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ABSTRACT
In multi-agent reinforcement learning (MARL), the learning rates
of actors and critic are mostly hand-tuned and fixed. This not only
requires heavy tuning but more importantly limits the learning.
With adaptive learning rates according to gradient patterns, some
optimizers have been proposed for general optimizations, which
however do not take into consideration the characteristics of MARL.
In this paper, we propose AdaMa to bring adaptive learning rates
to cooperative MARL. AdaMa evaluates the contribution of actors’
updates to the improvement of Q-value and adaptively updates the
learning rates of actors to the direction of maximally improving the
Q-value. AdaMa could also dynamically balance the learning rates
between the critic and actors according to their varying effects
on the learning. Moreover, AdaMa can incorporate the second-
order approximation to capture the contribution of pairwise actors’
updates and thus more accurately updates the learning rates of
actors. Empirically, we show that AdaMa could accelerate learning
and improve performance in a variety of multi-agent scenarios.
More importantly, AdaMa does not require heavy hyperparameter
tuning and thus significantly reduces the training cost. The visual-
izations of learning rates during training clearly explain how and
why AdaMa works.
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1 INTRODUCTION
Recently, multi-agent reinforcement learning (MARL) has been
applied to decentralized cooperative systems, e.g., autonomous
driving [1], smart grid control [19], and traffic signal control [17].
Many MARL methods [5, 6, 10, 13, 14] have been proposed for
multi-agent cooperation, which follow the paradigm of centralized
training and decentralized execution. In many of these methods, a
centralized critic learns the joint Q-function using the information
of all agents, and the decentralized actors are updated towards
maximizing the Q-value based on local observation.
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However, in these methods, the actors are usually assigned the
same learning rates, which is not optimal for maximizing the Q-
value. This is because some agents might be more critical than
others to improving the Q-value and thus should have higher learn-
ing rates. On the other hand, the learning rates of actors and critic
are often hand-tuned and fixed, and hence require heavy tuning.
More importantly, over the course of training, the effect of actors
and critic on the learning varies, so the fixed learning rates will not
always be the best at every learning stage. The artificial schedules,
e.g., time-based decay and step decay, are pre-defined and require
expert knowledge about the model and problem. Some optimizers,
e.g., AdaGrad [4] and AdaDelta [20], could adjust the learning rate
adaptively, but they adjust the learning rate according to only the
gradient pattern and are proposed for general optimization prob-
lems, without specifically considering the convergence of Q-value
and the improvement of actor policies in the learning process of
multi-agent situations.

In this paper, we propose AdaMa for adaptive learning rates in
cooperative MARL. AdaMa dynamically evaluates the contribution
of actors and critic to the optimization and adaptively updates the
learning rates based on their quantitative contributions. First, we
examine the gain of Q-value contributed by the update of each
actor. We derive the direction along which the Q-value improves
the most. Thus, we can update the vector of learning rates of all
actors towards the direction of maximizing the Q-value, which leads
to diverse learning rates that explicitly capture the contributions
of actors. Second, we consider the critic and actors are updated
simultaneously. If the critic’s update causes a large change of Q-
value, we should give a high learning rate to the critic since it is
leading the learning. However, the optimization of actors, which
relies on the critic, would struggle with the fast-moving target.
Thus, the learning rates of actors should be reduced accordingly.
On the other hand, if the critic has reached a plateau, increasing
the learning rates of actors could quickly improve the actors, which
further generates new experiences to boost the critic’s learning.
These two processes alternate during training, promoting overall
learning. Further, by incorporating the second-order approximation,
we additionally capture the pairwise interaction between actors’
updates so as to more accurately update the learning rates of actors
towards maximizing the improvement of Q-value.

AdaMa is a general method and could be applied to many multi-
agent actor-critic methods. We evaluate AdaMa in popular multi-
agent cooperation scenarios in multi-agent particle environment
[10] and multi-agent mujoco [3]. Empirical results demonstrate that
dynamically regulating the learning rates of actors and critic accord-
ing to the contributions to the change of Q-value could accelerate
the learning and improve the performance, which can be further
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enhanced by additionally considering the effect of pairwise actors’
updates. AdaMa does not require heavy hyperparameter tuning,
which significantly reduces the training cost. The visualizations of
learning rates during training clearly explain how and why AdaMa
works.

