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ABSTRACT
Evacuation planning is a crucial part of disaster management where

the goal is to relocate people to safety and minimize casualties. Ev-

ery evacuation plan has two essential components: routing and

scheduling. However, joint optimization of these two components

with objectives such as minimizing average evacuation time is a

computationally hard problem. To approach it, we present MIP-
LNS, a scalable optimization method that can optimize a variety

of objective functions. We also present the method MIP-LNS-SIM,

where we combine agent-based simulation with MIP-LNS to more

accurately estimate delays on roads due to congestion. We use Har-

ris County in Houston, Texas as our study area. We show that,

within a given time limit,MIP-LNS finds better solutions than ex-

isting methods in terms of three different metrics. We also perform

experiments with MIP-LNS-SIM to show its efficacy in estimating

delays due to congestion. Our results show that, when such delays

are considered,MIP-LNS-SIM can find better evacuation plans than

MIP-LNS. Furthermore, MIP-LNS-SIM provides an estimate of the

evacuation completion time for its plan with a small percent error.
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1 INTRODUCTION
Evacuation plans are essential to ensure the safety of people liv-

ing in areas that are prone to disasters such as floods, hurricanes,
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tsunamis and wildfires. Large-scale evacuations have been carried

out during the past hurricane seasons in Florida, Texas, Louisiana,

and Mississippi. To give a sense of the scale of these evacuations,

about 6.5 million individuals were ordered to evacuate from the

state of Florida [12] due to Hurricane Irma (2017). At such scale,

it is essential to have an evacuation plan to ensure that people

can evacuate safely. Any such plan needs to have two essential

components: (𝑖) Evacuation Routes, i.e. which roads to take, and (𝑖𝑖)

Evacuation Schedule, i.e. when to leave. The goal is to find a plan

that optimizes a desired objective such as average evacuation time,

evacuation completion time. Jointly optimizing over the routes and

schedule is computationally hard. Existing methods, even those

designed to find bounded sub-optimal solutions (e.g. [2, 3, 10]), do

not scale to city or county level planning problems. Moreover, most

of the existing research works [2, 3, 5, 8, 10] do not consider the

slowdown of traffic caused by large number of vehicles on the road.

Our contributions in this paper are as follows: First, we present
MIP-LNS, a scalable optimizationmethod that can find solutions to a

class of evacuation planning (i.e. routing and scheduling) problems,

while optimizing for a variety of objectives. Second, we use Harris
County in Houston, Texas as our study area and show that within

a given time limit, MIP-LNS finds better solutions than an existing

baseline method [3] in terms of three different performance metrics.

Finally, we presentMIP-LNS-SIM, where we combine an agent-

based simulation system QueST [7] with MIP-LNS to model delays

caused by congestion in the road network. We show thatMIP-LNS-
SIM outperforms MIP-LNS when such delays are considered.

2 PROBLEM FORMULATION
To formulate the evacuation planning problem, we first introduce

some preliminary terms. A road network is a directed graph where

each edge 𝑒 has a travel time (𝑇𝑒 ) and a capacity (𝑐𝑒 ) attribute. An

evacuation network is a road network that specifies a set of source,

safe and transit nodes. Each source node has a certain number of

evacuees in it. A single dynamic flow is a flow along a single path

where the flow takes 𝑇𝑒 amount of time to travel on each edge 𝑒

of the path. A valid dynamic flow is a collection of single dynamic

flows where no edge at any point in time exceeds its edge capacity.
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(a) Sample Evacuation Network.
Edges are labeled with travel
time and flow capacity respec-
tively. Source, safe and transit
nodes are denoted by squares,
triangles, and circles respec-
tively. Source nodes are labeled
with number of evacuees.

(b) Time Expanded Graph (TEG)
for the Sample Network. Edges
are labeled with capacity. Con-
struction of this TEG sets an up-
per bound of 3 time units for
evacuation completion.

Figure 1: Sample Problem Instance

Given an evacuation network, we say a valid dynamic flow is an

evacuation schedule if (𝑖) all evacuees end up at some safe node, (𝑖𝑖)
no single dynamic flow has any intermediary wait-time, and (𝑖𝑖𝑖)
the underlying flow (without considering time) is confluent, where

if two single dynamic flows use the same vertex (possibly at dif-

ferent times), their underlying path afterwards is identical. Formal

definitions of these terms are provided in the technical report [6].

