Poster Session |

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

Updating Action Descriptions and Plans for Cognitive Agents
Extended Abstract

Peter Stringer
University of Manchester
Manchester, United Kingdom
peter.stringer@manchester.ac.uk

Michael Fisher
University of Manchester
Manchester, United Kingdom
michael fisher@manchester.ac.uk

ABSTRACT

In this paper, we present an extension of Belief-Desire-Intention
agents which can adapt their performance in response to changes in
their environment. Our main contributions are the underlying the-
oretical mechanisms for data collection about action performance,
the synthesis of new action descriptions from this data, the integra-
tion with plan reconfiguration, and a practical implementation to
validate the semantics.

KEYWORDS

Beliefs-Desires-Intentions; Action Descriptions; Al Planning

ACM Reference Format:

Peter Stringer, Rafael C. Cardoso, Clare Dixon, Michael Fisher, and Louise
A. Dennis. 2023. Updating Action Descriptions and Plans for Cognitive
Agents: Extended Abstract. In Proc. of the 22nd International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2023), London, United
Kingdom, May 29 — June 2, 2023, IFAAMAS, 3 pages.

1 INTRODUCTION AND BACKGROUND

Long-term autonomy requires autonomous systems to adapt once
their capabilities no longer perform as expected. To achieve this, a
system must first be capable of detecting such changes and then
adapting its internal reasoning processes to accommodate these.
For example, deploying an autonomous robot into a dynamic en-
vironment can result in actions becoming unreliable over time, as
the environment changes, producing unexpected outcomes that
were unforeseeable before runtime. The autonomous agent must
be capable of observing these changes and adapting accordingly.
Our work focuses on cognitive agents [3, 17, 21] programmed
in a Belief-Desire-Intention (BDI) [16, 17] programming language
providing high-level decision-making in an autonomous system,
as outlined in [8]. Programs written in these languages use plans
created in advance by a programmer to select actions to execute in
the environment. These plans make implicit assumptions about the
behaviour of the actions they execute. Therefore, in this context,
the challenge becomes to make these assumptions explicit, detect
when they no longer hold, and then modify the plans accordingly.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 — June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

Rafael C. Cardoso
University of Aberdeen
Aberdeen, United Kingdom
rafael.cardoso@abdn.co.uk

2370

Clare Dixon
University of Manchester
Manchester, United Kingdom
clare.dixon@manchester.ac.uk

Louise A. Dennis
University of Manchester
Manchester, United Kingdom
louise.dennis@manchester.ac.uk

Some Belief-Desire-Intention (BDI) languages use action descrip-
tions (sometimes referred to as capabilities in the literature), which
consist of explicit pre- and post-conditions for all known actions.
These have their roots in Al planning and STRIPS operators [10].
Mechanisms and semantics used for such functionality are dis-
cussed in [7, 14, 19]. A version of GWENDOLEN (which we have used
for our implementation) also exists that contains an implementation
of action descriptions [19].

Definition 1.1 (Action Description). We assume a language L of
first-order terms constructed in the usual way. Action descriptions
are a triple {Pre}A{Post} where A is a term in L representing
an action, {Pre} is a set of terms representing the action’s pre-
conditions and {Post} is a set of expressions of the form +¢ or —t
(where t is a term in £). Note: +¢ means that the term ¢ should be
added to the agent’s belief base after execution of the action and
—t that it should be removed.

GWENDOLEN tracks the performance of actions over time in
an action log. An action log keeps a record of action outcomes
in an array of fixed, application-specific size, where the oldest
entry is removed before adding a new one, once the log reaches its
size limit. The action log therefore enables GWENDOLEN to reason
about the probability of action success and opens the possibility of
implementing an action lifecycle [20], inspired by the concept of
goal life-cycles for BDI languages [13].

The automated planning research community has invested con-
siderable effort in the modelling of actions with stochastic outcomes.
both theoretically [15, 22], and practically (e.g. [5, 11]). This com-
munity deploys action descriptions to flexibly plan on-the-fly for
each new goal, which avoids the problem faced in BDI languages
that an action whose behaviour has changed may result in failing,
and therefore useless, plans. Plan failure has been extensively re-
searched in BDI programming languages (e.g., [2, 9, 18]), however,
it has not been linked with action descriptions perhaps because
most languages do not use action descriptions as a mechanism to
detect action failure. The closest work to our own is in [13] with a
proposal for BDI goal life-cycles.