2 RELATEDWORK
MARL. We consider the formulation of decentralized partially
observable Markov decision process (Dec-POMDP) [12]. There are
𝑁 agents interacting with the environment. At each timestep 𝑡 ,
each agent 𝑖 receives a local observation 𝑜𝑖𝑡 of the state, takes an
individual action 𝑎𝑖𝑡 , and gets a shared reward 𝑟𝑡 . The environment
transitions to the next state taking the joint action ®𝑎𝑡 . The agents
aim to maximize the expected return E

∑𝑇
𝑡=0 𝛾

𝑡𝑟𝑡 , where 𝛾 is a
discount factor and 𝑇 is the episode time horizon. Many methods
[5, 6, 10, 13, 14] have been proposed for Dec-POMDP, which adopt
centralized learning and decentralized execution (CTDE). In many
of these methods, a centralized critic learns a joint Q-function by
minimizing the TD-error. In training, the critic is allowed to use
the information of all agents. The actors, which only have access
to local information, learn to maximize the Q-value learned by the
critic. In execution, the critic is abandoned and the actors act in a
decentralized manner.

Adaptive Learning Rate. Learning rate schedules aim to re-
duce the learning rate during training according to a pre-defined
schedule, including time-based decay, step decay, and exponential
decay. The schedules have to be defined in advance and depend
heavily on the type of model and problem, which requires much ex-
pert knowledge. Some optimizers, such as AdaGrad [4], AdaDelta
[20], and RMSprop [15], provide adaptive learning rate to ease
manual tuning. AdaGrad performs larger updates for more sparse
parameters and smaller updates for less sparse parameters, and
other methods are derived from AdaGrad. However, these meth-
ods only deal with the gradient pattern for general optimization
problems, without specifically considering the convergence of Q-
value and the improvement of actor policies. Hence they offer no
specialized way to boost multi-agent learning. WoLF [2] provides
variable learning rates for stochastic games, but it needs to solve the
equilibrium strategy, which is not practical in complex multi-agent
environments.

Meta Gradients for Hyperparameters. Some meta-learning
methods employ hyperparameter gradients to tune the hyperparam-
eter automatically. Reverse-mode differentiation of hyperparame-
ters has been utilized to optimize step sizes, momentum schedules,
weight initialization distributions, parameterized regularization
schemes, and neural network architectures [11]. Meta RL [18] com-
putes the meta-gradient to update the discount factor and boot-
strapping parameter in reinforcement learning. OL-AUX [9] uses
the meta-gradient to automate the weights of auxiliary tasks. LIRPG
[21] learns the intrinsic reward by meta-gradient of maximizing the
extrinsic reward, avoiding the challenging reward design. These
methods are beneficial for improving the performance, and more
importantly, reduce the cost of hyperparameter tuning and the
complexity of artificial design. The proposed AdaMa can also be
viewed as a meta-gradient method for adaptive learning rates in
MARL.

Critic

Actor Actor 

......

TD error

Figure 1: MADDPG

3 METHOD
In this section, we first introduce the single-critic version of MAD-
DPG [10], on which we instantiate AdaMa. Then, we use the Taylor
approximation to evaluate the contributions of the critic and actors’
updates to the change of Q-value. Based on the derived quantitative
contributions, we dynamically adjust the direction of the vector
of actors’ learning rates and balance the learning rates between
the critic and actors. Further, we incorporate higher-order approxi-
mation to estimate the contributions more accurately. AdaMa is a
general method and could be applied to many multi-agent actor-
critic methods, e.g., COMA [5], MAAC [6], and DOP [16].

3.1 Single-Critic MADDPG
In mixed cooperation and competition, each MADDPG agent learns
an actor 𝜋𝑖 and a critic for the local reward. However, since the
agents share the reward in Dec-POMDP, we only maintain a single
shared critic, which takes the observation vector ®𝑜 and the action
vector ®𝑎 and outputs the Q-value, as illustrated in Figure 1. The
critic parameterized by 𝜙 is trained by minimizing the TD-error 𝛿

E( ®𝑜,®𝑎,𝑟,®𝑜 ′ )∼D
[
(𝑄 (®𝑜, ®𝑎) − 𝑦)2

]
,

where 𝑦 = 𝑟 + 𝛾𝑄− ( ®𝑜′, ®𝜋−
𝑖
(𝑜′
𝑖
)).

𝑄− is the target critic, 𝜋−
𝑖
is the target actor, and D is replay buffer.

Each actor 𝜋𝑖 (parameterized by 𝜃𝑖 ) is updated to maximize the
learned Q-value by gradient ascent. The gradient with respect to 𝜃𝑖
is

𝜕𝑄 (®𝑜, ®𝑎)
𝜕𝑎𝑖

𝜕𝑎𝑖

𝜕𝜃𝑖
.

We denote the learning rates of each actor 𝑖 and the critic as 𝑙𝑎𝑖 and
𝑙𝑐 respectively.

