of the corresponding inequali-
ties in Set 1 polinomially many times until such violations are no
longer present, since each added copy only changes the one-zero
balance of a single column, increasing it.

Set 4. Here only variables in 𝐴 ever appear negative. Therefore,
if at some point we have a matrix violating the property for some
variable 𝑥𝑖 or 𝑥 ′𝑖 , then we add an additional copy of Set 4, hence
increasing the one-zero balance of variables 𝑥𝑖 and 𝑥 ′𝑖 by 1. After
polynomially many such additions, we reach a matrix satisfying
the property for all columns corresponding to vertices in the graph.

These being said, our reduction can now be summarized as fol-
lows: first, we build a judgements matrix P as described, then, we
perform the transformation described for Set 4 above until all vari-
ables of the form 𝑥𝑖 and 𝑥 ′𝑖 have positive one-zero balances on their
columns, and finally we perform the transformation described for
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Set 1 above until also all columns corresponding to variables in
𝐴 have positive one-zero balances. Observe that the produced in-
stance has 𝑡 = 2𝑛 + 2ℓ + 1, which is odd. To control the parity of
the number of voters, we can add one more copy of Set 4 in the
post-processing stage if needed, as the subsequent transformations
using Set 1 do not change the parity of the number of voters. □

Putting together Theorem 2 and Theorem 3 we get our main
result as the following:

TheoRem 4. (⌊𝑡/2⌋+2)-Win-OR-Tie-PRop is NP-hard evenwhen
restricted to the odd 𝑛, odd 𝑡 case or the even 𝑛, odd 𝑡 case.1

However, maybe checking for the existence of a policy with
more agreements is not as difficult? After all, checking for distance
at most any given constant can be done in polynomial time. In the
full version we prove a more technical form of Theorem 3:

TheoRem 5. 𝑘-Una-Win-PRop is NP-hard if 𝑡 − 𝑘 is Ω(𝑡𝜖 ) for
some constant 0 < 𝜖 ≤ 1.

CoRollaRy 6. 𝑘-Win-OR-Tie-PRop is NP-hard if 𝑘 ≥ ⌊𝑡/2⌋ + 2
and 𝑡−𝑘 is Ω(𝑡𝜖 ) for some constant 0 < 𝜖 ≤ 1. For instance, deciding
whether a non-losing outcome agreeing in at least 99% of all issues,
or in at least 𝑡 −

√
𝑡 issues is NP-hard.

We now turn our attention to parameterized complexity.

TheoRem 7. Win-OR-Tie-PRop is FPT with respect to any of the
parameters 𝑛, 𝑡 and ℎ = max𝑖, 𝑗 𝑑𝐻 (𝑣𝑖 , 𝑣 𝑗 ). Moreover, Una-Win-
PRop is FPT with respect to 𝑛 and 𝑡 .

PRoof. For parameter 𝑡 , a straightforward enumeration of all
proposals 𝑝 followed by counting the number of voters approving
and disapproving 𝑝 already achieves complexity 𝑂 (𝑛𝑡2𝑡 ) for both
problems, proving the claim. For parameter ℎ, the situation is not
very different for 𝑘-Win-OR-Tie-PRop: in [20] it is shown that, for
𝑡 above a certain threshold, if ℎ < (

√
2 − 1)𝑡, then issue-wise ma-

jority does not lose, fact which can be easily checked for before
proceeding further. Otherwise, we know that ℎ ≥ (

√
2 − 1)𝑡 , in

which case 𝑡 ≤ (1 +
√
2)ℎ. Hence, exhaustive search in this case

runs in time 𝑂 (𝑛𝑡2𝑡 ) ⊆ 𝑂 (𝑛ℎ2(1+
√
2)ℎ) ⊆ 𝑂 (𝑛5.34ℎ). Finally, the

proofs of tractability with respect to 𝑛 are more involved, and are
presented next.

We begin with 𝑘-Una-Win-PRop. The proof proceeds by for-
mulating the problem as an integer linear program, similarly to
[10]. The main insight here is that there can be at most 2𝑛 distinct
columns in the preference matrix. For every possible column 𝑐 ∈
B𝑛 , let 𝑡𝑐 denote the number of columns of type 𝑐; i.e. columns iden-
tical to 𝑐; present in the matrix. Since identical columns are, in all
practical regards, interchangeable, introduce variables (𝑥𝑐 )𝑐∈B𝑛 ,
where 𝑥𝑐 denotes for how many of the 𝑡𝑐 columns of type 𝑐 the
sought proposal will have a one at the corresponding positions.
Note that then 𝑡𝑐−𝑥𝑐 columnswill have a zero at the corresponding
positions. With the following inequality, added for every 𝑐 ∈ B𝑛 ,
we enforce consistency requirements:

0 ≤ 𝑥𝑐 ≤ 𝑡𝑐 (9)

1For the odd 𝑛, odd 𝑡 case we actually need to use P′ = P | 𝐺1 | . . . | 𝐺𝑛−1 in the
proof of Theorem 2, but the details are analogous.

