
Bounded and Unbounded Verification of RNN-Based Agents in
Non-deterministic Environments

Extended Abstract

Mehran Hosseini
Imperial College London
London, United Kingdom
m.hosseini@imperial.ac.uk

Alessio Lomuscio
Imperial College London
London, United Kingdom
a.lomuscio@imperial.ac.uk

ABSTRACT
We consider closed-loopAgent-Environment Systems (AESs), where
the agent is controlled by a Recurrent Neural Network (RNN) with
ReLU activations in a non-deterministic environment. We introduce
a new approach based on Mixed-Integer Linear Programming to
verify such systems, which allows for more optimised complete and
sound verification of bounded temporal properties of such AESs.
Using our approach, we additionally, devise a sound algorithm for
the unbounded verification of such AESs for the first time.

KEYWORDS
Formal Verification; Verification of Agent-Environment Systems;
Verification of Neural Networks; Verification of RNNs; Safe AI

ACM Reference Format:
Mehran Hosseini and Alessio Lomuscio. 2023. Bounded and Unbounded
Verification of RNN-Based Agents in Non-deterministic Environments: Ex-
tended Abstract. In Proc. of the 22nd International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2023), London, United Kingdom,
May 29 – June 2, 2023, IFAAMAS, 3 pages.

1 INTRODUCTION
Autonomous agents are being developed and deployed at an in-
creasing pace. Considerable progress has been made to ensure that
deployed systems adhere to safety specifications [5, 6, 8–11, 13, 17,
23, 25–27, 31, 39]. A key assumption made in the traditional litera-
ture in this area is that agents are traditionally designed and directly
programmed via programming languages. A novel generation of
multi-agent systems, often referred to as “neural agents” [1–3], have
emerged that differently from traditional agent-based systems are
realised and implemented by Neural Networks (NNs).

NNs are known to be fragile [7, 35]; therefore, significant atten-
tion has been paid to the verification of NN in open loop systems,
such as computer vision systems and decision making [12, 18, 21,
29, 30, 33, 34, 36, 38]. Nevertheless, it is crucial to develop methods
to verify neural agents against safety specifications in closed loop
systems.

Verification of closed-loop neural systems is considerably less
studied. Some of the works that consider closed-loop neural systems
include [1–4, 15, 24, 32, 37]. Most of these works assume the under-
lying neural networks are Feed-Forward Neural Networks (FFNNs),
which implies that the agents are stateless. [1] studies the problem
of whether an Agent-Environment System (AES) ever reaches an

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

unwanted state in fixed and arbitrary number of steps. The specifi-
cations considered in [1] were extended in [2] to CTL, where the
authors showed that verifying FFNN-based AESs against bounded
CTL properties is PSpace-hard and in coNExpTime, even though
verifying FFNN-based AESs against unbounded CTL properties
is undecidable. The only proposal that we are aware of in which
a memoryful neural agent interacts with an environment is [4],
where the agent uses a previously trained RNN [20]. This work
only deals with bounded executions and even in this context its
scalability is limited, since the solution is based on unrolling the
neural model.

Closer to this work is [4], which considers the verification of
closed-loopAESswith RNN-based agents against bounded temporal
specifications. This work uses unrolling to transform the RNNs,
controlling the agents, to FFNNs, and then, uses the approach of
[2] to verify the system against bounded LTL specifications. This
approach suffers from the blow-up in the size of the resulting FFNN
as the number of time-steps increases and does not scale to large
networks and large number of time-steps. Some of the other related
work that consider verification of RNN, but in open-loop systems,
are [22, 28].

In this paper we propose a more scalable approach to the verifi-
cation problem of memoryful, neural agent-based systems. Specifi-
cally, we (1) present a novel recursive approach for the verification
of autonomous systems that are composed of systems with an
RNN-based agent interacting with an environment and (2) intro-
duce highly optimised methods for the verification of such neural
systems against a temporal logic on bounded and unbounded exe-
cutions of the system.