3.2 Adaptive ®𝑙𝑎 Direction
First, suppose that the critic is trained and frozen, and we only
update the actors. By expanding the Q-function, we can estimate
the gain of Q-value contributed by actors’ updates by the Taylor
approximation:

Δ𝑄 = 𝑄 (®𝑜, ®𝑎 + Δ®𝑎) −𝑄 (®𝑜, ®𝑎)
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≈ 𝑄 (®𝑜, ®𝑎) +
𝑁∑︁
𝑖=1

Δ𝑎𝑖
𝜕𝑄 (®𝑜, ®𝑎)
𝜕𝑎𝑖

𝑇

−𝑄 (®𝑜, ®𝑎)

=

𝑁∑︁
𝑖=1

[𝜋𝑖 (𝜃𝑖 + 𝑙𝑎𝑖
𝜕𝑄 (®𝑜, ®𝑎)
𝜕𝜃𝑖

) − 𝜋𝑖 (𝜃𝑖 )]
𝜕𝑄 (®𝑜, ®𝑎)
𝜕𝑎𝑖

𝑇

≈
𝑁∑︁
𝑖=1

𝑙𝑎𝑖
𝜕𝑄 (®𝑜, ®𝑎)
𝜕𝜃𝑖

𝜕𝑎𝑖

𝜕𝜃𝑖

𝑇 𝜕𝑄 (®𝑜, ®𝑎)
𝜕𝑎𝑖

𝑇

=

𝑁∑︁
𝑖=1

𝑙𝑎𝑖
𝜕𝑄 (®𝑜, ®𝑎)
𝜕𝜃𝑖

𝜕𝑄 (®𝑜, ®𝑎)
𝜕𝜃𝑖

𝑇

= ®𝑙𝑎 ·
®𝜕𝑄

𝜕𝜃

𝜕𝑄

𝜕𝜃

𝑇

.

Assuming the magnitude of the learning rate vector ∥ ®𝑙𝑎 ∥ is a
fixed small constant𝜂, the largest Δ𝑄 is obtained when the direction

of ®𝑙𝑎 is consistent with the direction of vector
®𝜕𝑄

𝜕𝜃

𝜕𝑄

𝜕𝜃

𝑇
. Thus, we can

softly update ®𝑙𝑎 to the direction of
®𝜕𝑄

𝜕𝜃

𝜕𝑄

𝜕𝜃

𝑇
to improve the Q-value:

®𝑙𝑎 = 𝛼 ®𝑙𝑎 + (1 − 𝛼)𝜂
®𝜕𝑄

𝜕𝜃

𝜕𝑄

𝜕𝜃

𝑇

/∥
®𝜕𝑄

𝜕𝜃

𝜕𝑄

𝜕𝜃

𝑇

∥

®𝑙𝑎 = ®𝑙𝑎
𝜂

∥ ®𝑙𝑎 ∥
,

(1)

where the second line normalizes the magnitude of ®𝑙𝑎 to 𝜂, and 𝛼 is
a parameter that controls the soft update. From another perspective,
the update rule (1) can be seen as updating ®𝑙𝑎 by gradient ascent to

increase the Q-value the most, since 𝜕Δ𝑄

𝜕 ®𝑙𝑎
=

®𝜕𝑄

𝜕𝜃

𝜕𝑄

𝜕𝜃

𝑇
.

3.3 Adaptive 𝑙𝑐 and ∥ ®𝑙𝑎 ∥
In the previous section, we assume that the critic is frozen. However,
in MADDPG and other MARL methods, the critic and actors are
trained simultaneously. Therefore, we investigate the change of
Q-value by additionally considering the critic’s update:

Δ𝑄 = 𝑄 (𝜙 + Δ𝜙, ®𝑜, ®𝑎 + Δ®𝑎) −𝑄 (𝜙, ®𝑜, ®𝑎)

≈ 𝑄 (𝜙, ®𝑜, ®𝑎) +
𝑁∑︁
𝑖=1

Δ𝑎𝑖
𝜕𝑄 (𝜙, ®𝑜, ®𝑎)

𝜕𝑎𝑖

𝑇

+ Δ𝜙
𝜕𝑄 (𝜙, ®𝑜, ®𝑎)

𝜕𝜙

𝑇

−𝑄 (𝜙, ®𝑜, ®𝑎)

≈ ®𝑙𝑎 ·
®𝜕𝑄

𝜕𝜃

𝜕𝑄

𝜕𝜃

𝑇

− 𝑙𝑐
𝜕𝛿

𝜕𝜙

𝜕𝑄

𝜕𝜙

𝑇

.

