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ABSTRACT
This paper discusses how Probabilistic Deduction (PD), a proba-
bilistic structured argumentation framework with an epistemic
approach to probabilistic argumentation, can be viewed as a proba-
bilistic extension to Assumption-based Argumentation.
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1 INTRODUCTION
Probabilistic Deduction (PD) [4] is a probabilistic structured ar-
gumentation framework taking the epistemic approach [7]. PD
frameworks are constructed with probabilistic rules (p-rules) [5],
which allow one to construct arguments and attacks between ar-
guments as standard inference rules. At the same time, one can
also calculate probabilities of arguments based on probabilities of
p-rules, which are read as conditional probabilities. The construct
central to this work is a mapping, ABA2PD, from Assumption-based
Argumentation (ABA) [2] frameworks to PD frameworks. With
ABA2PD, arguments and attacks in an ABA framework are mapped
to their counterparts, respectively, in a PD framework. Semantically,
under the probabilistic closed-world assumption (P-CWA) and with
minimum entropy reasoning, ABA2PD achieves that (1) every ABA
argument in F has a counterpart in FPD; (2) if an argument in FPD
has probability 1, then its counterpart in the ABA framework is in a
complete extension; (3) if an argument in F is in a stable extension,
then its counterpart in the PD framework has probability 1; and (4)
F is coherent iff FPD is P-CWA consistent.

2 PRELIMINARY
Given atoms 𝜎0, . . . , 𝜎𝑛 forming a language L = {𝜎0, . . . , 𝜎𝑛}, we
let L𝑐 be the closure of L under the classical negation ¬.

Definition 2.1. [5] Given a language L, a probabilistic rule (p-
rule) is 𝜎0 ← 𝜎1, . . . , 𝜎𝑘 : [𝜃 ] for 𝑘 ≥ 0, 𝜎𝑖 ∈ L𝑐 , and 0 ≤ 𝜃 ≤ 1. 𝜃
is referred to as the probability of the p-rule.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

Definition 2.2. [6] Given a language L with 𝑛 atoms, the Com-
plete Conjunction Set (CC Set) Ω of L is the set of 2𝑛 conjunction of
literals such that each conjunction contains 𝑛 distinct atoms.

Definition 2.3. [5] Given a language L and a set of p-rules R,
let Ω be the CC set of L. A function 𝜋 : Ω → [0, 1] is a consistent
probability distribution with respect to R on L for Ω iff:
(1) For all 𝜔𝑖 ∈ Ω,

0 ≤ 𝜋 (𝜔𝑖 ) ≤ 1; (1)
(2) It holds that: ∑︁

𝜔𝑖 ∈Ω
𝜋 (𝜔𝑖 ) = 1. (2)

(3) For each p-rule 𝜎0 ←: [𝜃 ] ∈ R, it holds that:

𝜃 =
∑︁

𝜔𝑖 ∈Ω,𝜔𝑖 |=𝜎0
𝜋 (𝜔𝑖 ) . (3)

(4) For each p-rule 𝜎0←𝜎1, . . . , 𝜎𝑘 : [𝜃 ] ∈R, (𝑘 > 0), it holds that:1

𝜃 =

∑
𝜔𝑖 ∈Ω,𝜔𝑖 |=𝜎0∧...∧𝜎𝑘 𝜋 (𝜔𝑖 )∑
𝜔𝑖 ∈Ω,𝜔𝑖 |=𝜎1∧...∧𝜎𝑘 𝜋 (𝜔𝑖 )

. (4)

R is consistent iff there is a consistent distribution wrt R.

Given a languageL and a set of p-rulesR, a deduction for 𝜎 ∈ L𝑐

with Σ ⊆ L𝑐 , denoted Σ ⊢D 𝜎 , is a finite tree T as defined in ABA
deductions for 𝜎 , with Σ = {𝜎 ∈ L𝑐 |𝜎 labels a node in T }. Let
{Σ1 ⊢D 𝜎, . . . , Σ𝑚 ⊢D 𝜎} be all maximal deductions2 for 𝜎 where
Σ1 = {𝜎11 , . . . , 𝜎

1
𝑘1}, . . . , Σ𝑚 = {𝜎𝑚1 , . . . , 𝜎𝑚

𝑘𝑚
}. Let

𝑆 =

𝑘1∧
𝑖=1

𝜎1𝑖 ∨ . . . ∨
𝑘𝑚∧
𝑖=1

𝜎𝑚𝑖 . (5)

The Probabilistic Closed World Assumption (P-CWA) asserts that for
each 𝜎 ∈ L𝑐 , ∑︁