A key component of our approach is synthesizing or learning
a new action description when an action ceases to perform as
expected. Using algorithms to discover the effects of actions has
been explored in the AI Planning domain [1]. We have based our
approach on ideas from [6] and [12] where new action descrip-
tions are learned from traces of action behaviour with a weighting



Poster Session |

Reason
Act
Patch C
No Log outcome
Plans i
of action
Synthes¥ze Any action
New Action [e— Yes
Act deprecated?
Description

Figure 1: Extended Sense-Reason-Act cycle.

mechanism guiding the choice of additions and deletions to the
constructed action post-condition.

A mechanism for patching BDI plans by combining BDI agents
and automated planning was presented in [4], but it does not ac-
count for how failure is detected. We leverage this work in ours.
If an action is deprecated by the action lifecycle, then any plans
involving that action are patched using this mechanism.

To the best of our knowledge, there is no end-to-end framework
in cognitive agents for updating action descriptions and patch-
ing the associated plans, as presented here. Our contribution is
a methodology to detect faulty actions, modify their descriptions
and reconfigure BDI plans based on these new descriptions, en-
abling long-term autonomy. Our work applies to BDI programming
languages that allow action descriptions.

2 FRAMEWORK

Our starting point is the system architecture from [8] in which
a cognitive agent performs high-level mission reasoning, such as
deciding in which order some set of waypoints are to be visited.
Cognitive agents employ a reasoning cycle which governs a sense-
reason-act process. The action log integrates with the act phase and
compares the outcomes of executed actions to the post-conditions
in the action’s description. If the post-conditions are successful,
then a success is logged, and if they are not, a failure is logged. In
all situations, the action log also records the changes in beliefs from
the moment when the action was executed to the moment when it
succeeded or failed. These changes are stored as a list of expressions
of the form +t or —t where ¢ is a term — that is, in the same format
as post-conditions in action descriptions. Our framework extends
action descriptions to include a failure threshold.

If the number of failures for the action in the action log exceeds
the failure threshold, then the action becomes deprecated. Note
that the action log should be of fixed length, so that an action can
not become deprecated as the result of a slow build up of occasional
failure over time.

We extend the act phase of the reasoning so that after the exe-
cution of an action, the action log is consulted. If the most recent
action has not become deprecated the cycle continues as before. If
it has become deprecated, then a new action description is synthe-
sized from the information in the log and relevant plans are patched
before the agent continues to the sense phase. This reasoning cycle
is shown in Figure 1.

2371

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

We synthesize a new action description by extracting, from the
action log, all the failed instances of the deprecated action. We
then have a list of new candidate post-conditions for the action
in the form of the change in beliefs as the action executed. Each
item in this list is assigned a weight score based on how recent
the item is. The weights for identical items are then summed, and
the highest-scoring item is selected as the new post-condition for
the action. Pseudo-code for this process is shown in Algorithm 1.
Line 2 instantiates the initial weight score (n) to 1, and in Line 3
it sets post_scores to an empty map. Lines 4-7 will loop through
every entry in the action log to find entries that match with the
deprecated action (same action) and where the outcome of the entry
was reported as a failure. When this happens, the post-conditions of
the action are added to the post_scores map along with the weight
score, which is then incremented by one for the future iterations
of the action log. In line 8 we initialise best with 0. Lines 9-11
iterate over the keys in the post_scores map to select the candidate
post-condition with the highest weight score.

Algorithm 1: Algorithm for synthesizing post-conditions.

1 if action is deprecated then

2 ne«1;

3 post_scores «— {} // map data-structure

4 for entry € action log do

5 if entry[0] = action & entry[2] = Failure then
6 post_scores[entry[1]] «

post_scores[entry[1]] + n;

7 ne—n+l
8 best « 0;
9 for post € keys(post_scores) do

10 if post_scores|post] > best then

L best « post

11

Once we have a new action description, we use the plan patching
mechanism from [4] to patch any plans containing the action.