2 NOTATION & BACKGROUND
Here, we define the concepts and notation used such as RNNs
and the agent-environment setup considered, i.e., Recurrent Neural
Agent-Environment Systems (RNN-AESs) adopted from [4]. We use
C∗ to denote the set of all infinite sequences in C, {𝒙 ⟨𝑖 ⟩}𝑖∈N to
indicate an infinite sequence, and 𝒙 ⟨𝑡 ⟩ to refer to the 𝑡-th element
in {𝒙 ⟨𝑖 ⟩}𝑖∈N. We start by defining recurrent layers and RNNs. For
more on other layers please see [16, Chapters 6-10].
Definition 1 (Recurrent Layer). A recurrent layer is a function

𝑅 :
{
R𝑚 × R𝑛 → R𝑛,
(𝒙 ⟨𝑡 ⟩,𝒚 ⟨𝑡−1⟩) ↦→ ReLU(𝑾𝑥𝒙 ⟨𝑡 ⟩ +𝑾ℎ𝒚

⟨𝑡−1⟩ + 𝒃),

where 𝒙 ⟨𝑡 ⟩ ∈ R𝑚 and 𝒚 ⟨𝑡 ⟩ ∈ R𝑛 are the input and output of 𝑅
at time 𝑡 , and 𝑾𝑥 ∈ R𝑛×𝑚 , 𝑾ℎ ∈ R𝑛×𝑛 , 𝒃 ∈ R𝑛 , and ReLU are
the kernel, recurrent kernel, bias, and the activation function of 𝑅,
respectively.

Poster Session I

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2382

Definition 2 (Recurrent Neural Network). An RNN is a function
defined by a composition of feed-forward and recurrent layers.

Using the notation of Definition 1, if we show the layer number
in a sequential RNN with the superscripts [𝑖], the composition rule
for a recurrent layer 𝑅 [𝑖] of an RNN 𝑅 can be written as

𝒚 [𝑖] ⟨𝑡 ⟩ = ReLU(𝑾 [𝑖]𝑥 𝒚 [𝑖−1] ⟨𝑡 ⟩ +𝑾 [𝑖]
ℎ

𝒚 [𝑖] ⟨𝑡−1⟩ + 𝒃 [𝑖]) .

Definition 3 (Environment). An environment is defined by a tuple
𝐸 = (S,O, 𝑜, 𝜏), where S is a set of states of the environment, O is a
set of observations of the environment,𝑜 : S → O is an environment
observation function that given an environment state returns an
observation of it that agents can access, 𝜏 : S × A → 2S is a
transition relation, which given the current state of the environment
𝒔 ∈ S and an action 𝒂 ∈ A, performed by the agent, returns the set
of possible next states 𝜏 (𝒔, 𝒂) ∈ S. The environment is deterministic
when the transition relation 𝜏 is a function 𝜏 : S × A → S.

We assume that the observation function and transition relation
are linearly-definable, or otherwise, can be linearly approximated
to an arbitrary level of precision [1, 14].

Definition 4 (RNN Agent). A recurrent neural agent, or an agent
for short, denoted by 𝐴𝑔𝑡𝑅 , acting on an environment 𝐸 is defined
by an action function 𝑎 : O∗ → A. Given a finite sequence of
environment observations from O ⊆ R𝑚 , the action function 𝑎

returns an action from the setA = R𝑛 of admissible actions for the
agent. The function 𝑎 is implemented by an RNN 𝑅 : R𝑚×Rℓ → R𝑛 .

Definition 5 (RNN-AES). A Recurrent Neural Agent-Environment
System (RNN-AES) is a tuple 𝐴𝐸𝑆 = (𝐸,𝐴𝑔𝑡𝑅,I ⟨0⟩), where 𝐸 =

(S,O, 𝑜, 𝜏) defined by Definition 3,𝐴𝑔𝑡𝑅 is an RNN agent satisfying
Definition 4, and I ⟨0⟩ ⊆ S is set of initial states of the environment.

Definition 6 (Specifications). For an environment with state space
S = R𝑚 , all specifications are defined by the following BNF.

𝜙 ::= ⃝𝑘C | C𝑈 ≤𝑘C | □C
C ::= C ∧ C | C ∨ C | ¬C | 𝒄⊺ · 𝒙 < 𝑑

for constants 𝒄 ∈ R𝑚, 𝑑 ∈ R, and 𝑘 ∈ N and variable vector 𝒙 ∈ R𝑚 .