We can see that Δ𝑄 is contributed by the updates of both the critic
and actors. In principle, the critic’s learning is prioritized since the
actor’s learning is determined by the improved critic. When the
critic’s update causes a large change of the Q-value, the critic is
leading the learning, and we should assign it a high learning rate.
However, the optimization of actors, which relies on the current
critic, would struggle with the fast-moving target. Therefore, the
actors’ learning rates should be reduced. On the other hand, when
the critic has reached a plateau, increasing the actors’ learning
rates could quickly optimize the actors, which further injects new
experiences into the replay buffer to boost the critic’s learning,

thus promoting the overall learning. The contributions of actors’
updates are always nonnegative, but the critic’s update might either
increase or decrease the Q-value. Therefore we use the absolute
value | 𝜕𝛿

𝜕𝜙

𝜕𝑄

𝜕𝜙

𝑇
| to evaluate the contribution of critic to the change

of Q-value. Based on the principles above, we adaptively adjust 𝑙𝑐
and ∥ ®𝑙𝑎 ∥ by the update rules:

𝑙𝑐 = 𝛼𝑙𝑐 + (1 − 𝛼)𝑙 · clip( | 𝜕𝛿
𝜕𝜙

𝜕𝑄

𝜕𝜙

𝑇

|/𝑚, 𝜖, 1 − 𝜖)

𝜂 = 𝑙 − 𝑙𝑐 .
(2)

The hyperparameters 𝛼 ,𝑚, 𝑙 , and 𝜖 have intuitive interpretations
and are easy to tune. 𝛼 controls the soft update and𝑚 controls the
target value of 𝑙𝑐 . The clip function and the small constant 𝜖 prevent
the learning rate from being too large or too small. For 𝛼 , 𝑙 , and
𝜖 , we recommend using the default settings. And we provide an
easy empirical approach for selecting𝑚 in Experiments. Therefore,
AdaMa does not require heavy hyperparameter tuning. AdaMa
works as follows: first update 𝑙𝑐 and get 𝜂 using (2), then regulate
the direction and magnitude of ®𝑙𝑎 according to (1).

As pointed out by [7], the actor should have a lower learning
rate than the critic, and a high learning rate of actor leads to a
performance breakdown. Also, empirically, in DDPG [8] the critic’s
learning rate is set to 10 times higher than the actor’s learning rate.
However, we believe such a setting only partially addresses the
problem. During training, if the learning rates of actors are always
low, actors learn slowly and thus the learning is limited. Therefore,
AdaMa keeps high 𝑙𝑐 when the critic is updating fast, but decreases
𝑙𝑐 and increases ∥ ®𝑙𝑎 ∥ when the learning of critic reaches a plateau,
which could avoid the fast-moving target and speed up the overall
learning.

3.4 Second-Order Approximation
Under the first-order Taylor approximation, the actor 𝑖’s contribu-
tion to Δ𝑄 is only related to the change of 𝑎𝑖 , without capturing the
joint effect with other agents’ updates. However, when there are
strong correlations between the agents, the increase of the Q-value
cannot be sufficiently estimated as the sum of individual contribu-
tions of each actor’ update, which instead is a result of the joint
update. To estimate the actors’ contributions more precisely, we
extend AdaMa to the second-order Taylor approximation to take
pairwise agents’ updates into account:

Δ𝑄 = 𝑄 (®𝑜, ®𝑎 + Δ®𝑎) −𝑄 (®𝑜, ®𝑎)

≈
𝑁∑︁
𝑖=1

Δ𝑎𝑖
𝜕𝑄 (®𝑜, ®𝑎)
𝜕𝑎𝑖

𝑇

+ 1
2

𝑁∑︁
𝑖, 𝑗=1

Δ𝑎𝑖
𝜕2𝑄 (®𝑜, ®𝑎)
𝜕𝑎𝑖 𝜕𝑎 𝑗

Δ𝑎 𝑗
𝑇

≈
𝑁∑︁
𝑖=1

𝑙𝑎𝑖
𝜕𝑄 (®𝑜, ®𝑎)
𝜕𝜃𝑖

𝜕𝑄 (®𝑜, ®𝑎)
𝜕𝜃𝑖

𝑇

+ 1
2

𝑁∑︁
𝑖, 𝑗=1

𝑙𝑎𝑖 𝑙𝑎 𝑗

𝜕𝑄 (®𝑜, ®𝑎)
𝜕𝜃𝑖

𝜕𝑎𝑖

𝜕𝜃𝑖

𝑇 𝜕2𝑄 (®𝑜, ®𝑎)
𝜕𝑎𝑖 𝜕𝑎 𝑗

𝜕𝑎 𝑗

𝜕𝜃 𝑗

𝜕𝑄 (®𝑜, ®𝑎)
𝜕𝜃 𝑗

𝑇

.