The following inequality is our “optimization objective”:∑
𝑐∈B𝑛

𝑥𝑐 ≥ 𝑘 (10)

The following inequality, added for every voter 𝑖 ∈ [𝑛], asserts that
𝑖 does not disapprove of the proposal described by 𝑥 :∑

𝑐∈B𝑛
𝑐𝑖=1

𝑥𝑐 +
∑
𝑐∈B𝑛
𝑐𝑖=0

(𝑡𝑐 − 𝑥𝑐 ) >
𝑡

2

which, since the 𝑡𝑐 terms sum to 𝑡 − |𝑣𝑖 |, is equivalent to∑
𝑐∈B𝑛
𝑐𝑖=1

𝑥𝑐 −
∑
𝑐∈B𝑛
𝑐𝑖=0

𝑥𝑐 > |𝑣𝑖 | −
𝑡

2

which can be rewritten in a more standard form as:∑
𝑐∈B𝑛
𝑐𝑖=1

𝑥𝑐 −
∑
𝑐∈B𝑛
𝑐𝑖=0

𝑥𝑐 ≥ |𝑣𝑖 | −
⌊
𝑡 − 1
2

⌋
(11)

Together, the constraint sets described by (9), (10), and (11) make
up our ILP. The number of variables is 2𝑛 and the number of con-
straints is 2𝑛+1+1+𝑛,meaning that the associated systemmatrix is
of shape (2𝑛+1+𝑛+1)×(2𝑛+1), the total number of cells hence being
𝑂 (4𝑛) .The coefficients in the matrix are bounded in absolute value
by 𝑡 , meaning that the ILP instance can be stored in𝑂 (4𝑛 log 𝑡) bits.
Lenstra’s Algorithm (and subsequent improvements of it) solve an
ILP in time exponential in the number of variables, but linear in
the number of bits required to represent the instance matrix, so
our result follows. To show that 𝑘-Win-OR-Tie-PRop is FPT with
respect to 𝑛, we keep the same ILP-based proof idea, but the details
need some refining, described in the full version of the paper. □

4 THE CASE 𝑘 = ⌊𝑡/2⌋ + 1
Wehave seen that (⌊𝑡/2⌋+2)-Win-OR-Tie-PRop is NP-hard. Fritsch
and Wattenhofer [15] gave a nonconstructive proof that if 𝑡 is odd
then there exists a non-losing proposal 𝑝 with |𝑝 | ≥ ⌊𝑡/2⌋ + 1.
Their proof hinges on an algebraic combinatorial identity, which
the authors found difficult to interpret intuitively. Moreover, they
left finding such a proposal in polynomial time open. The purpose
of this section is threefold: first, by uncovering voter-wise struc-
ture preserving symmetries over the space of proposals, we give a
new probabilistic argument for their result, extending also to the
even 𝑡 case; then, we show how this leads to a simple randomized
algorithm running in expected polynomial time assuming odd 𝑡
and Δ > 0 (see notation below); finally, using derandomization,
we give a deterministic polynomial-time algorithm for finding a
non-losing proposal 𝑝 with |𝑝 | ≥ ⌊𝑡/2⌋ + 1, this time for general 𝑡
and Δ.We note that, while the deterministic algorithm can handle
general instances, the randomized algorithm is more efficient and
easier to describe and implement.

Throughout the section, we work with a fixed 𝑛 × 𝑡 preference
profile P . We write Δ for the total number of ones minus zeros
in matrix P . Since we assumed that issue-wise majority is the all-
ones vector, it follows that Δ ≥ 0 is guaranteed.
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4.1 Structure-Preserving Symmetries and a
Probabilistic Proof

In this section for each voterwe construct two structure-preserving
bijective correspondences between proposals. We use these to de-
rive a third correspondence with the property that the signs of 𝑏𝑝
and 𝑏𝑣,𝑝 are preserved as long as they are non-zero, fact which
will be instrumental in our proof. We believe these observed sym-
metries to be of independent interest. Afterwards, we define two
probabilistic thought experiments: one whose expectation is easy
to compute, and can be seen to be non-negative, but alone does not
mean much, and one whose expectation might appear difficult to
compute, but a non-negative value would easily imply our conclu-
sion. Using the third correspondence above we then deduce that
the two expectations are equal, implying the result of [15] for ar-
bitrary parity of 𝑡 .