𝜔∈Ω,𝜔 |=𝜎,𝜔 ̸ |=𝑆
𝜋 (𝜔) = 0. (6)

A set of p-rules R is consistent under P-CWA iff R is consistent
when P-CWA is imposed. We also refer to such p-rules as P-CWA
consistent. For a set of P-CWA consistent p-rules, the probability
of 𝜎 ∈ L𝑐 wrt a consistent probability distribution 𝜋 is

Pr(𝜎) =
∑︁

𝜔𝑖 ∈Ω,𝜔𝑖 |=𝜎
𝜋 (𝜔𝑖 ) =

∑︁
𝜔𝑖 ∈Ω,𝜔𝑖 |=𝑆

𝜋 (𝜔𝑖 ) . (7)

Definition 2.4. [4] A Probabilistic Deduction (PD) framework is
a pair ⟨L,R⟩ where L is the language, R a set of p-rules such that
1If

∑
𝜔𝑖 ∈Ω,𝜔𝑖 |=𝜎1∧...∧𝜎𝑘 𝜋 (𝜔𝑖 ) = 0, then

∑
𝜔𝑖 ∈Ω,𝜔𝑖 |=𝜎0∧...∧𝜎𝑘 𝜋 (𝜔𝑖 ) = 0 as 𝜎0 ∧

. . . ∧ 𝜎𝑘 |= 𝜎1 ∧ . . . ∧ 𝜎𝑘 . We thus require 𝜃 = 0 in such cases for 𝜋 to be consistent.
2A deduction 𝑆 ⊢D 𝜎 is maximal when there is no 𝑆 ′ ⊢D 𝜎 such that 𝑆 ⊂ 𝑆 ′ .
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• for all 𝜌 ∈ R, literals in 𝜌 are in L𝑐 ,
• R is P-CWA consistent.

Definition 2.5. [4] Given a PD framework ⟨L,R⟩, an argument
for 𝜎 ∈ L supported by 𝑆 ⊆ L, denoted 𝑆 ⊢ 𝜎 is such that there is
a deduction A = 𝑆 ⊢D 𝜎 in which for each leaf node 𝑁 in A, either

(1) 𝑁 is labelled by 𝜏 , or
(2) 𝑁 is labelled by some 𝜎′ ∈ L, ¬𝜎′ ← _ : [·] ∈ R, |𝑆 | > 1.

Definition 2.6. [4] For two arguments A = _ ⊢ 𝜎 and B = Σ ⊢ _
in some PD framework, A attacks B if ¬𝜎 ∈ Σ.

The probability of an argument in PD framework is defined as
the probability of the conjunction of all literals in the argument.
Formally, given a PD framework FPD and a P-CWA consistent prob-
ability distribution 𝜋 , for each argument {𝜎0, . . . , 𝜎𝑘 } ⊢ 𝜎0 in FPD,

Pr({𝜎0, . . . , 𝜎𝑘 } ⊢ 𝜎0) =
∑︁

𝜔𝑖 ∈Ω,𝜔𝑖 |=𝜎0∧...∧𝜎𝑘
𝜋 (𝜔𝑖 ). (8)

Minimum Entropy reasoning asserts that when multiple dis-
tributions are consistent for assigning probabilities to complete
conjunctions, a distribution that minimizes the entropy is selected.

Definition 2.7. Given a PD framework ⟨L,R⟩, let Π be the
set of consistent probability distributions wrt R on L, a Minimum
Entropy Distribution 𝜋01 ∈ Π is such that

𝜋01 = argmin
𝜋∈Π

(
−

∑︁
𝜔∈Ω

𝜋 (𝜔) log(𝜋 (𝜔))
)
.

3 ABA-PD MAPPING
Definition 3.1. The function ABA2PD is a mapping from ABA

frameworks to PD frameworks such that for an ABA framework
F = ⟨L,R,A, C⟩, ABA2PD(F) = ⟨Lpd,Rpd⟩, where:
• Lpd = L ∪ {𝛼𝑎𝑠𝑚 |𝛼 ∈ A, 𝛼𝑎𝑠𝑚 ∉ L},
• Rpd = R𝑟 ∪ R𝑎 ∪ R𝑐 ∪ R𝑒 , in which:
– R𝑟 = {𝜌 : [1] |𝜌 ∈ R},
– R𝑎 = {𝛼 ← 𝛼𝑎𝑠𝑚 : [1] |𝛼 ∈ A},
– R𝑐 = {¬𝛼𝑎𝑠𝑚 ← 𝜎 : [1] |C(𝛼) = 𝜎}, and
– R𝑒 = {¬𝜎 ←: [1] |𝜎 ∈ L \ A and �𝜎 ← _ ∈ R}.