As the actors are updated by the first-order gradient, we still
estimate Δ®𝑎 utilizing the first-order approximation and compute
the second-order Δ𝑄 on the first-order Δ®𝑎. Then, the gradient
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Algorithm 1 AdaMa on MADDPG
1: Initialize critic network 𝜙 , actor networks 𝜃𝑖 , target networks,

and the replay buffer D.
2: Initialize the learning rates 𝑙𝑐 and ®𝑙𝑎 .
3: for episode = 1, . . . ,M do
4: for 𝑡 = 1, . . . ,T do
5: Select action 𝑎𝑖𝑡 = 𝜋𝑖 (𝑜𝑖𝑡 ) + N𝑖

𝑡 for each agent 𝑖
6: Execute action 𝑎𝑖𝑡 , obtain reward 𝑟𝑡 , and get new observa-

tion 𝑜𝑖
𝑡+1 for each agent 𝑖

7: Store transition (®𝑜𝑡 , ®𝑎𝑡 , 𝑟𝑡 , ®𝑜𝑡+1) in D
8: end for
9: Sample a random minibatch of transitions from D
10: Adjust 𝑙𝑐 and ∥ ®𝑙𝑎 ∥ by (2).
11: Adjust ®𝑙𝑎 by (1) (first order) or (3) (second order).
12: Update the critic 𝜙 by 𝜙 = 𝜙 − 𝑙𝑐 𝜕𝛿

𝜕𝜙
.

13: Update the actor 𝜃𝑖 by 𝜃𝑖 = 𝜃𝑖 +𝑙𝑎𝑖
𝜕𝑄 ( ®𝑜,®𝑎)

𝜕𝑎𝑖

𝜕𝑎𝑖
𝜕𝜃𝑖

for each agent.

14: Update the target networks.
15: end for

of 𝑙𝑎𝑖 is 𝜕Δ𝑄
𝜕𝑙𝑎𝑖

=
𝜕𝑄

𝜕𝜃𝑖

𝜕𝑄

𝜕𝜃𝑖

𝑇
+ 1

2
∑𝑁

𝑗=1 𝑙𝑎 𝑗

𝜕𝑄

𝜕𝜃𝑖

𝜕𝑎𝑖
𝜕𝜃𝑖

𝑇 𝜕2𝑄
𝜕𝑎𝑖𝜕𝑎 𝑗

𝜕𝑎 𝑗

𝜕𝜃 𝑗

𝜕𝑄

𝜕𝜃 𝑗

𝑇
+

1
2
∑𝑁

𝑗=1 𝑙𝑎 𝑗

𝜕𝑄

𝜕𝜃 𝑗

𝜕𝑎 𝑗

𝜕𝜃 𝑗

𝑇 𝜕2𝑄
𝜕𝑎 𝑗 𝜕𝑎𝑖

𝜕𝑎𝑖
𝜕𝜃𝑖

𝜕𝑄

𝜕𝜃𝑖

𝑇
. Similarly, ®𝑙𝑎 can be updated as:

®𝑙𝑎 = 𝛼 ®𝑙𝑎 + (1 − 𝛼)𝜂 𝜕Δ𝑄
𝜕 ®𝑙𝑎

/∥ 𝜕Δ𝑄
𝜕 ®𝑙𝑎

∥,

®𝑙𝑎 = ®𝑙𝑎
𝜂

∥ ®𝑙𝑎 ∥
.

(3)

For completeness, we summarize the training of AdaMa on MAD-
DPG in Algorithm 1.

4 EXPERIMENTS
4.1 Settings
Wevalidate AdaMa in four cooperation scenarios based onMPE [10]
(MIT License) with continuous observation space and continuous
action space, which are illustrated in Figure 2.

• Going Together. In the scenario, there are 2 agents and 1
landmark. The reward is −0.5(𝑑𝑖 + 𝑑 𝑗 ) − 𝑑𝑖 𝑗 , where 𝑑𝑖 is
the distance from agent 𝑖 to the landmark, and 𝑑𝑖 𝑗 is the
distance between the two agents. The agents have to go to
the landmark together, avoiding moving away from each
other.

• Cooperative Navigation. In the scenario, there are 4 agents
and 4 corresponding landmarks. The reward is −max𝑖 (𝑑𝑖 ),
where 𝑑𝑖 is the distance from agent 𝑖 to the landmark 𝑖 . The
slowest agent determines the reward in this scenario.

• Predator-Prey. In the scenario, 4 slower agents learn to chase
a faster rule-based prey. Each time one of the agents collides
with the prey, the agents get a reward +1.