3 EVALUATION AND CONCLUSION

We evaluated our approach with a navigation example !. Our envi-
ronment consisted of five waypoints and our agent had a plan for a
patrol mission to visit each waypoint in turn. Each move action had
a description of the form: {at(X)}move(X, Y){—at(X),+at(Y)}
We allowed one move action to change its behaviour so that the
agent arrived at a different waypoint to the one anticipated (e.g.,
because of obstacle avoidance behaviour). The system would then
observe this changed behaviour and update the action description.
It then attempts to patch its plans — typically by finding a different
route to the desired waypoint that avoided whatever was blocking
the altered move action.

We have presented here the over-arching template of a frame-
work for adapting BDI agent plans in the face of changed action
behaviour. While there is a great deal of scope for extending the
framework we believe the basic architecture and concept provides
a sound foundation for this further work.

1All code can be found at https://github.com/mcapl/mcapl/tree/reconfig_peter


https://github.com/mcapl/mcapl/tree/reconfig_peter

Poster Session |

ACKNOWLEDGMENTS

This work has been supported by The University of Manchester’s
Department of Computer Science and the EPSRC “Robotics and Al
for Nuclear” (EP/R026084/1) and “Future Al and Robotics for Space”
(EP/R026092/1) Hubs.

REFERENCES

(1]

2

=

[9

=

[10]

Ankuj Arora, Humbert Fiorino, Damien Pellier, Marc Etivier, and Sylvie Pesty.
2018. A review of learning planning action models. Knowledge Engineering
Review 33 (2018).

Rafael H Bordini and Jomi Fred Hiibner. 2010. Semantics for the Jason Variant
of AgentSpeak (Plan Failure and some Internal Actions).. In ECAL IOS Press,
635-640. https://doi.org/10.3233/978-1-60750-606-5-635

M. E. Bratman. 1987. Intentions, Plans, and Practical Reason. Harvard University
Press.

Rafael C. Cardoso, Louise A. Dennis, and Michael Fisher. 2019. Plan Library
Reconfigurability in BDI Agents. In Proc. of the 7th International Workshop on
Engineering Multi-Agent Systems (EMAS). Springer, 195-212.

M. Cirillo, L. Karlsson, and A. Saffiotti. 2010. Human-Aware Task-Planning: An
Application to Mobile Robots. ACM Trans. Intelligent Systems Technology 1, 2
(2010), 15.

Paul R Cohen and Edward A Feigenbaum. 2014. The handbook of artificial
intelligence: Volume 3. Vol. 3. Butterworth-Heinemann.

Mehdi Dastani, M. van Birna Riemsdijk, and John-Jules Ch. Meyer. 2005. Pro-
gramming Multi-Agent Systems in 3APL. In Multi-Agent Programming: Lan-
guages, Platforms and Applications, Rafael H. Bordini, Mehdi Dastani, Jiirgen
Dix, and Amal El Fallah Seghrouchni (Eds.). Springer US, Boston, MA, 39-67.
https://doi.org/10.1007/0-387-26350-0_2

Louise A Dennis, Michael Fisher, Nicholas K Lincoln, Alexei Lisitsa, and Sandor M
Veres. 2016. Practical verification of decision-making in agent-based autonomous
systems. Automated Software Engineering 23, 3 (2016), 305-359.

Angelo Ferrando and Rafael C. Cardoso. 2022. Safety Shields, an Automated
Failure Handling Mechanism for BDI Agents. In Proceedings of the 21st Interna-
tional Conference on Autonomous Agents and Multiagent Systems (Virtual Event,
New Zealand) (AAMAS °22). International Foundation for Autonomous Agents
and Multiagent Systems, Richland, SC, 1589-1591. https://www.ifaamas.org/
Proceedings/aamas2022/pdfs/p1589.pdf

Richard E. Fikes and Nils J. Nilsson. 1971. Strips: A new approach to the appli-
cation of theorem proving to problem solving. Artificial Intelligence 2, 3 (1971),

2372

[12

[13]

[14

[15

[16

(17

(18]

=
)

[20

[21

[22]

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

189-208. https://doi.org/10.1016/0004-3702(71)90010-5

M. Fox and D. Long. 2003. PDDL2.1: An Extension to PDDL for Expressing
Temporal Planning Domains. JAIR 20 (2003), 61-124.