To begin, consider some voter whose vote is 𝑣 with |𝑣 | = ℓ . Let
𝐵∗ ⊆ B𝑡 be the set of proposals 𝑝 such that 𝑏𝑝 ≠ 0 and 𝑏𝑣,𝑝 ≠ 0.
We classify proposals in 𝐵∗ into four distinct categories, called
𝑇00,𝑇01,𝑇10,𝑇11. In particular, the first bit of the subscript is 0/1
depending on whether 𝑏𝑝 is negative/positive, while the second
bit is 0/1 depending on whether 𝑏𝑣,𝑝 is negative/positive. We now
define two bijective maps 𝑓𝑣,1, 𝑓𝑣,0 : 𝐵∗ → 𝐵∗ . We abbreviate 𝑓𝑣,1
and 𝑓𝑣,0 to simply 𝑓1 and 𝑓0 when 𝑣 is clear from context. Without
loss of generality, assume 𝑣 has ones in its first ℓ issues and zeros
in the other 𝑡 − ℓ issues. Consequently, any proposal 𝑝 ∈ 𝐵∗ can
be written as 𝑝 = 𝑝1𝑝0, where 𝑝1 ∈ Bℓ and 𝑝0 ∈ B𝑡−ℓ . For con-
venience, we also write 𝑣 = 𝑣1𝑣0, where 𝑣1 = 1ℓ and 𝑣0 = 0𝑡−ℓ .
The two bijective maps are then given by 𝑓1 (𝑝1𝑝0) = 𝑝1𝑝0 and
𝑓0 (𝑝1𝑝0) = 𝑝1𝑝0.

Lemma 8. 𝑓0 maps proposals of type 𝑇𝑖 𝑗 to proposals of type 𝑇𝑗𝑖 ,
for 𝑖, 𝑗 ∈ {0, 1}. Moreover, for any 𝑝 ∈ 𝐵∗ we have 𝑏𝑣,𝑓0 (𝑝 ) = 𝑏𝑝 .

PRoof. Consider a proposal 𝑝 = 𝑝1𝑝0 ∈ 𝐵∗ . Then, 𝑏 𝑓0 (𝑝 ) =
𝑏𝑝1𝑝0 = 𝑏𝑝1 + 𝑏𝑝0 = 𝑏𝑣1,𝑝1 + 𝑏𝑣0,𝑝0 = 𝑏𝑣,𝑝 . Similarly, 𝑏𝑣,𝑓0 (𝑝 ) =
𝑏𝑣1𝑣0,𝑝1𝑝0 = 𝑏𝑣1,𝑝1 + 𝑏𝑣0,𝑝0 = 𝑏𝑝1 + 𝑏𝑝0 = 𝑏𝑝1𝑝0 = 𝑏𝑝 . Therefore,
𝑓0 swapped the two quantities 𝑏𝑝 and 𝑏𝑣,𝑝 , meaning that if 𝑝 is of
type 𝑇𝑖 𝑗 , then 𝑓0 (𝑝) is of type 𝑇𝑗𝑖 . □

Lemma 9. 𝑓1 maps proposals of type 𝑇𝑖 𝑗 to type 𝑇(1− 𝑗 ) (1−𝑖 ) pro-
posals, for 𝑖, 𝑗 ∈ {0, 1}. Moreover, for any 𝑝 we have 𝑏𝑣,𝑓1 (𝑝 ) = −𝑏𝑝 .

PRoof. Consider a proposal 𝑝 = 𝑝1𝑝0 ∈ 𝐵∗ . Then, 𝑏 𝑓1 (𝑝 ) =
𝑏𝑝1𝑝0 = 𝑏𝑝1 + 𝑏𝑝0 = −𝑏𝑣1,𝑝1 − 𝑏𝑣0,𝑝0 = −𝑏𝑣,𝑝 . Similarly, 𝑏𝑣,𝑓1 (𝑝 ) =
𝑏𝑣1𝑣0,𝑝1𝑝0 = 𝑏𝑣1,𝑝1 +𝑏𝑣0,𝑝0 = −𝑏𝑝1 −𝑏𝑝0 = −𝑏𝑝1𝑝0 = −𝑏𝑝 .Therefore,
𝑓1 swapped and negated the two quantities 𝑏𝑝 and 𝑏𝑣,𝑝 , meaning
that if 𝑝 is of type 𝑇𝑖 𝑗 , then 𝑓1 (𝑝) is of type 𝑇(1− 𝑗 ) (1−𝑖 ) . □

Lemma 8 and Lemma 9 are illustrated in Figure 2a.
Using 𝑓𝑣,0 and 𝑓𝑣,1 we can now define a “mixed” bijective map

𝑓𝑣 : 𝐵∗ → 𝐵∗, as follows: let 𝑝 ∈ 𝐵∗ be arbitrary, if 𝑝 is of types𝑇00
or 𝑇11, then 𝑓𝑣 maps 𝑝 ↦→ 𝑓𝑣,0 (𝑝), otherwise 𝑓𝑣 maps 𝑝 ↦→ 𝑓𝑣,1 (𝑝).
Note that the three bijective maps are self-inverse. The new map
𝑓𝑣 inherits the properties of the other maps from Lemmas 8 and 9:

CoRollaRy 10. 𝑓𝑣 maps proposals of type𝑇𝑖 𝑗 to proposals of type
𝑇𝑖 𝑗 . Moreover, for any proposal 𝑝 of type𝑇00 or𝑇11 we have𝑏𝑣,𝑓𝑣 (𝑝 ) =
𝑏𝑝 , and for any proposal 𝑝 of type𝑇01 or𝑇10 we have 𝑏𝑣,𝑓𝑣 (𝑝 ) = −𝑏𝑝 .
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(a) Bijections 𝑓𝑣,0 and 𝑓𝑣,1 .
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(b) Bijection 𝑓𝑣 .