Syntactically, for each (ABA) argument A in F, there is a coun-
terpart of A in ABA2PD(F). Moreover, if A = _ ⊢A 𝜎 attacks another
argument B = {𝛼, . . .} ⊢A _ in the ABA framework, where C(𝛼) = 𝜎 ,
then there exists A+PD = {¬𝛼, 𝜎, . . .} ⊢ ¬𝛼𝑎𝑠𝑚 in the PD framework,
such that A+PD contains ¬𝛼𝑎𝑠𝑚 and all literals in APD. Attacks be-
tween ABA arguments are preserved in their PD counterparts, i.e.,
given ABA framework F = ⟨L,R,A, C⟩, for each ABA argument
A = _ ⊢A 𝜎 in F, if there exists 𝛼 ∈ A, such that C(𝛼) = 𝜎 , then
there is a PD argument of the form A+PD = {¬𝛼𝑎𝑠𝑚, 𝜎, . . .} ⊢ ¬𝛼𝑎𝑠𝑚
in ABA2PD(F) such that all literals in APD are in A+PD.

To establish semantics connections between ABA and PD, we
see that PD’s probability semantics can be viewed as a complete
labelling in ABA-PD frameworks. To this end, we observe that: (1)
unattacked arguments have probability 1; (2) an attacked argument
has probability 1 iff all its attackers have probability 0; and (3) with
the minimum entropy reasoning, an argument has probability 0
iff it has an attacker with probability 1. With these, we have our
theorems that connect argument probability with labelling.

Theorem 3.1. Given an ABA-PD framework FPD, let As be the
set of arguments in 𝐹 , with minimum entropy reasoning, the Prob-
abilistic Labelling function Ξ𝑐 : As ↦→ {in, out, undec}:

Ξ𝑐 (A) =


in if Pr(A) = 1,
out if Pr(A) = 0,
undec otherwise.

in which A ∈ As, is a complete labelling.

Key results that lead to the proof of Theorem 3.1 are (1) Propo-
sition 2 in [1], which states that “a labelling is complete iff for all
arguments it holds that: an argument is in iff all of its attackers are
out, and an argument is out iff it has at least one attacker that is
in” and the observation that if a set of p-rules is consistent, then
there is a consistent distribution that assigns 1 to a single complete
conjunction while assigning 0 to all other complete conjunctions.
Such a distribution is a minimum entropy distribution.

Corollary 3.1. Given an ABA framework F, consider the PABA-
PD framework ABA2PD(F). For each argument A in F, with a mini-
mum entropy distribution 𝜋01, if Pr(Apd) = 1, then A is in a complete
extension.

The other direction of Corollary 3.1, if A in F is complete then
Pr(Apd) = 1, does not hold in general as F with arguments in a
three-cycle and an unattacked argument has a complete labelling
such that the three arguments in the three-cycle are labelled undec
and the unattacked argument labelled in. However, ABA2PD(F) is
not P-CWA consistent. Thus, we consider the stable labelling, which
is a complete labelling without undec in the next theorem.

Theorem 3.2. Given an ABA framework F with arguments As,
let Ξ𝑠 be a stable labelling function on As and FPD = ABA2PD(F),
there exists a consistent distribution 𝜋 , such that for each A ∈ As,

Pr(Apd) =
{
1 if Ξ𝑠 (A) = in,

0 if Ξ𝑠 (A) = out.

An interesting observation from Corollary 3.1 and Theorem 3.2
is that these results can be expressed with the notion of coher-
ence introduced in Dung’s original paper [3]. There, the concept of
controversial arguments has been defined as arguments that both
(indirectly) attack and defend the same argument (e.g., arguments
in an odd-length-cycle can be controversial). Dung has shown that
argumentation frameworks without any controversial argument
are coherent, in the sense that each maximal (wrt set inclusion)
admission extension is also a stable extension in such argumenta-
tion frameworks (Theorem 33, [3]). With the notion of coherent
argumentation framework, we can express our findings as follows3.

Theorem 3.3. For an ABA framework F, let FPD = ABA2PD(F), F
is coherent iff FPD is P-CWA consistent.

An interesting remark is that in Dung’s seminal paper, the stable
semantics is at the core of the discussion, as which is the notion
“underlining exactly the way the notions of stable models in logical
programming, extensions in Reiter’s default logic, and stable ex-
pansion in Moore’s autoepistemic logic” [3]. It is interesting to see
that PD’s probability semantics is related to that as well.
3Although Dung’s work in [3] is about abstract argumentation, it is clear that the same
definition can be applied to ABA as well.
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