Alejandro Guerra-Hernandez, Amal El Fallah-Seghrouchni, and Henry Soldano.
2004. Learning in BDI multi-agent systems. In International Workshop on Compu-
tational Logic in Multi-Agent Systems. Springer, 218-233.

James Harland, David N Morley, John Thangarajah, and Neil Yorke-Smith. 2014.
An operational semantics for the goal life-cycle in BDI agents. Autonomous agents
and multi-agent systems 28, 4 (2014), 682-719. https://doi.org/10.1007/s10458-
013-9238-9

Koen V. Hindriks. 2009. Programming Rational Agents in GOAL. In Multi-Agent
Programming: Languages, Tools and Applications, Amal El Fallah Seghrouchni,
Jirgen Dix, Mehdi Dastani, and Rafael H. Bordini (Eds.). Springer US, Boston,
MA, 119-157. https://doi.org/10.1007/978-0-387-89299-3_4

Mausam and Daniel S. Weld. 2008. Planning with Durative Actions in Stochastic
Domains. JAIR 31 (2008), 33—-82.

A.S.Rao and M. P. Georgeff. 1991. Modeling Agents within a BDI-Architecture.
In Proc. 2nd International Conference on Principles of Knowledge Representation
and Reasoning (KR&R) (mdfbook). Morgan Kaufmann, 473-484.

A.S.Rao and M. P. Georgeff. 1992. An Abstract Architecture for Rational Agents.
In Proc. 3rd International Conference on Principles of Knowledge Representation
and Reasoning (KR&R). Morgan Kaufmann, 439-449.

S. Sardina and L. Padgham. 2011. A BDI Agent Programming Language with
Failure Handling, Declarative Goals, and Planning. Autonomous Agents and
Multi-Agent Systems 23, 1 (2011), 18-70.

Peter Stringer, Rafael C. Cardoso, Clare Dixon, and Louise A. Dennis. 2022. Imple-
menting Durative Actions with Failure Detection in Gwendolen. In Engineering
Multi-Agent Systems, Natasha Alechina, Matteo Baldoni, and Brian Logan (Eds.).
Springer International Publishing, Cham, 332-351.

Peter Stringer, Rafael C. Cardoso, Xiaowei Huang, and Louise A. Dennis. 2020.
Adaptable and Verifiable BDI Reasoning. In Proceedings of the First Workshop on
Agents and Robots for reliable Engineered Autonomy, Virtual event, 4th September
2020 (Electronic Proceedings in Theoretical Computer Science, Vol. 319), Rafael C.
Cardoso, Angelo Ferrando, Daniela Briola, Claudio Menghi, and Tobias Ahlbrecht
(Eds.). Open Publishing Association, 117-125. https://doi.org/10.4204/EPTCS.
319.9

M. Wooldridge and A. Rao (Eds.). 1999. Foundations of Rational Agency. Kluwer
Academic Publishers.

H. L. A. Younes and R. G. Simmons. 2004. Solving Generalized Semi-Markov
Decision Processes using Continuous Phase-type Distributions. In Proc. AAAL
AAAI Press, 742-747.


https://doi.org/10.3233/978-1-60750-606-5-635
https://doi.org/10.1007/0-387-26350-0_2
https://www.ifaamas.org/Proceedings/aamas2022/pdfs/p1589.pdf
https://www.ifaamas.org/Proceedings/aamas2022/pdfs/p1589.pdf
https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.1007/s10458-013-9238-9
https://doi.org/10.1007/s10458-013-9238-9
https://doi.org/10.1007/978-0-387-89299-3_4
https://doi.org/10.4204/EPTCS.319.9
https://doi.org/10.4204/EPTCS.319.9

	Abstract
	1 Introduction and Background
	2 Framework
	3 Evaluation and Conclusion
	Acknowledgments
	References