Figure 2: Bijections 𝑓𝑣,0, 𝑓𝑣,1 and 𝑓𝑣 corresponding to vote 𝑣 .

PRoof. First, consider a proposal 𝑝 of type𝑇𝑖 𝑗 for 𝑖 𝑗 ∈ {00, 11}.
By definition, 𝑓𝑣 maps 𝑝 ↦→ 𝑓𝑣,0 (𝑝). By Lemma 8 we have that
𝑓𝑣,0 (𝑝) is of type𝑇𝑗𝑖 , which is the same as𝑇𝑖 𝑗 for 𝑖 𝑗 ∈ {00, 11}, and
that 𝑏𝑣,𝑓0 (𝑝 ) = 𝑏𝑝 . Second, consider a proposal 𝑝 of type 𝑇𝑖 𝑗 for
𝑖 𝑗 ∈ {01, 10}. By definition, 𝑓𝑣 maps 𝑝 ↦→ 𝑓𝑣,1 (𝑝). By Lemma 9 we
have that 𝑓𝑣,1 (𝑝) is of type𝑇(1− 𝑗 ) (1−𝑖 ) , which is the same as𝑇𝑖 𝑗 for
𝑖 𝑗 ∈ {01, 10}, and that 𝑏𝑣,𝑓1 (𝑝 ) = −𝑏𝑝 , finishing the proof. □

Corollary 10 is illustrated in Figure 2b. Next, we introduce the
first thought experiment, which alone would not be very helpful,
but its expectation is relatively straightforward to compute. For
brevity, introduce the notation 𝐵𝑚 = {𝑝 ∈ B𝑡 : |𝑝 | > 𝑡/2}, whose
size is |𝐵𝑚 | = 2𝑡−1 for odd 𝑡 and |𝐵𝑚 | = 2𝑡−1 − 1

2
( 𝑡
𝑡/2

)
for even 𝑡 .

Thought Experiment TE1. We sample a proposal 𝑝 ∈ 𝐵𝑚 uni-
formly at random and start with a global counter𝑋 = 0; each voter
𝑖 then looks at their own vote 𝑣𝑖 and adds 1 to 𝑋 for each position
in which 𝑣𝑖 and 𝑝 agree and subtracts 1 from 𝑋 for each position
where they disagree. Overall, voter 𝑖 adds 𝑏𝑣𝑖 ,𝑝 to 𝑋 . We are inter-
ested in the expected value E[𝑋 ].

TheoRem 11. E[𝑋 ] = Δ|𝐵𝑚 |−1
(𝑡−1
𝑡/2

)
, where Δ denotes the num-

ber of ones minus the number of zeros in the preference profile P.

PRoof. Write 𝑋 =
∑𝑛
𝑖=1

∑𝑡
𝑗=1 𝑋𝑖, 𝑗 , where 𝑋𝑖, 𝑗 = 1 if 𝑣𝑖, 𝑗 = 𝑝 𝑗 ,

and −1 otherwise. By linearity of expectation

E[𝑋 ] = E

𝑛∑
𝑖=1

𝑡∑
𝑗=1

𝑋𝑖, 𝑗

 =
𝑛∑
𝑖=1

𝑡∑
𝑗=1

E
[
𝑋𝑖, 𝑗

]
so we only need to compute E

[
𝑋𝑖, 𝑗

]
. For the case 𝑣𝑖, 𝑗 = 1, we have

that E
[
𝑋𝑖, 𝑗

]
= P(𝑝 𝑗 = 1) − P(𝑝 𝑗 = 0), while for the case 𝑣𝑖, 𝑗 = 0,

we have that E
[
𝑋𝑖, 𝑗

]
= P(𝑝 𝑗 = 0) − P(𝑝 𝑗 = 1). Therefore, we get

that E[𝑋 ] = Δ(P(𝑝 𝑗 = 1) −P
(
𝑝 𝑗 = 0)

)
. Because 𝑝 ∈ 𝐵𝑚 is sampled

uniformly, it follows that P(𝑝 𝑗 = 1)−P(𝑝 𝑗 = 0) = |𝐵𝑚 |−1 (𝑁1−𝑁0),
where (𝑁𝑘 )𝑘∈{0,1} is the total number of proposals 𝑝 ∈ 𝐵𝑚 such
that 𝑝 𝑗 = 𝑘. Hence, it remains to compute 𝑁1 − 𝑁0.

