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ABSTRACT agent must reason about the type of the other agent, their inter-
Designing autonomous agents that can interact effectively with action history, and the state of the environment, all at the same
other agents without prior coordination is an important problem in time. Several online planning methods based on Monte-Carlo Tree
multi-agent systems. Type-based reasoning methods achieve this by Search (MCTS) have shown promising performance in non-trivial
maintaining a belief over a set of potential behaviours for the other partially observable problems [9, 12, 17]. However, so far these
agents. However, current methods are limited in that they assume methods have only been demonstrated in settings where the other
full observability of the environment or do not scale efficiently to agent’s type is known and in settings requiring relatively short
larger problems with longer planning horizons. Addressing these planning horizons.
limitations, we propose Bayes-Adaptive Partially Observable Sto- In this work we propose Bayes-Adaptive Partially Observable
chastic Game Monte-Carlo Planning (BAPOSGMCP) — a scalable Stochastic Game Monte-Carlo Planning (BAPOSGMCP), an online
online planner for Type-based reasoning in partially observable planning algorithm for type-based reasoning in partially observable
environments — which combines Monte-Carlo Tree Search with a environments. BAPOSGMCP extends the PUCT algorithm [19], that
novel meta-policy for selecting the best policy to guide search dur- uses a search-policy for guiding search, to the partially observable
ing planning. Through comprehensive evaluations we demonstrate setting. For the search-policy, we introduce a novel meta-policy
that BAPOSGMCP is able to effectively adapt online to diverse sets which is robust to the set of types of the other agents and is efficient
of agents in large cooperative, competitive and mixed environments to compute. We evaluate the proposed method on large competitive,
with up to 1014 states and 108 observations. cooperative, and mixed partially observable environments - the
largest of which has four agents and on the order of 10'* states
KEYWORDS and 10% observations - and demonstrate that it is able to rapidly

adapt and interact effectively without explicit prior coordination in
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to their policy z;, which is a mapping from their history h; to a

probability distribution over their actions a;, and is equivalent to

1 INTRODUCTION an agent’s type. We are interested in finding a policy for the plan-

A core research area in multi-agent systems is the design of agents ning agent, denoted i, that maximizes it’s expected sum of rewards,
that can interact effectively with other agents without prior coordi- assuming that all other agents, collectively denoted —i, are using
nation [2, 8, 21]. Type-based reasoning methods give agents this policies from a known fixed set of policies IT according to a distri-
ability by maintaining a belief over a set types for the other agents bution over this set p.
[1, 4, 6, 7]. Each type is a mapping from the agent’s interaction Our goal in this work is to find a scalable and efficient planning
history to a probability distribution over actions, and completely algorithm for our problem setting. To this end we present BAPOS-
specifies the agent’s behaviour. If the set of types is sufficiently GMCP. Like existing planners [9, 12, 17], BAPOSGMCP uses MCTS
representative, type-based reasoning can lead to fast adaptation to calculate the planning agent’s best action from its current belief
and effective interaction without prior coordination 3, 6]. b;. However, it offers several important improvements over existing
Unfortunately, type-based reasoning introduces significant com- algorithms. Firstly, it incorporates the PUCT algorithm [19] for
plexity into the decision making problem and finding scalable and selecting actions during search, which can significantly improve
efficient solution methods remains a key challenge. This is espe- planning efficiency by biasing search towards the most relevant
cially true in partially observable environments where the planning actions according a search policy. This makes it possible to plan
for longer horizons, as well as offers improved integration of the
Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys- search-policy’s value function for leaf node evaluation. To address

tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 — June 2, 2023, e . . .
London, United Kingdom. © 2023 International Foundation for Autonomous Agents the limitation of PUCT’ namely that it relies on access to a gOOd

and Multiagent Systems (www.ifaamas.org). All rights reserved. search-policy, the second improvement offered by BAPOSGMCP is
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Figure 1: Mean episode return of BAPOSGMCP and baseline
methods. Shaded areas show the 95% CIL.
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the use of a novel meta-policy as the search-policy. Our proposed
meta-policy has the advantage that it can be efficiently generated
from the policy set IT, and offers a robust prior since it considers
performance across the entire set of other agent policies.