3 VERIFICATION OF RNN-AES
We introduce a recursive method for reducing the verification of
RNN-AESs, which (1) allows verifying RNN-AESs with several
recurrent layers, (2) unlike unrolling [4], can handle varying number
of time-steps, (3) uses fewer variables in its Mixed-Integer Linear
Programming (MILP) formulation compared to unrolling and, hence,
is more efficient. We present our method using a two layer RNN 𝑅

consisting of an input recurrent layer 𝑅 [1] : R𝑚 × R𝑛1 → R𝑛1 and
an output feed-forward layer 𝑅 [2] : R𝑛1 → R𝑛2 . Given the input
constraint C ⟨𝑡 ⟩

𝑖𝑛𝑝
⊆ R𝑚 and output constraint C ⟨𝑡 ⟩𝑜𝑢𝑡 ⊆ R𝑛2 (C ⟨𝑡 ⟩

𝑖𝑛𝑝

and C ⟨𝑡 ⟩𝑜𝑢𝑡 are semi-linear sets and can evolve with time), the MILP
problem that is used to verify whether 𝑅’s output satisfies C ⟨𝑡 ⟩𝑜𝑢𝑡 ,
when its input 𝒙 ⟨𝑡 ⟩ ∈ C ⟨𝑡 ⟩𝑜𝑢𝑡 is{
solve: ReLU(𝑾 [2]ReLU(𝑾 [1]𝑥 𝒙 ⟨𝑡 ⟩+𝑾 [1]

ℎ
𝒚 ⟨𝑡−1⟩+ 𝒃 [1])+𝒃 [2])⊆C ⟨𝑡 ⟩𝑜𝑢𝑡 ,

subject to: 𝒙 ⟨𝑡 ⟩ ∈ C ⟨𝑡 ⟩
𝑖𝑛𝑝

, 𝒚 ⟨𝑡−1⟩ ∈ I [1] ⟨𝑡−1⟩,

whereI [1] ⟨𝑡 ⟩ ’s are recursively defined asI [1] ⟨𝑡 ⟩={ReLU(𝑾𝑥𝒙 ⟨𝑡 ⟩+
𝑾ℎ𝒚

⟨𝑡−1⟩ + 𝒃) : 𝒙 ⟨𝑡 ⟩ ∈ C ⟨𝑡 ⟩
𝑖𝑛𝑝

,𝒚 ⟨𝑡−1⟩ ∈ I [1] ⟨𝑡−1⟩}, and I [1] ⟨0⟩ is
the initial hidden state of 𝑅 [1] . Note that the ReLU activation can be
encoded in MILP using the “Big-M” method [19]; thus, we can use
standard tools for solving MILP to solve the verification problem.

Verifying⃝𝑘C and C𝑈 ≤𝑘C. Using the notation above, we can
verify a given RNN-AES 𝐴𝐸𝑆𝑅 against bounded temporal specifica-
tions. Algorithm 1 outlines the verification process for ⃝𝑘C. The
procedure for verifying C𝑈 ≤𝑘C is similar.

Algorithm 1: Verifying ⃝𝑘C
Input :RNN-AES 𝐴𝐸𝑆𝑅 and specification 𝜙 = ⃝𝑘C.
Output :True/False
𝑠𝑡𝑎𝑡𝑒𝑠 = C
for 𝑡 ← 1 to 𝑘 do
I [0] = 𝑜 (C)
for 𝑖 ← 1 to 𝑁 do

if 𝑅 [𝑖] is recurrent then
I [𝑖] ⟨𝑡 ⟩ = 𝑅 [𝑖] (I [𝑖−1] ⟨𝑡 ⟩,I [𝑖] ⟨𝑡−1⟩)

else
I [𝑖] ⟨𝑡 ⟩ = 𝑅 [𝑖] (I [𝑖−1] ⟨𝑡 ⟩)

end
end
𝑠𝑡𝑎𝑡𝑒𝑠 = 𝜏 (𝑠𝑡𝑎𝑡𝑒𝑠,I [𝑁] ⟨𝑡 ⟩)

end
return SATMILP (𝑠𝑡𝑎𝑡𝑒𝑠 ⊆ C)

In Algorithm 1, I [𝑖] ⟨𝑡 ⟩ =𝑅 [𝑖] (I [𝑖−1] ⟨𝑡 ⟩,I [𝑖] ⟨𝑡−1⟩) and I [𝑖] ⟨𝑡 ⟩ =
𝑅 [𝑖] (I [𝑖−1] ⟨𝑡 ⟩) denote the set of reachable points in the 𝑖-th layer
of 𝑅 after 𝑡 time steps; moreover, they can be linearly encoded using
real and binary variables. Finally, since C is also a linearly definable
set, we can use MILP solvers to solve SATMILP (𝑠𝑡𝑎𝑡𝑒𝑠 ⊆ C) and
answer the verification problem in a sound and complete manner.

Verifying □C. We now introduce Algorithm 2 for verifying
RNN-AESs against specifications of the form □C using MILP.

