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ABSTRACT
We study a repeated newsvendor game between a supplier and

a retailer who want to maximize their respective profits without

full knowledge of the problem parameters. After characterizing the

uniqueness of the Stackelberg equilibrium of the stage game with

complete information, we show that even with partial knowledge of

the joint distribution of demand and production cost, natural learn-

ing dynamics guarantee convergence of the supplier and retailer’s

joint strategy profile to the Stackelberg equilibrium of the stage

game. We also prove finite-time bounds on the supplier’s regret

and asymptotic bounds on the retailer’s regret, where the specific

rates depend on the type of knowledge preliminarily available to

the players. Finally, we empirically confirm our theoretical findings

on synthetic data.
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1 INTRODUCTION
The newsvendor problem is a central topic in inventory theory

and, more generally, in the analysis of supply chains. In its classical

version [2], a retailer orders a certain quantity of a perishable good

from a supplier. The decision of how much to order is made before

the realization of the unknown demand for the good. If all costs are

linear, the optimal decision is a quantile of the demand distribution

that depends on the parameters of the model (i.e., the wholesale

price and the retail market price). Even in this simple framework,

the retailer can compute the optimal quantity only if the demand

distribution and the model parameters are known.

In a practical newsvendor scenario, it is rarely the case that

the retailer is the only decision maker. For instance, the wholesale

price could be determined by a supplier incurring an exogenous

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
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production cost that is unknown to the retailer. These multi-agent

versions of the newsvendor problem can be analyzed via a game-

theoretic approach, where the optimal choices are expressed in

terms of equilibria of a game. As it is unreasonable to assume that

supplier and retailer have full knowledge of the distributions of

production cost and demand, it is important to find strategies that

perform well even when only partial knowledge of these quantities

is available to each player.

1.1 Our Contribution
In this paper we consider a newsvendor model where players do

not have full knowledge of the relevant parameters. The problem

is modeled as a repeated game between a supplier and a retailer

whose goal is to earn, in the long term, at least as much as their

utility at a Stackelberg equilibrium (SE).

In Section 2, we start by considering the stage game with com-

plete information, which we model as a Stackelberg game. Here, the

supplier chooses the wholesale price and reveals it to the retailer,

who in turn chooses the quantity to order by solving a newsven-

dor problem. Under weak conditions (Assumption 1) on the joint

distribution of production cost 𝐶 , retail price 𝑃 , and demand 𝐷 , we

characterize (Theorem 2.1) the uniqueness of the SE of the game,

which we show to be in pure strategies.

In Section 3.1, we consider a repeated game in which the supplier

only knows the marginal distribution of 𝐶 , and the retailer only

knows the distribution of (𝑃, 𝐷). Assuming that, at each time 𝑡 , the

retailer chooses the quantity 𝑞𝑡 by best-responding to the supplier’s

choice of wholesale price𝑤𝑡 , in Theorem 3.1 we show that the sup-

plier’s time-averaged expected utility after𝑇 interactions converges

to that of the SE at rate 𝑇−1/2
, while the players’ strategy profile

(𝑤𝑡 , 𝑞𝑡 ) converges to the SE of the stage game asymptotically at

the same 𝑇−1/2
rate. If the supplier is given an upper bound on

the Lipschitz constant of their own utility, then their time-average

expected utility converges to that of the SE at a faster rate (ln𝑇 )/𝑇 .
Notably, in this case the rate of convergence to the SE (𝑤★, 𝑞★) of
the players’ strategy profile can be arbitrarily slow (Theorem 3.3).

Our most interesting contributions are in Section 3.2, where

we drop the assumption that the supplier and retailer know the

distributions of 𝐶 and (𝑃, 𝐷), respectively. We analyze the game

dynamics when no a priori distributional knowledge is given to any

player and they are both required to learn the relevant informa-

tion through regret-minimization techniques. If the supplier runs
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Explore-Then-Commit (ETC, Algorithm 4) and the retailer runs

Follow-The-Leader (FTL, Algorithm 3), we show that the supplier’s

time-averaged expected utility converges to that of the SE at rate

𝑇−1/3
and, the retailer’s time-averaged expected utility converges

to that at the SE, and the player’s strategy profile (𝑤𝑡 , 𝑞𝑡 ) converges
to (𝑤★, 𝑞★) with probability 1. Finally, in Section 4, we run some

experiments on synthetic data to gain additional insights. Our ex-

periments reveal how our algorithms can sometimes outperform the

SE, and the role that discretization plays in the system’s dynamics.