By symmetry, (𝑁𝑘 )𝑘∈{0,1} do not depend on 𝑗 , so assume with-
out loss of generality that 𝑗 = 1. Consider the bijective map 𝑞 :
B𝑡 → B𝑡 flipping the first entry in the proposal. Consider a pro-
posal 𝑝 ∈ 𝐵𝑚 such that 𝑝1 = 1. If |𝑝 | > ⌊𝑡/2⌋ + 1, then |𝑞(𝑝) | ≥
⌊𝑡/2⌋ +1 and 𝑞(𝑝)1 = 0 hold, so 𝑝 and 𝑞(𝑝) cancel each other out in
𝑁1−𝑁0 .This leaves us with counting in 𝑁1 those proposals 𝑝 ∈ B𝑡
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with |𝑝 | = ⌊𝑡/2⌋ + 1 and 𝑝1 = 1, which are the only ones not ac-
counted for. This is the number of ways to choose ⌊𝑡/2⌋ entries
from 𝑡 − 1 available slots, as 𝑝1 is set to 1, equalling

( 𝑡−1
⌊𝑡/2⌋

)
. □

Since Δ ≥ 0, it follows that E[𝑋 ] ≥ 0, but this is not very useful
on its own, as it only implies that there is a proposal 𝑝 ∈ 𝐵𝑚 with∑𝑛
𝑖=1 𝑏𝑣𝑖 ,𝑝 ≥ 0,which is already true for 𝑝 being the all-ones vector,

which might lose against all-zeros; i.e., Anscombe’s paradox. We
now define a slightly less natural thought experiment, computing
a number𝑌 . Afterwards, we will use our voter-wise bijective maps
𝑓𝑣𝑖 to conclude that E[𝑌 ] = E[𝑋 ], from which our main result will
follow.

Thought Experiment TE2. We sample a proposal 𝑝 ∈ 𝐵𝑚 uni-
formly at random and start with a global counter𝑌 = 0. Each voter
𝑖 then compares 𝑝 with their own vote 𝑣𝑖 . If 𝑖 approves of 𝑝 , they
add 𝑏𝑝 to𝑌 ; if 𝑖 disapproves of 𝑝 , they subtract 𝑏𝑝 from𝑌 ; and if 𝑖 is
indifferent for 𝑝 , then they leave 𝑌 unchanged. We are interested
in the expected value E[𝑌 ].

For a proposal 𝑝 ∈ B𝑡 , recall that 𝑏𝑝,P = 𝑎𝑝,P − 𝑑𝑝,P is the
number of voters approving 𝑝 minus the number of voters disap-
proving 𝑝 in preference profile P. Knowing this, it is useful to note
that 𝑌 = 𝑏𝑝 ·𝑏𝑝,P = (2|𝑝 | − 𝑡) ·𝑏𝑝,P . The following surprising con-
nection constitutes the key insight in our argument.

TheoRem 12. E[𝑋 ] = E[𝑌 ] = Δ|𝐵𝑚 |−1
(𝑡−1
𝑡/2

)
To prove this, write 𝑌 =

∑
𝑖∈[𝑛] 𝑌𝑖 , where 𝑌𝑖 is 𝑏𝑝 if 𝑖 approves

of 𝑝 , is −𝑏𝑝 if 𝑖 disapproves of 𝑝 , and is 0 otherwise. Recall that
𝑋 =

∑
𝑖∈[𝑛] 𝑏𝑣𝑖 ,𝑝 . By linearity of expectation, it suffices to show

that E[𝑏𝑣𝑖 ,𝑝 ] = E[𝑌𝑖 ], which we do in the following.

Lemma 13. For any voter 𝑖 ∈ [𝑛], we have E[𝑏𝑣𝑖 ,𝑝 ] = E[𝑌𝑖 ] .

PRoof. Let 𝐵+ and 𝐵− be the sets of proposals in 𝐵𝑚 that 𝑖 ap-
proves and disapproves of, respectively. For brevity, write 𝑣 = 𝑣𝑖 .
Then, we can write:

E[𝑏𝑣,𝑝 ] = |𝐵𝑚 |−1
∑
𝑝∈𝐵𝑚

𝑏𝑣,𝑝 = |𝐵𝑚 |−1 ©­«
∑
𝑝∈𝐵+

𝑏𝑣,𝑝 +
∑
𝑝∈𝐵−

𝑏𝑣,𝑝
ª®¬

= |𝐵𝑚 |−1 ©­«
∑
𝑝∈𝐵+

𝑏 𝑓𝑣 (𝑝 ) −
∑
𝑝∈𝐵−

𝑏 𝑓𝑣 (𝑝 )
ª®¬

For the last equality, we used Corollary 10 and the fact that 𝑓𝑣 is
self-inverse. Moreover, from the same we know that 𝑝 ∈ 𝐵𝑠 iff
𝑓𝑣 (𝑝) ∈ 𝐵𝑠 , for any 𝑠 ∈ {+,−}. Since 𝑓𝑣 is a bijection, we can there-
fore make the change of variable 𝑝 ↦→ 𝑓𝑣 (𝑝) in both sums to get:

= |𝐵𝑚 |−1 ©­«
∑
𝑝∈𝐵+

𝑏𝑝 −
∑
𝑝∈𝐵−

𝑏𝑝
ª®¬ = E[𝑌𝑖 ]

The fact that the last sum equals E[𝑌𝑖 ] followed immediately from
the definition of 𝑌𝑖 . □

From this, out main result follows:

TheoRem 14. Assuming Δ ≥ 0, there exists a non-losing proposal
𝑝 ∈ 𝐵𝑚 . Assuming Δ > 0, there exists a winning proposal 𝑝 ∈ 𝐵𝑚 .

PRoof. From Theorem 12 we get that E[𝑌 ] = Δ|𝐵𝑚 |−1
( 𝑡−1
⌊𝑡/2⌋

)
,

which is ≥ 0 when Δ ≥ 0 and > 0 when Δ > 0. As a result, given
that 𝑌 = 𝑏𝑝 · 𝑏𝑝,P , where 𝑏𝑝 = 2|𝑝 | − 𝑡 > 0 for 𝑝 ∈ 𝐵𝑚 , it follows
there is a proposal 𝑝 ∈ 𝐵𝑚 with 𝑏𝑝,P ≥ 0 for Δ ≥ 0 and 𝑏𝑝,P > 0
for Δ > 0, completing the proof. □

4.2 Polynomial Computation of Winning
Proposals

From Theorem 14 we know that a non-losing (winning) proposal
𝑝 ∈ 𝐵𝑚 always exists, but a polynomial algorithm for finding it is
not guaranteed. In this section, we provide two such algorithms: a
simple and relatively efficient randomized algorithmwith expected
polynomial runtime for odd 𝑡 and Δ > 0, as well as a more intricate
deterministic polynomial-time algorithm for the general case.

We begin with a lemmawhichwill be useful for both algorithms.
Introduce the notation P𝑘 [·] = P[· given |𝑝 | = 𝑘] and similarly E𝑘 .

Lemma 15. There exists𝑘 ≥ ⌊𝑡/2⌋+1 s.t.E𝑘 [𝑏𝑝,P ] ≥ Δ
𝑡 |𝐵𝑚 |

( 𝑡−1
⌊𝑡/2⌋

)
.

PRoof. Write the expectation of 𝑌 as follows:

E[𝑌 ] =
𝑡∑

𝑘=⌊𝑡/2⌋+1
E𝑘 [𝑌 ]P( |𝑝 | = 𝑘)

From Theorem 12, we know that E[𝑌 ] = Δ|𝐵𝑚 |−1
( 𝑡−1
⌊𝑡/2⌋

)
. Since

the sum of the P(|𝑝 | = 𝑘) coefficients is 1, this means that there
is some number 𝑘 ≥ ⌊𝑡/2⌋ + 1 such that E𝑘 [𝑌 ] ≥ Δ|𝐵𝑚 |−1

( 𝑡−1
⌊𝑡/2⌋

)
.

Since 𝑌 = 𝑏𝑝 · 𝑏𝑝,P = (2|𝑝 | − 𝑡) · 𝑏𝑝,P , this means that E𝑘 [𝑌 ] =
(2𝑘 − 𝑡)E𝑘 [𝑏𝑝,P ], from which

E𝑘 [𝑏𝑝,P ] =
Δ

(2𝑘 − 𝑡) |𝐵𝑚 |

(
𝑡 − 1
⌊𝑡/2⌋

)
≥ Δ

𝑡 |𝐵𝑚 |

(
𝑡 − 1
⌊𝑡/2⌋

)
□

Randomized Algorithm. Here we assume that 𝑡 is odd and
Δ > 0. Since 𝑡 is odd, note that |𝐵𝑚 |−1 = 21−𝑡 , and, moreover,
that 𝑎𝑝,P = 𝑛 − 𝑑𝑝,P , from which 𝑏𝑝,P = 2𝑎𝑝,P − 𝑛. Additionally,
note that in this case P𝑘 (𝑏𝑝,P > 0) = P𝑘 (𝑎𝑝,P > 𝑛/2). From this,
employingMarkov’s inequality and bounding the central binomial
coefficient using a Stirling-type result leads to the following:

Lemma 16. Assume 𝑘 is such that E𝑘 [𝑏𝑝,P ] ≥ Δ21−𝑡
𝑡

( 𝑡−1
⌊𝑡/2⌋

)
, then

P𝑘 (𝑏𝑝,P > 0) ≥
√

2
𝜋

Δ
𝑛𝑡3/2

.