Algorithm 2: Verifying □C
Input :RNN-AES 𝐴𝐸𝑆𝑅 and specification 𝜙 = □C.
Output :True/False
I [𝑁] = C
for 𝑖 ← 𝑁 to 1 do

if 𝑅 [𝑖] is recurrent then
I[𝑖−1] =I[𝑖−1]⟨0⟩∪{𝒚 [𝑖−1] : 𝑅 [𝑖] (𝒚 [𝑖−1] ,I[𝑖]) ⊆I[𝑖]}

else
I [𝑖−1] = {𝒚 [𝑖−1] : 𝑅 [𝑖] (𝒚 [𝑖−1]) ∈ I [𝑖] }

end
end
𝑎𝑐𝑡𝑠 = 𝑅 [𝑁] (· · ·𝑅 [1] (𝑜 (C),I [1]) · · ·)
return SATMILP (𝜏 (C, 𝑎𝑐𝑡𝑠) ⊆ C)

It is straightforward to show that the set 𝑎𝑐𝑡𝑠 in Algorithm 2
is the set of all possible actions of 𝐴𝑔𝑡𝑅 for all input sequences
{𝒙}𝑖∈N ∈ 𝐶∗ and time steps 𝑡 ∈ N. The soundness of Algorithm 2
follows from the fact that if 𝜏 (C, 𝑎𝑐𝑡𝑠) ⊆ C, then for all 𝑡 ∈ N, we
have that 𝜏𝑡 (C, 𝑎𝑐𝑡𝑠) = 𝜏 (. . . (𝜏 (𝜏 (C, 𝑎𝑐𝑡𝑠), 𝑎𝑐𝑡𝑠) . . .), 𝑎𝑐𝑡𝑠) ⊆ C,
and thus, 𝐴𝐸𝑆𝑅 satisfies □C.

Poster Session I

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2383

ACKNOWLEDGMENTS
This work is partially supported by the DARPA Assured Autonomy
programme (FA8750-18-C-0095) and the UK Royal Academy of
Engineering (CiET17/18-26).

REFERENCES
[1] Michael Akintunde, Alessio Lomuscio, Lalit Maganti, and Edoardo Pirovano. 2018.

Reachability Analysis for Neural Agent-Environment Systems. In Proceedings of
the 16th International Conference on Principles of Knowledge Representation and
Reasoning, KR. AAAI Press, 184–193.

[2] Michael E. Akintunde, Elena Botoeva, Panagiotis Kouvaros, and Alessio Lomuscio.
2020. Formal Verification of Neural Agents in Non-deterministic Environments.
In Proceedings of the 19th International Conference on Autonomous Agents and
Multiagent Systems, AAMAS. IFAAMAS, 25–33.

[3] Michael E. Akintunde, Elena Botoeva, Panagiotis Kouvaros, and Alessio Lomuscio.
2020. Verifying Strategic Abilities of Neural-symbolic Multi-agent Systems.
In Proceedings of the 17th International Conference on Principles of Knowledge
Representation and Reasoning, KR. AAAI Press, 22–32.

[4] Michael E. Akintunde, Andreea Kevorchian, Alessio Lomuscio, and Edoardo
Pirovano. 2019. Verification of RNN-Based Neural Agent-Environment Systems.
In Proceedings of the 33rd AAAI Conference on Artificial Intelligence, AAAI. AAAI
Press, 6006–6013.

[5] Natasha Alechina, Mehdi Dastani, Anas Fahad Khan, Brian Logan, and J-J Ch
Meyer. 2010. Using Theorem Proving to Verify Properties of Agent Programs. In
Specification and Verification of Multi-Agent Systems. Springer, 1–33.

[6] Natasha Alechina, Mehdi Dastani, Brian Logan, and John-Jules Ch. Meyer. 2011.
Reasoning about Agent Deliberation. Journal of Autonomous Agents and Multi-
Agent Systems 22, 2 (2011), 1–26.

[7] Battista Biggio and Fabio Roli. 2018. Wild patterns: Ten years after the rise of
Adversarial Machine Learning. Pattern Recognition 84 (2018), 317–331.

[8] Rafael H. Bordini, Louise A. Dennis, Berndt Farwer, and Michael Fisher. 2008.
Automated Verification of Multi-Agent Programs. In Proceedings of the 23rd
IEEE/ACM International Conference on Automated Software Engineering, ASE.
IEEE, 69–78.