Our analyses of convergence of the learning dynamics combine

ideas from online learning and bandits (e.g., ETC and FTL) with

tools from zeroth-order optimization (e.g., the Piyavskii–Shubert

algorithm).

1.2 Related Work
The newsvendor problem, also known as the newsboy problem,

goes back to Edgeworth [10]. The formalization used in this work

is due to Arrow et al. [2]; we refer the reader to the handbook [8]

for a survey of the many variants of Arrow’s model.

A game-theoretic formulation of the newsvendor problem with

competing retailers is proposed by Parlar [17]—see also [13, 14, 16].

Wang and Gerchak [22] use a Stackelberg game to model a situation

where an assembler has to buy components from different suppliers.

Lariviere and Porteus [12] study a model where a supplier and a

retailer interact through a price-only contract, and compare its

efficiency with the efficiency of an integrated system. Adida and

DeMiguel [1] consider a competitive inventory model with several

suppliers and several retailers, and prove equilibrium uniqueness

under some symmetry conditions. We refer the reader to Cachon

and Netessine [6] for a survey of the literature on game-theoretic

models in supply chain analysis and to Silbermayr [21] for a more

recent and specific survey on newsvendor games.

The problem of learning equilibria is investigated by Balcan

et al. [4] for Stackelberg security games. They prove bounds on

the leader’s regret when the follower has a type that changes over

time in a known and finite class. Their results hold both in the full

information setting (where the leader can observe the type of the

follower) and in the bandit setting (where the follower’s type is not

observed). Sessa et al. [19] study general repeated games between a

leader with a finite number of actions and an follower with a finite

number of types which may adversarially change over time. They

prove bounds on the leader’s regret in the full information setting

when the utility of each follower (which is determined by its type) is

only known to satisfy certain regularity assumptions. Bai et al. [3]

show that in the bandit setting with finitely many actions for leader

and follower, there exist expected utility functions such that any

leader’s algorithm suffers non-vanishing regret with probability at

least 1/3. They also show leader algorithms that converge to SE up

to a certain suboptimality gap. Deng et al. [9] prove some interesting

non-constructive results. Let 𝑉 be the utility of the leader in a SE.

Under some mild assumptions, they show that for any 𝜀 > 0 the

leader can always obtain a utility of at least (𝑉 − 𝜀)𝑇 − 𝑜 (𝑇 ) in 𝑇
rounds, against any no-regret algorithm of the follower (note that

the convergence rate is not explicit in their results). Mansour et al.

[15] extend these results to Bayesian games.

Note that our results take advantage of the specific structure of

the utility functions to obtain good rates for the leader’s regret in a

bandit setting. Note also that, unlike previous works, the follower’s

best response in our setting is not determined by a type, but rather

learned from observed data. This allows us to prove that the fol-

lower’s regret vanishes too. As a consequence, we are also able to

prove convergence to SE of the players’ strategy profile.

2 STAGE GAME AND UNIQUE SE
In this section, we present and analyze the (one-shot) stage version

of our newsvendor game and characterize the uniqueness of its

SE (formally defined below). We also provide some insights on the

learning results proven in the following sections.

The stage game. An instance of the stage game is characterized

by a known distribution D on [0,∞)3
that governs the (possibly

correlated) production cost 𝐶 of the supplier, the retail price 𝑃 dic-

tated by the market, and the demand 𝐷 . We make the following

assumption on D.

Assumption 1. The distributionD of (𝐶, 𝑃, 𝐷) ∈ [0,∞)3 satisfies
the following:

(1) E[𝐶], E[𝑃], E[𝐷], and E[𝑃𝐷] are all finite.
(2) E[𝐶] < E[𝑃].
(3) The conditional distribution of 𝐷 given (𝐶, 𝑃) admits a density

(w.r.t. the Lebesgue measure) such that 𝑓 (𝑑 | 𝑐, 𝑝) > 0, for all
(𝑐, 𝑝, 𝑑) ∈ [0,∞)3.

Item 1 guarantees that the expected utilities of the supplier and

the retailer (see below for a definition) are well-defined and finite

for any action profile. Item 2 is an economic assumption stating that,

on average, the supplier’s cost is lower than the retail price, thus

eliminating trivial scenarios. Item 3 is a mild technical condition

that simplifies the presentation of the proof of Theorem 2.1.