Armed as such, we now give our randomized algorithm in the
following theorem.

TheoRem 17. For odd 𝑡 , a winning proposal 𝑝 ∈ 𝐵𝑚 can be found
in expected time 𝑂 (𝑛2𝑡5/2/Δ). If only Δ > 0 is guaranteed, this is
𝑂 (𝑛2𝑡7/2). However, if each column has more ones than zeros, then
Δ ≥ 𝑡 , so the algorithm runs in expected time 𝑂 (𝑛2𝑡5/2).

PRoof. Introduce the notation 𝐾 = {⌊𝑡/2⌋ + 1, . . . , 𝑡}. We pro-
ceed in rounds. In each round we sample proposals (𝑝𝑘 )𝑘∈𝐾 such
that |𝑝𝑘 | = 𝑘 uniformly at random. If any of the sampled proposals
is winning, then we stop and return that proposal. Otherwise, we
proceed to the next round. Each round takes time 𝑂 (𝑛𝑡2) to exe-
cute, so we are left with bounding the expected number of rounds.
From Lemmas 15 and 16 there is 𝑘∗ ∈ 𝐾 such that P𝑘 (𝑏𝑝,P > 0) ≥√

2
𝜋

Δ
𝑛𝑡3/2

, meaning that in each round the sampled proposal 𝑝𝑘∗
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will be winning with at least this probability. As a result, by the
expectation of the geometric distribution, the expected number of
rounds until 𝑝𝑘∗ is winning is𝑂 (𝑛𝑡3/2/Δ), which is also an upper-
bound on the expected number of rounds.Therefore, our algorithm
runs in time 𝑂 (𝑛𝑡2𝑛𝑡3/2/Δ) = 𝑂 (𝑛2𝑡7/2/Δ), as required. □

Deterministic Algorithm. Recall that a proposal is a mapping
𝑝 : [𝑡] → B. A partial proposal is a mapping 𝑝 : [𝑡] → {0, 1, ‘?’}.
Seeing 𝑝 as a partial function, the domain of 𝑝 is D𝑝 = {𝑖 ∈ [𝑡] :
𝑝𝑖 ≠ ‘?’}. Partial proposal 𝑝 can also be seen as the set {𝑖 ↦→ 𝑝𝑖 :
𝑖 ∈ D𝑝 }. We extend our previous notation |𝑝 | consistently to mean
|{𝑖 : 𝑝𝑖 = 1}|.The union (in the sense of sets) 𝑝1 ∪ 𝑝2 of two partial
proposals 𝑝1 and 𝑝2 is defined whenever D𝑝1 ∩ D𝑝2 = ∅. We say
that a partial proposal 𝑝′ refines a partial proposal 𝑝 if for all 𝑖 ∈ [𝑡]
we have that either 𝑝𝑖 = 𝑝′𝑖 or 𝑝𝑖 = ‘?’. Given a partial proposal 𝑝 ,
one way to refine it is to pick 𝑖 ∉ D𝑝 and 𝑏 ∈ B and assign 𝑝𝑖 ← 𝑏;
under the set notation, the refined proposal is written 𝑝∪{𝑖 ↦→ 𝑏}.

To aid presentation, for a partial proposal 𝑝∗ introduce the nota-
tion P𝑝∗ [·] = P[· given 𝑝 refines 𝑝∗] and P𝑘,𝑝∗ [·] = P[· given |𝑝 | =
𝑘 and 𝑝 refines 𝑝∗] .We define E𝑝∗ and E𝑘,𝑝∗ similarly.The proof of
the following lemma is mostly a matter of syntactic manipulation,
so due to space constraints we present it in the full version.

Lemma 18. For any partial proposal 𝑝∗ : [𝑡] → {0, 1, ‘?’} and
any number |𝑝∗ | ≤ 𝑘 ≤ 𝑡 − |D𝑝∗ | the expectation E𝑘,𝑝∗ [𝑏𝑝,P ] can
be computed in polynomial time.

With this in mind, we can now state and prove our main result.

TheoRem 19. There is a polynomial-time deterministic algorithm
that computes a non-losing policy 𝑝 ∈ 𝐵𝑚 . If Δ > 0, then the com-
puted policy is winning.

