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ABSTRACT
Value alignment problems arise in scenarios where the specified ob-

jectives of an AI agent don’t match the true underlying objectives of

its users. While value alignment remains a popular topic within AI

safety research, most existing works in this sphere tend to overlook

one of the foundational causes for misalignment, namely the inher-

ent asymmetry in human expectations about the agent’s behavior

and the behavior generated by the agent for the specified objective.

To address this lacuna, we propose a novel formulation for the

value alignment problem, named Human-aware goal alignment that
highlights this central challenge related to value alignment. Addi-

tionally, we propose a first-of-its-kind interactive goal elicitation

algorithm that is capable of using information generated under

incorrect beliefs about the agent, to determine the true underlying

goal of the user.

KEYWORDS
Value Alignment, Planning, Human-Aware AI

ACM Reference Format:
MalekMechergui and Sarath Sreedharan. 2023. Goal Alignment: Re-analyzing

Value Alignment Problems Using Human-Aware AI : Extended Abstract.

In Proc. of the 22nd International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2023), London, United Kingdom, May 29 – June
2, 2023, IFAAMAS, 3 pages.

1 INTRODUCTION
Value alignment, as presented in [4], is the problem of ensuring

that an AI agent’s pursuit of its specified objectives will maximize

or satisfy the true underlying objectives of its human user. This

problem has been widely argued to be one of the most important

problems related to AI safety [2, 8]. While there is a general con-

sensus that the primary cause of the value misalignment problem

is the user’s failure to correctly anticipate the outcomes of their

specification, current works related to value alignment tend to fo-

cus on addressing only some aspects of the overall problem. We

argue that the extant literature on value alignment overlooks the

fundamental problem that any information user provides to the

system is going to be skewed by their beliefs about the agent model,

which may be different from the agent’s own model. This in turn

means that the user’s expectations about the behavior the agent
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would exhibit in response to a particular goal specification could

be drastically different from what might actually be followed. As

such, we argue that any complete solution to value alignment must

account for such an asymmetry in expectations. In fact, for a system

to correctly use any information provided by the user it must try

to re-interpret it in the light of this inherent difference between

the user and the agent. Thus in this paper, we will present a new

formalization of the value alignment problem that accounts for this

asymmetry between the user and the AI agent. We will ground this

formulation in one of the most basic sequential decision-making

settings, namely deterministic goal-directed planning. This setting

will transform the value alignment problem to a goal alignment
problem, where we will focus on a scenario where the user’s be-

lief could be different from the agent model. This formulation will

build on and generalize a framework called Human-Aware AI [9],

which was originally introduced to generate explainable behavior.

Under this new formulation, we will see how agents can use their

knowledge about the existing differences between the user’s be-

liefs and the agent model to reason about human’s true underlying

objectives.

2 PROBLEM FORMULATION
We will focus on deterministic goal-directed planning problems

represented by a tuple: M = ⟨𝐷, 𝐼,𝐺⟩ [3]. Under this notation,
𝐷 = ⟨𝐹,𝐴⟩ is the domain model of the planning problem, where 𝐹

is a set of propositional fluents and 𝐴 provides the set of actions

the agent can execute. Finally, 𝐼 corresponds to the start state and

𝐺 captures the partial goal specification, such that any state 𝑠 ⊇ 𝐺

is considered a valid goal state. We will use T to denote the tran-

sition function. A solution to a planning problem takes the form

of a plan, i.e. a sequence of actions whose execution in the initial

state would result in a goal state, i.e., 𝜋 = ⟨𝑎1, ..., 𝑎𝑘 ⟩ is a plan if

T (𝜋, 𝐼M , 𝐷M ) ⊇ 𝐺M
. Additionally, each action has a unit cost

thus, 𝐶 (𝜋) = |𝜋 |. We will start by denoting the domain model and

the initial state captured by the robot as 𝐷𝑅 = ⟨𝐹,𝐴𝑅⟩ and 𝐼𝑅 . The
human’s beliefs about the robot model, initial state, and their spec-

ified goal are respectively denoted asM𝐻 = ⟨𝐷𝐻 , 𝐼𝐻 ,𝐺𝐻 ⟩, where
𝐷𝐻 = ⟨𝐹,𝐴𝐻 ⟩. Here the value misalignment problem translates to

the possibility that a plan that achieves the specified goal need not

achieve the underlying human goal.