• Clustering. In the scenario, 8 agents learn to cluster together.
The reward is −∑

𝑑𝑖 , where 𝑑𝑖 is the distance from agent 𝑖 to
the center of agents’ positions. Since the center is changing
along with the agents’ movements, there are strong interac-
tions between agents.

Agent

Landmark

(a) going together (b) cooperative navigation

Prey

(c) predator-prey

Center

(d) clustering

Figure 2: Illustration of experimental scenarios.

In these scenarios, agents observe the relative positions of other
agents, landmarks, and other items, and take two-dimensional
actions ∈ [−1, 1] as physical velocity. The reward functions are
strongly related to all agents, and a small change in one agent’s
policy would greatly influence the cumulative reward. Thus, the
optimization is sensitive to the learning rates.

To investigate the effectiveness of AdaMa and for ablation, we
evaluate the following methods:

• AdaMa adjusts 𝑙𝑐 and ∥ ®𝑙𝑎 ∥ using (2), and ®𝑙𝑎 according to (1).
• Fixed lr uses grid search to find the optimal combination of
𝑙𝑐 and ∥ ®𝑙𝑎 ∥ from 0.01 to 0.001 with step 0.001. The learning
rate of each agent is set to ∥ ®𝑙𝑎 ∥/

√
𝑁 .

• Adaptive ®𝑙𝑎 direction sets 𝑙𝑐 and ∥ ®𝑙𝑎 ∥ as that in Fixed

lr and only adjusts the direction of ®𝑙𝑎 using (1). Additionally,
Adaptive ®𝑙𝑎 direction (2nd) uses the update rule (3) for
the second-order approximation.

• Adaptive 𝑙𝑐 and ∥ ®𝑙𝑎 ∥ adjusts 𝑙𝑐 and ∥ ®𝑙𝑎 ∥ using (2) and sets
𝑙𝑎𝑖 = ∥ ®𝑙𝑎 ∥/

√
𝑁 .

• AdaGrad is an adaptive learning rate optimizer that performs
larger updates for more sparse parameters and smaller up-
dates for less sparse parameters. The initial learning rates
are sets as that in Fixed lr.

Except AdaGrad, all other methods use SGD optimizer without
momentum. We trained all the models for five runs with different
random seeds. All the learning curves are plotted using mean and
standard deviation.

4.2 Performance of Adaptive ®𝑙𝑎 Direction
As shown in Figure 3(a) and 3(c), Adaptive ®𝑙𝑎 direction con-
verges to a higher reward than Fixed lr that treats each agent as
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Figure 3: Learning curves in the four scenarios.
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Figure 4: Normalized actors’ learning rates during the train-
ing in going together.

equally important. To make an explicit explanation, we visualize
the normalized actors’ learning rates ®𝑙𝑎/∥ ®𝑙𝑎 ∥ in Figure 4 and Fig-
ure 5. In going together and predator-prey, the actors’ learning rates
fluctuate dynamically and alternately as depicted in Figure 4(a) and
5(a). An actor has a much higher learning rate than other actors
in different periods, meaning that the actor is critical to the learn-
ing. The direction of ®𝑙𝑎 is adaptive to the changing contributions
during the learning, assigning higher learning rates to the actors

0 1× 104 2× 104 3× 104 4× 104 5× 104

Episodes

0.2

0.4

0.6

0.8

1.0

Actor 1

Actor 2

Actor 3

Actor 4

(a) seed 1

0 1× 104 2× 104 3× 104 4× 104 5× 104

Episodes

0.2

0.4

0.6

0.8

1.0

Actor 1

Actor 2

Actor 3

Actor 4

(b) seed 2

0 1× 104 2× 104 3× 104 4× 104 5× 104

Episodes

0.2

0.4

0.6

0.8

1.0

Actor 1

Actor 2

Actor 3

Actor 4

(c) seed 3

0 1× 104 2× 104 3× 104 4× 104 5× 104

Episodes

0.2

0.4

0.6

0.8

1.0

Actor 1

Actor 2

Actor 3

Actor 4

(d) seed 4

Figure 5: Normalized actors’ learning rates during the train-
ing in predator-prey

that make more contributions to Δ𝑄 . In clustering, the center is
determined by all agents’ positions, and the actors’ updates make
similar contributions to Δ𝑄 , leading to similar learning rates for the
actors. That is the reason Adaptive ®𝑙𝑎 direction is not beneficial
in this scenario. Moreover, in single-critic MADDPG, the gradient
of an actor depends on the current policies of other actors. If other
actors are updating at a similar rate, the update of this actor will
become unstable, since the changes of others’ policies are invisible
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Figure 6: 𝑙𝑐 and ∥ ®𝑙𝑎 ∥ during the training.

and unpredictable. In our method, the agents critical to increasing
the Q-value learn fast while other agents have low learning rates,
which partly attenuates the instability.

