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ABSTRACT
We investigate an approach for enabling a reinforcement learning
agent to learn about dangerous states or constraints from stop-
feedback preventing the agent from taking any further, potentially
dangerous, actions. Such feedback could be provided by human
supervisors overseeing the RL agent’s behavior while carrying
out some complex tasks. To enable the RL agent to learn from
the supervisor’s feedback, we propose a probabilistic model for
approximating how the supervisor’s feedback could have been
generated and consider a Bayesian approach for inferring dangerous
states. We evaluated our approach using an OpenAI Safety Gym
environment and demonstrated that our agent can effectively infer
the imposed safety constraints. Furthermore, we conducted a user
study to validate our human-inspired feedback model and to obtain
insights into the human provision of stop-feedback.
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1 INTRODUCTION
Compliance with safety constraints can be crucial in real-world
applications of reinforcement learning (RL). Thus, the safe explo-
ration problem has received considerable attention (e.g., [4, 5, 7]).
Safe exploration is about preventing the learning agent from taking
unsafe actions while exploring the environment, and ultimately
maximizing the cumulative reward while complying with some
constraints, i.e., solving a Constrained Markov Decision Process
(CMDP) [3].

In this paper, we consider a CMDP learning framework involv-
ing feedback about the safe or dangerous behavior of the learning
agent (learner) provided by an external agent (teacher) during the
training phase. The learner can only directly observe the reward
function to be optimized but is not aware of the safety constraints.
Therefore, these constraints are estimated through interaction with
the teacher who intervenes whenever the learning agent is assumed

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

to violate safety. In particular, the teacher provides stop-feedback,
i.e., feedback preventing the agent from taking any further, poten-
tially dangerous, actions, resetting the learner to its initial state.
Similar settings have been considered with a different focus in re-
lated works [2, 9, 12]. Since the reasoning behind a human teacher’s
feedback is typically unknown, the learner’s inference about the
constraints is hindered. To mitigate this issue, we propose an in-
tuitive adjustable probabilistic model for the human feedback that
the learner can use as a proxy. We demonstrate in simulations that
learning about the constraints with this model is effective, and in
user studies that it accurately characterizes important aspects of
human feedback.

2 OUR APPROACH
Background.We consider a Markov Decision Process (MDP)M =

{S,A,P, 𝑟 , 𝛾}, where (i) S is the state space; (ii) A is the action
space; (iii) P is the transition kernel; (iv) 𝑟 : S × A → R≥0 is a
non-negative reward function; and (v) 𝛾 ∈ (0, 1) is the discount fac-
tor [11]. Furthermore, we assume a constraint function 𝑐 : S×A →
R≥0 which quantifies the danger of executing action 𝑎 ∈ A in state
𝑠 ∈ S. In standard RL, an agent seeks a policy 𝜋 : S × A → [0, 1]
thatmaximizes the cumulative reward 𝐽 (𝜋) = E

[ ∑∞
𝑡=0 𝛾

𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 ) |𝜋
]
,

where 𝑠𝑡 and 𝑎𝑡 denote the visited state and performed action at
time 𝑡 when following policy 𝜋 , respectively, and where the expec-
tation is over the randomness in the environment and the policy 𝜋 .

Learning from stop-feedback. During training, the learner re-
ceives stop-feedback preventing the agent from taking any further
actions. We propose the following probabilistic model describing
how the teacher’s stop-feedback is generated:

𝑃 (stop | 𝑠, 𝜋) = 1 − exp
(
− 𝛼E

[∑︁∞
𝑡=0

𝛾𝑡𝑐 (𝑠𝑡 , 𝑎𝑡 )
��� 𝑠0 = 𝑠, 𝜋

] )
(1)

where 𝜋 is the learner’s policy (or what the teacher believes the
learner’s policy to be). That is, the model describes the probability
that the learner receives stop-feedback from the teacher in state
𝑠 ∈ S while following policy 𝜋 . The parameter 𝛼 > 0 and the
discount factor 𝛾 ∈ (0, 1) characterize how cautious the teacher
is in giving stop-feedback: the larger 𝛼 and 𝛾 , the earlier the stop-
feedback is provided with respect to the time of the (cumulative)
violation of a constraint. Note that, in general, 𝛾 in Eq. (1) can be
different from the discount factor of the MDP and is a property
of the teacher. Also, note that the stop-feedback provision will
typically depend on the teacher’s belief about the learner’s policy.
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Learner-teacher interaction. The learner’s goal is to identify a
policy that (approximately) maximizes the reward while not vio-
lating the safety constraints. Central to our approach is the esti-
mation of the constraint function 𝑐 (·) based on the so-far received
stop-feedback. To this end, we compose a stop-dataset Dstop =

{(𝑠 (𝑖 ) , 𝜋 (𝑖 ) )}𝑁
𝑖=1, where 𝜋

(𝑖 ) is the policy used by the learner when
the 𝑖-th stop-feedback was received in state 𝑠 (𝑖 ) . To speed up learn-
ing, we also consider a safe-dataset Dsafe = {(𝑠 (𝑖 ) , 𝜋 (𝑖 ) )}𝑀

𝑖=1 con-
taining information about the learner’s safe trajectories, i.e., the
ones in which the agent did not receive stop-feedback. The lack of
stop-feedback will be referred to as safe-feedback.