The proposed meta-policy o; is a mapping from the set of other
agent joint policies to a distribution over the set of valid policies
for the planning agent o; : IT — A(II;), so that o; (7 g |7—i,m) =
Pr(mjp|m—im) for m;j € Ij, m—jm € IL. Where the set II; is the
set of all individual policies for any of the other agents from the
set I1. To generate the meta-policy we use an empirical game [13,
22, 23], which efficiently constructs an estimate of each policy’s
performance against each other policy in the set of policies II.
The meta-policy selects the policy from the set II; that maximizes
performance against a given policy for the other agent, according
to the empirical game’s estimate.

We incorporate the meta-policy into MCTS to create BAPOS-
GMCP, which extends the POMCP [20] algorithm to planning with
beliefs over history-policy-states and uses PUCT [16, 19] and the
meta-policy for selecting actions from each belief during search. in
BAPOSGMCP each belief is a distribution over the other agents’
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histories h_;, their policies 7_; € II, and the environment state
s. This transforms the problem into a type of POMDP [10], and
allows us to apply MCTS based belief-tree planning to the problem.
We improve the efficiency of planning by using the meta-policy
to guide search via the PUCT algorithm. The meta-policy selects
the policy to guide planning n; € II; based on the planning agent’s
belief about the other agent’s policy 7_;.

3 EXPERIMENTS

We evaluated BAPOSGMCP against baseline methods on one coop-
erative (Predator-Prey (PP) [15]), one competitive (Pursuit-Evasion
(PE)[17, 18]), and two mixed (Driving [14], and Level-Based-Foraging
(LBF) [3, 5]) environments. These environments add additional com-
plexities to existing benchmarks [9, 12] and were chosen in order
to assess BAPOSGMCP’s ability across a range of domains that
required both planning over many steps and reasoning about the
other agent’s behaviour. For each environment, we created a di-
verse set of policies IT which was used for the other agent policies
during evaluations and also for the meta-policy o; and policy prior
p. We compared BAPOSGMCP against a number of baselines, two
of which are indicative of upper and lower bounds on the perfor-
mance of BAPOSGMCP, while the other two test the benefits of
different components of our approach.

We found that for all environments the performance of BAPOS-
GMCP improved with the number of simulations and given enough
simulations BAPOSGMCP equaled or outperformed all non-upper
bound baselines across all environments (Figure 1). Furthermore, in
the Driving and PE (Evader) problems the performance converged
towards the Best-Response upper-bound, suggesting BAPOSGMCP
converges towards Bayes-optimal performance as the number of
simulations increased. The importance of the different aspects of
BAPOSGMCP- beliefs, search, and search tree - varied by environ-
ment, however using all three lead to overall best performance
given enough planning time. The most significant improvements
over the baselines were found in the PE (Evader) problem, which is
the problem that required the longest horizon planning. Indicating
the benefit of our approach for problems requiring longer planning
look-ahead.

4 CONCLUSION

In this work we presented a scalable planning method for type-
based reasoning in large partially observable environments. Our
algorithm, BAPOSGMCP, offers two key contributions over ex-
isting planners. The first is the use of PUCT for action selection
during search. The second is a new meta-policy which is used to
guide the search. Through extensive evaluations we demonstrate
BAPOSGMCP’s ability to effectively adapt online to diverse sets of
agents in large cooperative, competitive and mixed environments.
Multiple avenues for future research exist, including extending BA-
POSGMCP to handle continuous actions and observations, along
with exploring alternative constructions of the meta-policy [13].

Code and Paper

The full paper and code are available at https://github.com/Jjschwartz/
ba-posgmcep.


https://github.com/Jjschwartz/ba-posgmcp
https://github.com/Jjschwartz/ba-posgmcp
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