4.3 Performance of Adaptive 𝑙𝑐 and ∥ ®𝑙𝑎 ∥
As illustrated in Figure 3(b), 3(c), and 3(d), Adaptive 𝑙𝑐 and ∥ ®𝑙𝑎 ∥
learns faster than Fixed lr. To interpret the results, we plot 𝑙𝑐
and ∥ ®𝑙𝑎 ∥ during the training in Figure 6 and find that 𝑙𝑐 and ∥ ®𝑙𝑎 ∥
rise and fall alternately and periodically. When the update of the
critic impacts greatly on Δ𝑄 , e.g., at the beginning with large TD-
error, the fast-moving Q-value, which is the optimization target of
actors, might cause a performance breakdown if the actors are also
learning fast. In this situation, our method could adaptively speed
up the learning of the critic and slow down the learning of actors
for stability. After a while, the TD-error becomes small and makes
the critic reach a plateau. According to the update rules (2), the
learning of actors is accelerated whilst the learning rate of the critic
falls, which keeps the target of actors stable and thus avoids the
breakdown. The fast-improving actors generate new experiences,
which change the distribution in the replay buffer and increase the
TD-error. As a consequence, the learning rate of the critic rises
again. Therefore, the learning rates of the critic and actors fluctuate
alternately, promoting the overall learning continuously. In going
together, the alternate fluctuation is not obvious, so Adaptive 𝑙𝑐

and ∥ ®𝑙𝑎 ∥ performs worse than Fixed lr with grid search.
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Figure 7: Learning curves with the second-order approxima-
tion.
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Figure 8: Learning curves and visualizations with different
𝑚 in Predator-Prey.

Combined with the two adaptive mechanisms, AdaMa learns
faster and converges to a higher reward than all other baselines in
Figure 3(c). In other scenarios, AdaMa produces similar results to the
mechanism that brings the main improvement. Since Fixed lr has
to search 100 combinations, the cost is prohibitive. AdaMa could
achieve better performance with very little tuning, which signifi-
cantly reduces the training cost. Despite adaptively adjusting the
learning rates, AdaGrad does not show competitive performance,
since it only focuses on the gradient pattern, without considering
the convergence of Q-value and the improvement of policies.

4.4 Performance of Second-Order
Approximation

In Figure 3, the performance gain of Adaptive ®𝑙𝑎 direction is lim-
ited, which we think is attributed to that the first-order approxima-
tion is relatively rough when an actor’s update affects other actors’
updates. We apply the second-order approximation to Adaptive
®𝑙𝑎 direction (2nd). As shown in Figure 7, the second-order ap-
proximation that captures the pairwise effect of agents’ updates on
Δ𝑄 obtains a more accurate update on the learning rates, which
eventually leads to better performance.

4.4.1 Hyperparameter Tuning. The hyperparameter 𝑚 controls
the target value of the critic’s learning rate. If 𝑚 is too large or
too small, the learning rate will reach the boundary value 𝜖𝑙 or
(1 − 𝜖)𝑙 , which destroys the adaptability and hampers the learning
process. An empirical approach for tuning is setting𝑚 to be the
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(c) Ant-MADDPG
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Figure 9: Learning curves of AdaMa on multi-agent mujoco.

mean | 𝜕𝛿
𝜕𝜙

𝜕𝑄

𝜕𝜙

𝑇
| of the first 𝐾 updates in a trial run. In predator-

prey, we test𝑚 = 40, 50, 60, among which 50 is the rounding mean
value of 100 updates, and plot the results in Figure 8(a). The three
settings show similar performance, revealing our method is robust
to the hyperparameter𝑚. Having noticed that 𝑙𝑐 and ∥ ®𝑙𝑎 ∥ change
violently in Figure 6, we visualize | 𝜕𝛿

𝜕𝜙

𝜕𝑄

𝜕𝜙

𝑇
| during the training

in Figure 8(b) to interpret the robustness. Since most of the time
| 𝜕𝛿
𝜕𝜙

𝜕𝑄

𝜕𝜙

𝑇
| is higher than 60 or lower than 40, similar learning rate

patterns is observed when𝑚 is between 40 and 60, which verifies
that there is high fault tolerance in𝑚. Although Adaptive 𝑙𝑐 and

∥ ®𝑙𝑎 ∥ converges to a similar reward with Fixed lr, the former learns
faster and is much easier to tune.