PRoof. We only show the “non-losing” part of the assertion. For
the “winning” part. just replace non-negative with positive in the
following. First, for all values 𝑘 such that 𝑡/2 < 𝑘 ≤ 𝑡 we compute
the values E𝑘 [𝑏𝑝,P ]. This can be done in polynomial time by in-
voking Lemma 18 with 𝑝∗ = ∅. By Lemma 15, for at least one such
𝑘 the computed expectation will be non-negative, so take 𝑘∗ to be
one such 𝑘 . Afterwards, the algorithm will build the output policy
iteratively, initially starting with 𝑝∗ = ∅. At step 1 ≤ 𝑖 ≤ 𝑡 of the
algorithm, the current proposal 𝑝∗ will have D𝑝∗ = {1, . . . , 𝑖 − 1},
with the running invariant that E𝑘∗,𝑝∗ [𝑏𝑝,P ] ≥ 0. In step 𝑖 , we
consider two refinements of 𝑝∗, namely 𝑝0 = 𝑝∗ ∪ {𝑖 ↦→ 0} and
𝑝1 = 𝑝∗ ∪ {𝑖 ↦→ 1}. With them, we can write:

E𝑘∗,𝑝∗ [𝑏𝑝,P ] =
∑

𝑗∈{0,1}
E𝑘∗,𝑝 𝑗 [𝑏𝑝,P ]P𝑘∗,𝑝∗ (𝑝𝑖 = 𝑗)

From the invariant we know that E𝑘∗,𝑝∗ [𝑏𝑝,P ] ≥ 0, and, since∑
𝑗∈{0,1} P𝑘∗,𝑝∗ (𝑝𝑖 = 𝑗) = 1, we get that for some 𝑗 ∈ {0, 1} it

holds that E𝑘∗,𝑝 𝑗 [𝑏𝑝,P ] ≥ 0. Since the two values E𝑘∗,𝑝 𝑗 [𝑏𝑝,P ] can
be computed in polynomial time using Lemma 18, we can thus take
𝑗∗ to be such that E𝑘∗,𝑝 𝑗∗ [𝑏𝑝,P ] ≥ 0. We can now set 𝑝∗ ← 𝑝 𝑗∗ and
continue with the algorithm. One technical caveat is the situation
where |𝑝1 | > 𝑘∗, in which one expectation is not defined. In this
case we just take 𝑗∗ = 0 without computing any expectation. At
the end, proposal 𝑝∗ will be complete and E𝑘∗,𝑝∗ [𝑏𝑝,P ] ≥ 0 will
hold, meaning that 𝑏𝑝∗,P ≥ 0, so we can output 𝑝∗ . □

One downside of the deterministic algorithm is that it requires
high-precision arithmetic to execute. Indeed, the expectations are
rational numbers with denominator/numerators on the order≈ 2𝑡 .
This makes an efficient implementation tricky, but achievable in
polynomial time if wework over the integers with the expectations
multiplied by the common denominator. We omit these details. For
the randomized algorithm, one might rightfully ask whether it can
be optimized by computing 𝑘∗ in advance and only sampling for
it. The answer is that this requires essentially the same machinery
as the deterministic algorithm, making the time complexity less
attractive.

Finally, note that our polynomial algorithms output non-losing
proposals with at least ⌊𝑡/2⌋ + 1 agreements to IWM, and decid-
ing whether at least ⌊𝑡/2⌋ + 2 is possible is NP-hard, by Theorem 4.
Perhaps counterintuitively, this does not mean that our algorithms
output proposals with exactly ⌊𝑡/2⌋+1 agreements, as such propos-
als may actually not always exist (see full version for an example).

5 CONCLUSIONS AND FUTUREWORK
We studied the problem of determining a policy minimizing the
distance to issue-wise majority, while at the same time surviving
the final vote of the assembly to approve it as the outcome. In
essence, our results establish a tight dichotomy: distance at most
⌊(𝑡 − 1)/2⌋ can always be achieved in polynomial time, while de-
ciding whether a better distance is possible is NP-hard. It would
be natural to reexamine our results through the lens of general
judgement aggregation (i.e., dependent issues) to identify which
extensions are possible. Moreover, we assumed that voters weigh
all of the issues equally, but it would be of increased significance to
study a setup where voters give issue-importance scores together
with their ballots. Additionally, some voters might be pickier than
others, requiring significantly more than 50% agreement with their
preferences in order to support a proposal. It would be interesting
to also incorporate such behaviour into our model. The approval
“supports/opposes” paradigm can also be replaced by other voting
mechanisms, perhaps also defined in terms of the Hamming dis-
tance, but without a fixed approval “threshold”. Finally, the setup
of non-binary issues would also be interesting to investigate.

The Ostrogorski paradox generalizes Anscombe’s. In particular,
in Anscombe’s paradox, issue-wise majority loses against the op-
posite (issue-wise minority) proposal, while in Ostrogorski’s issue-
wise majority loses against an arbitrary proposal. In fact, Ostro-
gorski’s paradox can be seen to be equivalent to the Condorcet
paradox restricted to our setup (see, e.g., [19]). An algorithmic ver-
sion of Ostrogorski’s paradox asks the following: given the voter
preferences, is there a policy defeating all other policieswhen faced
in 1-vs-1 match-ups? It is known that this policy, if it exists, has
to be issue-wise majority [19], but determining whether this is the
case seems interesting and computationally non-trivial.
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