[9] Rafael H. Bordini, Michael Fisher, Willem Visser, and Michael J. Wooldridge. 2003.
Model Checking Multi-Agent Programs with CASP. In Proceedings of the 15th
International Conference on Computer Aided Verification, CAV (Lecture Notes in
Computer Science, Vol. 2725). Springer, 110–113.

[10] Rafael H. Bordini, Michael Fisher, Willem Visser, and Michael J. Wooldridge. 2004.
Verifiable Multi-Agent Programs. In Proceedings of the 1st International Workshop
on Programming Multiagent Systems, PROMAS (Lecture Notes in Computer Science,
Vol. 3067). Springer, 72–89.

[11] Rafael H. Bordini, Michael Fisher, Willem Visser, and Michael J. Wooldridge. 2006.
Verifying Multi-agent Programs by Model Checking. Autonomous Agents and
Multi-Agent Systems 12, 2 (2006), 239–256.

[12] Elena Botoeva, Panagiotis Kouvaros, Jan Kronqvist, Alessio Lomuscio, and Ruth
Misener. 2020. Efficient Verification of ReLU-Based Neural Networks via De-
pendency Analysis. In Proceedings of the 34th AAAI Conference on Artificial
Intelligence, AAAI. AAAI Press, 3291–3299.

[13] Petr Cermák, Alessio Lomuscio, Fabio Mogavero, and Aniello Murano. 2018. Prac-
tical Verification of Multi-Agent Systems against SLK Specifications. Information
and Computation 261, 3 (2018), 588–614.

[14] Claudia D’Ambrosio, Andrea Lodi, and Silvano Martello. 2010. Piecewise Linear
Approximation of Functions of Two Variables in MILP Models. Operations
Research Letters 38, 1 (2010), 39–46.

[15] Jiameng Fan, Chao Huang, Xin Chen, Wenchao Li, and Qi Zhu. 2020. ReachNN*:
A Tool for Reachability Analysis of Neural-Network Controlled Systems. In
Automated Technology for Verification and Analysis - 18th International Symposium,
ATVA (Lecture Notes in Computer Science, Vol. 12302). Springer, 537–542.

[16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press.

[17] Valentin Goranko and Wojciech Jamroga. 2004. Comparing Semantics for Logics
of Multi-agent Systems. Synthese 139, 2 (2004), 241–280.

[18] Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli
Qin, Jonathan Uesato, Relja Arandjelovic, Timothy A. Mann, and Pushmeet Kohli.
2018. On the Effectiveness of Interval Bound Propagation for Training Verifiably
Robust Models. arXiv:1810.12715

[19] Igor Griva, Stephen G. Nash, and Ariela Sofer. 2008. Linear and Nonlinear Opti-
mization (2nd ed.). SIAM.

[20] Matthew J. Hausknecht and Peter Stone. 2015. Deep Recurrent Q-Learning
for Partially Observable MDPs. In AAAI Fall Symposium on Sequential Decision
Making for Intelligent Agents. AAAI Press, 29–37.

[21] Patrick Henriksen and Alessio R. Lomuscio. 2020. Efficient Neural Network
Verification via Adaptive Refinement and Adversarial Search. In Proceedings of
the 24th European Conference on Artificial Intelligence, ECAI. IOS Press, 2513–2520.

[22] Yuval Jacoby, Clark W. Barrett, and Guy Katz. 2020. Verifying Recurrent Neural
Networks using Invariant Inference. In Automated Technology for Verification
and Analysis - 18th International Symposium, ATVA (Lecture Notes in Computer
Science, Vol. 12302). Springer, 57–74.

[23] Wojciech Jamroga, Artur Meski, and Maciej Szreter. 2013. Modularity and Open-
ness in Modeling Multi-Agent Systems. In Proceedings of the 4th International
Symposium on Games, Automata, Logics and Formal Verification, GandALF13.
EPTCS, 224–239.

[24] Taylor T. Johnson, Diego Manzanas Lopez, Patrick Musau, Hoang-Dung Tran,
Elena Botoeva, Francesco Leofante, Amir Maleki, Chelsea Sidrane, Jiameng Fan,
and Chao Huang. 2020. ARCH-COMP20 Category Report: Artificial Intelligence
and Neural Network Control Systems (AINNCS) for Continuous and Hybrid
Systems Plants. In 7th InternationalWorkshop on Applied Verification of Continuous
and Hybrid Systems, ARCH20. EasyChair, 107–139.