4.5 Multi-Agent Mujoco
We also evaluate AdaMa in twomulti-agent mujoco [3] tasks, which
are 2-agent HalfCheetah and 4-agent Ant. Each agent independently
controls one or some joints of the robot and could obtain the state
and reward of the robot, which are defined in the original tasks.
We instantiate AdaMa on MADDPG and the deterministic version
of DOP [16], and compare with SGD and RMSprop. As shown in
Figure 9, AdaMa learns faster than SGD in HalfCheetah and Ant.
Although RMSprop with MADDPG convergences faster than AdaMa
with MADDPG in Ant, which is because of the large update rate
of RMSprop in the early period, the performance of RMSprop drops
in the latter learning. The experimental results show that AdaMa
is compatible with different multi-agent actor-critic methods and
improves them. Different from the homogeneous agents in MPE
scenarios, the agents in multi-agent mujoco are heterogeneous,
which means that the agents’ contributions to the gain of Q-value
might be very diverse. For example, the hind leg is more important
than the front leg in HalfCheetah. AdaMa could capture the different
contributions and gives higher learning rates to the agents that

Table 1: Hyperparameters in MPE

Hyperparameter GT CN PP CL

horizon (𝑇 ) 10 6 20 10
discount (𝛾 ) 0.96 0.9 0.97 0.95

replay buffer size 5 × 105 5 × 105 1 × 106 1 × 106
𝑙𝑐 (grid search) 8 × 10−3 9 × 10−3 7 × 10−3 8 × 10−3

∥ ®𝑙𝑎 ∥ (grid search) 3 × 10−3 2 × 10−3 2 × 10−3 1 × 10−3
batch size 1024
MLP units (64, 64)

MLP activation ReLU

𝑚 10 5 50 80
𝛼 0.99
𝑙 1 × 10−2
𝜖 0.1

Table 2: Hyperparameters in Mujoco

Hyperparameter HalfCheetah Ant

discount (𝛾 ) 0.96 0.96
𝑙𝑐 (MADDPG, DOP) 1 × 10−3 , 1 × 10−4
𝑙𝑎𝑖 (MADDPG, DOP) 1 × 10−3 , 1 × 10−4
replay buffer size 1 × 106

horizon (𝑇 ) 1000
batch size 1024
MLP units (64, 64)

MLP activation ReLU

𝑚 (MADDPG, DOP) 100, 1000 50, 100
𝛼 0.99

𝑙 (MADDPG, DOP) 1 × 10−3 , 1 × 10−4
𝜖 0.05

contribute more to the gain of Q-value to improve the Q-value
faster.

4.6 Detailed Settings and Hyperparameters
The experimental settings and hyperparameters of MPE tasks are
summarized in Table 1. Initially, we set 𝑙𝑐 = ∥ ®𝑙𝑎 ∥ and 𝑙𝑎𝑖 = ∥ ®𝑙𝑎 ∥/

√
𝑁

in AdaMa. For exploration, we add random noise to the action
(1 − 𝜀)𝑎𝑖 + 𝜀𝜂, where the uniform distribution 𝜂 ∈ [−1, 1]. We
anneal 𝜀 linearly from 1.0 to 0.1 over 104 episodes and keep it
constant for the rest of the learning. We update the model every
episode and update the target networks every 20 episodes.

The experimental settings and hyperparameters of Mujoco tasks
are summarized in Table 2. For exploration, we add random noise to
the action (1− 𝜀)𝑎𝑖 + 𝜀𝜂, where the uniform distribution 𝜂 ∈ [−1, 1].
We anneal 𝜀 linearly from 1.0 to 0.05 over 103 episodes and keep it
constant for the rest of the learning. We update the model every
episode and softly update the target networks with the update ratio
0.98.

The experiments are carried out on Intel i7-8700 CPU andNVIDIA
GTX 1080Ti GPU.

5 CONCLUSION
In this paper, we proposed AdaMa for adaptive learning rates in
multi-agent reinforcement learning. AdaMa adaptively updates the
vector of learning rates of actors to the direction of maximally im-
proving the Q-value. It also dynamically balances the learning rates
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between the critic and actors during learning. Moreover, AdaMa can
incorporate the higher-order approximation to more accurately up-
date the learning rates of actors. Empirically, we show that AdaMa
could accelerate learning and improve performance in a variety
of multi-agent scenarios. AdaMa is a general method and could
be applied to many multi-agent actor-critic methods. AdaMa does
not require heavy hyperparameter tuning and thus significantly re-
duces the training cost. In future work, we hope to explore methods
for adaptive learning rates in decentralized multi-agent learning.
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