Definition 1. A goal specification 𝐺𝐻 is said to be misaligned
with the human goal 𝐺∗ for a robot domain model 𝐷𝑅 and initial
state 𝐼𝑅 , if there exists an action sequence 𝜋 = ⟨𝑎1, ..., 𝑎𝑘 ⟩ such that
T (𝜋, 𝐼𝑅, 𝐷𝑅) ⊇ 𝐺𝐻 , but T (𝜋, 𝐼𝑅, 𝐷𝑅) ⊉ 𝐺∗
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Keeping with the existing works in value-alignment, we assume

that the human can provide a plan 𝜋𝐻 that they believe can achieve

the true goal (per M𝐻
). However, just because 𝜋𝐻 is executable in

M𝐻
, there is no guarantee that the robot can execute it, or that exe-

cuting it will result in the same goal state. As a starting point, wewill

assume that the human only cares about the final outcome of a plan,

thus, only the goal state matters. Therefore, instead of following the

specified plan, the robot will try to identify a plan that will satisfy

the final state expected by the human. Note that this is compatible

with cases where the human may have trajectory level constraints,

as they can be compiled down into goal state fluents (cf. [1]).

Now let us assume that the human goal specification is a partial

specification of the true goal , i.e., 𝐺𝐻 ⊆ 𝐺∗
. Now the central chal-

lenge for the system is to determine if it can achieve 𝐺∗
, and, if so,

to come up with a plan that satisfies the goal𝐺∗
. However, the fact

that the human provided the robot with a plan gives us information

about what 𝐺∗
. For one, we can assert that 𝐺∗

must be a subset of

what the human believes would have resulted from executing the

plan (T (𝜋𝐻 , 𝐼𝐻 , 𝐷𝐻 )). The problem of course is how one identifies

the exact subset. Besides, queries to directly get 𝐺∗
(say by asking,

‘are you sure you only need me to achieve𝐺𝐻 ?’) are bound to fail. In

fact, the difference between𝐺𝐻
and𝐺∗

, is not just a result of them

forgetting some fluents, but a reflection of their beliefs about the

task. The robot could on the other hand ask the human whether

they care about any given fluent. Thus we will introduce a function

O𝐺∗
: 𝐹 → [0, 1] that will return 1 if a given fluent is part of 𝐺∗

.

This will become the central interaction mechanism through which

we will solve our underlying goal misalignment problem.

Definition 2. A human-aware goal alignment (HAGL) is
specified by the tuple H = ⟨𝐷𝑅, 𝐼𝑅,𝐺𝐻 , 𝐷𝐻 , 𝐼𝐻 , 𝜋𝐻 ,O𝐺∗ ⟩, where
there exists an unknown goal 𝐺∗, such that T (𝜋𝐻 , 𝐼𝐻 , 𝐷𝐻 ) ⊇ 𝐺∗

and 𝐺𝐻 ⊆ 𝐺∗ and ∀, 𝑓 ∈ 𝐹,O𝐺∗ (𝑓 ) = 1, if and only if 𝑓 ∈ 𝐺∗. Now
the goal of the robot is to find 𝜋𝑅 such that T (𝜋𝑅, 𝐼𝑅, 𝐷𝑅) ⊇ 𝐺∗, if
one exists, while minimizing the queries to O𝐺∗

As with many of the human-aware planning works, we will as-

sume access to 𝐷𝐻
and 𝐼𝐻 . In terms of computational complexity,

we can compare HAGL against planning and see that it is at the

very least as hard as solving classical planning problems, i.e., it is

at least PSPACE-Hard.