[25] Magdalena Kacprzak, Alessio Lomuscio, Tomasz Lasica, Wojciech Penczek, and
Maciej Szreter. 2004. Verifying Multiagent Systems via Unbounded Model Check-
ing. In Proceedings of the 3rd NASAWorkshop on Formal Approaches to Agent-Based
Systems, FAABS (Lecture Notes in Computer Science, Vol. 3228). Springer, 189–212.

[26] Magdalena Kacprzak, Alessio Lomuscio, andWojciech Penczek. 2004. Verification
of Epistemic Properties in Multi-Agent Systems by Unbounded Model Checking.
In Proceedings of the 3rd NASA Workshop on Formal Approaches to Agent-Based
Systems, FAABS (Lecture Notes in Computer Science, Vol. 3228). Springer, 16–28.

[27] Magdalena Kacprzak, Alessio Lomuscio, andWojciech Penczek. 2004. Verification
of Multiagent Systems via Unbounded Model Checking. In Proceedings of the 3rd
International Conference on Autonomous Agents and Multiagent Systems, AAMAS.
ACM, 638–645.

[28] Ching-Yun Ko, Zhaoyang Lyu, Lily Weng, Luca Daniel, Ngai Wong, and Dahua
Lin. 2019. POPQORN: Quantifying Robustness of Recurrent Neural Networks.
In Proceedings of the 36th International Conference on Machine Learning, ICML.
PMLR, 3468–3477.

[29] Panagiotis Kouvaros and Alessio Lomuscio. 2021. Towards Scalable Complete
Verification of ReLU Neural Networks via Dependency-based Branching. In
Proceedings of the 30th International Joint Conference on Artificial Intelligence,
IJCAI. ijcai.org, 2643–2650.

[30] Alessio Lomuscio and Lalit Maganti. 2017. An Approach to Reachability Analysis
for Feed-Forward ReLU Neural Networks. arXiv:1706.07351

[31] Jerzy Pilecki, Marek A. Bednarczyk, and Wojciech Jamroga. 2014. Synthesis and
Verification of Uniform Strategies for Multi-agent Systems. In Proceedings of
the 15th International Workshopon Computational Logic in Multi-Agent Systems,
CLIMA. Lecture Notes in Computer Science, Vol. 8624. Springer, 166–182.

[32] Chelsea Sidrane, Amir Maleki, Ahmed Irfan, and Mykel J. Kochenderfer. 2022.
OVERT: An Algorithm for Safety Verification of Neural Network Control Policies
for Nonlinear Systems. Journal of Machine Learning Research 23, 117 (2022),
1–45.

[33] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin T.
Vechev. 2018. Fast and Effective Robustness Certification. In Advances in Neural
Information Processing Systems 31, NeurIPS. Curran Associates, Inc., 10802–10813.

[34] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin T. Vechev. 2019. An
Abstract Domain for Certifying Neural Networks. Proceedings of the ACM on
Programming Languages 3, POPL (2019), 41:1–41:30.

[35] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Er-
han, Ian J. Goodfellow, and Rob Fergus. 2014. Intriguing Properties of Neural
Networks. In 2nd International Conference on Learning Representations, ICLR.
OpenReview.net.

[36] Vincent Tjeng, Kai Yuanqing Xiao, and Russ Tedrake. 2019. Evaluating Robustness
of Neural Networks with Mixed Integer Programming. In The 7th International
Conference on Learning Representations, ICLR. OpenReview.net.

[37] Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau,
Luan Viet Nguyen, Weiming Xiang, Stanley Bak, and Taylor T. Johnson. 2020.
NNV: The Neural Network Verification Tool for Deep Neural Networks and
Learning-Enabled Cyber-Physical Systems. In Proceedings of the 32nd Interna-
tional Conference on Computer Aided Verification, CAV (Lecture Notes in Computer
Science, Vol. 12224). Springer, 3–17.

[38] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018.
Formal Security Analysis of Neural Networks using Symbolic Intervals. In 27th
USENIX Security Symposium, USENIX. USENIX Association, 1599–1614.

[39] Michael J. Wooldridge, Michael Fisher, Marc-Philippe Huget, and Simon Parsons.
2002. Model Checking Multi-Agent Systems with MABLE. In Proceedings of the
1st International Joint Conference on Autonomous Agents and Multiagent Systems,
AAMAS. ACM, 952–959.

Poster Session I

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2384

https://arxiv.org/abs/1810.12715
https://arxiv.org/abs/1706.07351

	Abstract
	1 Introduction
	2 Notation & Background
	3 Verification of RNN-AES
	Acknowledgments
	References

