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ABSTRACT
We investigate explicit solutions to multi-agent credit assignment
problem. Specifically, we assign each agent individual difference
rewards in addition to the team reward as to distinguish the contri-
bution of different agents to the team. We present a novel reward
decomposition network to estimate the influence of each agent’s
action on the team reward, and distribute difference rewards accord-
ingly. Furthermore, we combine difference rewards with actor-critic
framework and propose a new approach called learning individual
difference rewards (LIDR). We evaluate LIDR on a set of StarCraft II
micromanagement problems. Results show that LIDR significantly
outperforms previous state-of-the-art methods.
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1 INTRODUCTION
A great challenge for multi-agent reinforcement learning (MARL)
is credit assignment [2], which focuses on attributing each agent’s
contribution to the team according to its behavior. If the credit
assignment is not well handled, it can cause the lazy agent [9]
issue and lead to low sample efficiency in practice. Unfortunately,
in most MARL scenarios, all agents share a team reward, from
which it is difficult to deduce each agent’s contribution to the team.
A common solution to credit assignment is reward shaping [6,
7], which differentiates each agent’s credit by introducing extra
rewards to agents. However, it generally requires prior knowledge
on the environment and human labor to assign precise reward to
individual agent, which is impractical in many MARL problems.
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Figure 1: (a) The reward decomposition network structure.
(b) The overall framework of LIDR.

In this paper, we propose a newMARL method called learning in-
dividual difference rewards (LIDR) to address the above issues. LIDR
takes an approach that combines actor-critic [5] framework with
difference rewards [1], and explicitly assigns credits by distributing
individual difference rewards to each agent. Specifically, the critic
is trained with the individual reward consisting of a global team
reward and a local difference reward. The team reward is shared
among agents, while the difference rewards vary among agents as
to differentiate each agent’s contribution to the team. To estimate
difference rewards, we present a reward decomposition network to
capture the influence of each agent’s actions on the team reward
and distribute individual rewards accordingly. As a result, LIDR is
able to efficiently compute difference rewards without prior knowl-
edge on the environment model, and the whole training procedure
is conducted in a model-free manner.

2 METHOD
we propose the reward decomposition network to decompose the
team reward into individual rewards, which are further assigned
to agents. The individual reward for each agent 𝑖 is formulated as
𝑅𝑖 = 𝐺 + 𝐿𝑖 , where global reward 𝐺 represents the feedback to the
achievement under agents’ cooperation, encouraging each agent to
work with others, while local reward 𝐿𝑖 represents the feedback to
individual performance, adjusting credits to each agent according
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Figure 2: Test win rates of LIDR and baseline methods on SMAC.

to its behavior in the team. In practice, it is natural to choose the
team reward 𝑟 as 𝐺 , and we adopt the difference reward 𝐷𝑖 as 𝐿𝑖 .

The structure of reward decomposition network is illustrated in
Fig. 1 (a). Specifically, the network utilizes attention mechanism
[10] for information integration. It takes global state 𝑠 and local
observation 𝑜𝑖 as input, and outputs the distribution of estimated
team reward over available actions of agent 𝑖: 𝑅(𝑠, 𝑜𝑖 , 𝑎).

To train the reward decomposition network, we minimize the
following mean squared error (MSE) loss:

𝐿(𝜂) =
𝑇∑︁
𝑡=1

𝑛∑︁
𝑖=1

(𝑅(𝑠𝑡 , 𝑜𝑡𝑖 , 𝑎
𝑡
𝑖 ;𝜂) − 𝑟𝑡 )2, (1)

where𝜂 are the network parameters, 𝑟𝑡 is the environmental reward
at timestep 𝑡 , and 𝑎𝑡

𝑖
is the action taken by agent 𝑖 at timestep 𝑡 .

Ideally, the outputs of the network converge to

𝑅(𝑠, 𝑜𝑖 , 𝑎) = E𝑎𝑖=𝑎,𝒂−𝑖∼𝝅−𝑖 [𝑟 (𝑠, 𝒂)] . (2)

With the reward decomposition network, we can further compute
individual difference rewards for agent 𝑖 as

𝐷𝑖 = 𝑅(𝑠, 𝑜𝑖 , 𝑎𝑖 ) −𝑚𝑎𝑥𝑎𝑅(𝑠, 𝑜𝑖 , 𝑎), (3)

where the former term is the estimated reward under action 𝑎𝑖 ,
which is actually taken by agent 𝑖 , and the latter term is the maxi-
mum estimated reward that could have been reached by changing
agent 𝑖’s policy. Then we utilize 𝑅𝑖 to supervise the actor-critic
learning process for each agent, as presented in Fig. 1 (b).

3 RESULTS
We evaluate LIDR on several micromanagement tasks from the
SMAC [8] benchmark, where a group of decentralized agents con-
trolled by MARL algorithms need to defeat another group of agents

controlled by StarCraft II built-in AI. We elaborately select 5 base-
line methods, which are: COMA [4], LIIR [3], LICA [13], MAPPO
[12], and DOP [11]. The training configurations of these methods
are set to the same for fair comparison.

The results in 6 different maps from SMAC are shown in Fig. 2.
We observe that LIDR outperforms all baseline methods in hard
maps (3s5z, 2c_vs_64zg, 5m_vs_6m), and the advantage of our
method becomes more significant in super-hard maps (MMM2, cor-
ridor, 3s5z_vs_3s6z), especially in corridor and 3s5z_vs_3s6z, where
all baseline methods fail to solve the tasks, while LIDR can achieve
40% win rate at the end of training. These results indicate that
LIDR has more capacity in addressing credit assignment problem.
In complex environments, it is very important for agents to have
sufficient exploration to find the solution, and MARL algorithms
that cannot well handle the credit assignment would fail. Specif-
ically, if the MARL methods cannot distinguish between agents
that conduct potential rewarding actions and agents that conduct
uncooperative actions, and assign different credits to them, it could
prevent agents from efficient exploration and eventually stuck in a
local optimum. We attribute the performance of LIDR to individual
difference rewards, which help differentiate credits among agents
and diversify agents’ behaviors for better exploration.

4 CONCLUSION
We present LIDR, a MARL method that aims to explicitly address
credit assignment with difference rewards. Different from previous
model-based approaches, LIDR utilizes a novel reward decomposi-
tion network to efficiently estimate difference rewards in a model-
free way. Experiment results on SMAC benchmark empirically
demonstrate the high sample efficiency and improved robustness
of our proposed method.
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