3 SOLVING HAGL
To solve HAGL, we will approximate the value of information

related to querying each fluent and then query the ones with the

highest value. We will only use this procedure if 𝐺𝐻
is achievable,

but the robot can’t achieve all the fluents that were made true by

the human plan in the human model (T (𝜋𝐻 , 𝐼𝐻 , 𝐷𝐻 )). We will

calculate the value associated with querying about each fluent, as

V𝑄 (𝑓 ) = 𝑝 (𝑓 ∈ 𝐺∗) ×𝑉 (𝑓 ∈ 𝐺∗) + (1 − 𝑝 (𝑓 ∈ 𝐺∗)) ×𝑉 (𝑓 ∉ 𝐺∗)

Where 𝑝 (𝑓 ∈ 𝐺∗) is the probability that fluent is part of the goal

and 𝑉 (𝑓 ∈ 𝐺∗), respective values of knowing whether 𝑓 is part

of the goal or not. For simplification purposes, the achievement

of each fluent can be done independently of the other. Let 𝑆𝐻
𝐺∗ =

T (𝜋𝐻 , 𝐼𝐻 , 𝐷𝐻 ) and let 𝐹 ⊆ 𝑆𝐻
𝐺∗ be the set of fluents in the goal

state that the robot cannot achieve in its model. Now to calculate

the probability, we will employ a strategy similar to the ones used

in goal recognition [7] and keeping with the conventions used by

[7], we can formalize this as

𝑝 (𝑓 ∈ 𝐺∗) ∝ 𝑒
−1×𝛽×|𝐶 (𝜋𝐻 )−𝐶 (𝜋∗

𝑓
) |

Where 𝜋∗
𝑓
is the optimal plan in the human model for the goal𝐺𝐻 ∪

𝑓 , 𝛽 is a rationality parameter that also controls the randomness

of the decision-maker given that we assume the human to be a

noisy rational decision-maker[6]. The value function reflects the

certainty the robot has regarding the achievability of the goal state.

Now we can find a lower bound on this true value by just using the

probability that the goal is unachievable.

𝑉 (𝑓 ∈ 𝐺∗) ≊
∑̄︁
𝐺

𝑃 (𝐺∗ = 𝐺) × 1(𝐺 not solvable)

Where 𝐺𝐻 ⊆ 𝐺 ⊆ 𝑆𝐻
𝐺∗ and 𝑓 ∈ 𝐺 . We can similarly define 𝑉 (𝑓 ∉

𝐺∗), but now we will only consider subsets of goal state that don’t

contain 𝑓 . However, if we additionally assume that if a fluent is

achievable in isolation in the robot model, it can also be achieved

as part of any goal state, we only need to care about the fluents

that are part of 𝐹 So we will define

𝑉̃ (𝑓 ∈ 𝐺∗) =
{

1 if 𝑓 is not achievable∏
ˆ𝑓 ∈𝐹 𝑝 ( ˆ𝑓 ∈ 𝐺∗) Otherwise

In the case of 𝑉̃ (𝑓 ∉ 𝐺∗) the value is always given as 𝑉̃ (𝑓 ∉

𝐺∗) =
∏

ˆ𝑓 ∈𝐹\{ 𝑓 } 𝑝 ( ˆ𝑓 ∈ 𝐺∗). Now the important point of this

approximation is the assumption that each fluent’s independent

achievability reflects its overall achievability. Obviously, there are

many cases where this assumption may not hold, but we can show

that the value 𝑉̃ is guaranteed to be an under approximation of 𝑉 .

Now that we have a value associated with each fluent. We will

start by querying them in the order of their value. We will end the

query process under one of the three conditions: 1) The human

says yes to a fluent that cannot be achieved, 2) The current subset
of fluents the human has said yes to cannot be achieved along with

the goal or 3) There exists a plan that can achieve the current subset
of fluents the human has said yes to can be achieved along with𝐺𝐻

and any unqueried fluent. The first two conditions correspond to

cases where the robot can’t achieve the expected goal and the latter

where the robot can achieve a superset of 𝐺∗
and thus that plan

would be acceptable to the human. This procedure is guaranteed

to be complete. This result follows from the fact that in the worst

case, it would ask about every fluent that is part of 𝑆𝐻
𝐺∗ and will be

able to determine if a plan exists or not.

4 EVALUATION AND CONCLUSION
For evaluating our proposed algorithm, we ran our method on a

set of problems selected from standard IPC benchmark problems

[5]. The initial empirical evaluation shows that our algorithm helps

reduce the number of queries to the human before the system can

come up with a plan guaranteed to satisfy the true human goal. As

next step, we hope to extend the framework to support more com-

plex decision-making settings including decision-theoretic ones, or

by looking at the use of more realistic decision-making models for

humans while relaxing assumptions about the access to the human

mental model of the robot.
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