The learner and the teacher interact in a loop consisting of three
phases (phase 1 and 2 happen simultaneously): (1) Action phase.
The learner executes its current policy 𝜋 (𝑖 ) . (2) Feedback phase.
The teacher provides feedback according to Eq. (1). Upon receiving
stop-feedback, the environment is reset. The feedback is recorded in
datasets Dstop and Dsafe. (3) Update phase. The learner updates
its belief about the constraints and the teacher updates its belief
about the learner’s policy. The learner updates its policy based on
the (directly observable) reward and an estimate 𝑐 (𝑖+1) (·) of the con-
straints s.t. 𝜋 (𝑖+1) = argmax𝜋 E

[ ∑∞
𝑡=0 𝛾

𝑡
(
𝑟 (𝑠𝑡 ) −𝑐 (𝑖+1) (𝑠𝑡 , 𝑎𝑡 )

) ��𝜋 ] .
Environment featurization. To generalize the agent’s experience

on a limited subset of the state space, we featurize the constraints
as 𝑐 (𝑠, 𝑎) = ⟨𝜙 (𝑠, 𝑎), 𝑐∗⟩, where 𝜙 (𝑠, 𝑎) ∈ R𝑑 is a state-action-
dependent feature vector and 𝑐∗ ∈ R𝑑 are constraint parameters.
Thus the objective for the update phase is to estimate the vector 𝑐∗.

Constraint estimation. We estimate the constraint function using
Bayesian estimation and the Metropolis–Hastings algorithm [6] for
approximate inference. In our experiments, the prior is defined as an
exponential distribution and the posterior as a Gamma distribution.

3 RESULTS
We run experiments on the OpenAI Safety Gym environment [1].
Due to space constraints, we refer to the full paper for details [8].

Environment. We consider an environment that presents one
goal state and 5 evenly distributed fixed hazards as constrained
states. A point agent aims to reach the goal. The agent can move in
the 2-d plane by turning and moving forward or backward.

Agents. The learning agent is trained with proximal policy op-
timization (PPO) [10]. We use the last hidden layer of the critic
model as an environment’s feature extractor. Initially, the RL agent
is trained to reach the goal as fast as possible but not to avoid the
constraint states. This agent will be referred to as standard agent. By
adopting the learner-teacher interaction loop, we obtain a safety-
aware agent that can learn about the hazards. The safety-aware
agent is initialized as a standard agent trained for 500 epochs. Then,
the safety-aware agent updates its belief about the constraint vector
𝑐∗ by interacting 100 times with a teacher using the feedback model
in Eq. (1) with 𝛼 = 1 and 𝛾 = 0.8. To speed up learning, the teacher
provides 10 feedbacks at each interaction.

Figure 1 shows the performances of 3 standard agents (trained for
500, 2500, and 5500 epochs) and a safety-aware agent. As expected,
on average, the safety-aware agent obtained about 5 times higher
cumulative rewards than the best-trained standard agent.
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Figure 1: Comparison between 3 standard agents and a safety-aware
agent trained with 100 interactions with the teacher. The figure rep-
resents the performance obtained by averaging the results for 10
different episodes of 10000 time steps each. The standard agents al-
ways performed worse than the safety-aware agent.
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Figure 2: Comparison of model-generated and human stop-
feedback times. The box plots delimit the range in which
the bulk of the human stop-feedback times lie for videos 1-4
(horizontal lines are medians). The markers represent the
model-generated stop-feedback times for several values of 𝛾 .

Human feedback analysis. The probabilistic model in Eq. (1) has
been designed to approximate how a human supervisor might
provide feedback to a learning agent. To validate our approach, we
conducted a survey with 100 human volunteers (see full paper for
details). Participants were asked to evaluate 9 videos, each of which
representing an episode of 5000 time steps of a standard agent
moving in Safety Gym. The agent collided with one constraint per
episode at maximum. The positions of the goal and 5 constraints
were fixed, but the starting position of the agent changed in every
episode. For each episode, the participants indicated whether they
would provide a stop-feedback or not, and if so, they also reported
the time step at which they would interrupt the agent.

The human stop-feedback can be compared with the one ob-
tained from the probabilistic model in Eq. (1) considering various 𝛾
values. For simplicity, we kept 𝛼 = 1 fixed.

Figure 2 reports the distributions of the time steps in which the
human users provided a stop-feedback, together with the time steps
of the model-generated stop-feedback. In all the episodes except
the second, the model-generated feedback model can successfully
approximate the human stop-feedback; indeed the medians of the
human time steps distributions are very close and sometimes over-
lap with at least one model-generated feedback time step.

We conducted further analysis concerning human stop-feedback
at the individual level, cf. the extended paper for details [8].
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