Let𝑊 denote the set of all evacuees and 𝑡𝑖 denote the evacuation

time of evacuee 𝑖 . Then, we define the following planning problem:

Problem 1. Average Dynamic Confluent Flow Problem (a-dcfp).

Given an evacuation network, let 𝑇𝑚𝑎𝑥 represent an upper bound

on evacuation time. Find an evacuation schedule such that all evac-

uees arrive at some safe node before time 𝑇𝑚𝑎𝑥 while minimizing

1

|𝑊 |
∑
𝑖∈𝑊 𝑡𝑖 .

We also define two other planning problems (ct-dcfp, o-dcfp)

with different objectives (details in [6]). To model the flow of evac-

uees over time we use time-expanded graphs. Here, we discretize

the temporal domain into discrete timesteps and create copies of

nodes and edges in the evacuation network at each timestep. A

sample evacuation network and time-expanded graph is shown in

Figure 1a–1b. We formulate all three planning problems as Mixed

Integer Programs (provided in [6]).

3 METHODOLOGY
All three planning problems we consider in this paper are NP-hard
to solve and NP-hard to approximate (proof in [6]). For this reason

we present a scalable heuristic methodMIP-LNS to quickly find

solutions to these problems. MIP-LNS is designed based on the

Large Neighborhood Search framework [9, 11] where we combine

heuristic search with mathematical optimization. Here, we start

with an initial feasible solution where we use shortest path routes

(that are confluent) and the best schedule for these routes. We then

explore the neighborhood of this solution by fixing some of the

routes and optimizing over the rest. If we find a better solution in the

process then we update our solution. We then continue to explore

the neighborhood in search of better solutions and terminate after

a certain number of iterations.

We also present the method MIP-LNS-SIM where we combine

agent-based simulation withMIP-LNS. Specifically, to model the

slowdown of traffic on roads due to congestion, we consider the

travel time on roads as parameters to be learned. Initially, we assume

that vehicles travel on the road at speed limit and calculate an

evacuation plan based on this assumption usingMIP-LNS. We then

use QueST [7] to simulate the evacuation of a certain portion of the

evacuees from each source. We look at the average travel time on

the roads used in the plan and take it as an estimation of the travel

time on these roads. Effectively, we utilize the simulator to learn the

parameter values. We use these updated values to calculate a new

evacuation plan and repeat the process. The process is terminated

after a certain number of iterations. Pseudo-code of both MIP-LNS
and MIP-LNS-SIM are provided in the technical report [6].

4 EXPERIMENTS
For our experiments, we use Harris County in Houston, Texas as our

study area. We have used road-network data from HERE maps [4]

and a synthetic population (as described by Adiga et al. [1]) to

construct a realistic problem instance. To compareMIP-LNS with

the baseline method (Benders Convergent (BC) method, proposed

by Hasan and Van Hentenryck [3]), we applied both methods on

our problem instance with a time limit. We then compared the

solutions returned within the time limit. For a-dcfp, the evacuation

plan found byMIP-LNS is on average 13%, 21%, and 58% better than

the baseline solutions in terms of average evacuation time, evacua-

tion completion time and optimality guarantee of the solution. We

observed similar results for ct-dcfp and o-dcfp.

In the above experiment, we assumed that vehicles travel on

edges at speed limit and calculated the travel time of the edges ac-

cordingly. However, during evacuations, the effective speed tends

to be much lower due to the large number of vehicles on the roads.

We designedMIP-LNS-SIM to capture this phenomenon. To investi-

gate the effectiveness of MIP-LNS-SIM, compared to MIP-LNS, we
used the evacuation plans from both of these methods to simulate

the entire evacuation. Our results show that, when delays due to

congestion is considered,MIP-LNS-SIM outperformsMIP-LNS in

terms of evacuation completion time, average traffic density on

the roads, and average time spent on the road by evacuees. Fur-

thermore,MIP-LNS-SIM provides a more accurate estimate of the

evacuation completion time for its plan than MIP-LNS. Detailed
results are provided in the technical report [6].

5 CONCLUSION
In this paper, we have presented a general-purpose optimization

method MIP-LNS to solve a class of evacuation planning prob-

lems. We demonstrated its efficacy by applying it on our study area

of Harris county, Houston, Texas. We also designed the method

MIP-LNS-SIM where we combined agent-based simulation with

MIP-LNS to estimate delays caused by congestion. Through our

experiments, we showed that MIP-LNS-SIM can find efficient evac-

uation plans and provide estimated evacuation completion time for

its plans with small percent error.
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