We denote the conditional cumulative distribution function and

survival function of the demand, given the supplier’s cost and retail

price, for all 𝑐, 𝑝, 𝑑 ≥ 0, by

𝐹 (𝑑 | 𝑐, 𝑝) B
∫ 𝑑

0

𝑓 (𝑥 | 𝑐, 𝑝) d𝑥 and 𝐹 (𝑑 | 𝑐, 𝑝) B 1 − 𝐹 (𝑑 | 𝑐, 𝑝) .

In this section, we assume that the structure of the model (namely,

D in Assumption 1) is common knowledge to both players. The

game proceeds as follows. First, the supplier (S) selects a wholesale

price𝑤 ∈ [0,∞) and reveals it to the retailer. Then, the retailer (R)

selects a quantity 𝑞 ∈ [0,∞). Their expected utilities are respec-
tively defined, for any (𝑤,𝑞) ∈ [0,∞)2

, by
1

𝑢S (𝑤,𝑞) B 𝑞𝑤 − 𝑞E
[
𝐶
]

and 𝑢R (𝑤,𝑞) B E
[
min{𝑞, 𝐷}𝑃

]
− 𝑞𝑤.

where the expectations are with respect to (𝐶, 𝑃, 𝐷) ∼ D.

Finally, the Stackelberg Equilibria (SE) of this game are defined

as strategy pairs (𝑤★, 𝑞★) ∈ [0,∞)2
such that

𝑤★ ∈ argmax

𝑤∈[0,∞)
𝑢S

(
𝑤, BR(𝑤)

)
and 𝑞★ = BR(𝑤★) .

where BR is a best-response of the retailer, i.e., for all𝑤 ∈ [0,∞),
BR(𝑤) ∈ argmax𝑞∈[0,∞) 𝑢R (𝑤,𝑞).2

1
All that matters regarding 𝐶 is its expectation: we can strengthen all statements

where we assume knowledge of the distribution of𝐶 by only assuming that of E[𝐶 ].
2
At this stage we allow arbitrary tie-breaking rules to determine the two argmax’s,

but we preemptively note that in all of our results the maximizers will be unique.

Session 1D: Equilibria and Complexities of Games
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

243



Uniqueness of the SE.. We can now state our characterization of

the uniqueness of the SE in the stage game.

Theorem 2.1. Under Assumption 1, let 𝑔(𝑤) B ℎ−1 (𝑤) be the
inverse of

ℎ(𝑥) B E
[
𝑃𝐹 (𝑥 | 𝐶, 𝑃)

]
. (1)

Then the following conditions are equivalent:

(1) The stage game in Section 2 admits a unique SE
(
𝑤★, 𝑔(𝑤★)

)
.

(2) {𝑤★} ≡ argmax𝑤∈𝐴 𝑔(𝑤)
(
𝑤 − E[𝐶]

)
, where

𝐴 B

{
𝑤 ∈

(
E[𝐶],E[𝑃]

)
: −𝑔

′(𝑤)
𝑔(𝑤) =

1

𝑤 − E[𝐶]

}
.

As an example, the SE is unique when 𝐷 has a Weibull distribu-

tion with nondecreasing failure rate and (𝐶, 𝑃) is deterministic (for

more, see the extended version of this work [7]).

To prove the theorem, we begin with a simple but key lemma,

whose proof can be found in the extended version [7].

Lemma 2.2. Under Assumption 1, the function ℎ in Equation (1)

is differentiable on 𝑥 ∈ (0,∞) and has a strictly negative derivative,
hence it is invertible and its inverse ℎ−1 (𝑤) is differentiable and
strictly decreasing on𝑤 ∈

(
0, E[𝑃]

)
.

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. We prove the theorem by backward in-

duction. First, we show that under Assumption 1, the retailer has a

unique best response. Then, we show that given that the retailer

best-responds, the supplier has a unique optimal move𝑤★
if and

only if the condition of the theorem holds.

Retailer’s move. Fix an arbitrary wholesale price𝑤 ≥ 0. For any

𝑞 ≥ 0, the retailer’s utility 𝑢R (𝑤,𝑞) is

E

[
𝑃

(∫ 𝑞

0

𝑥 𝑓 (𝑥 | 𝐶, 𝑃) d𝑥 + 𝑞
(
1 − 𝐹 (𝑞 | 𝐶, 𝑃)

) )]
− 𝑞𝑤.

To maximize it, we compute its derivative, which is justified by

Assumption 1 combined with the Leibniz integral rule. For any

𝑞 > 0, we obtain

𝜕

𝜕𝑞
𝑢R (𝑤,𝑞) = E

[
𝑃 𝐹 (𝑞 | 𝐶, 𝑃)

]
−𝑤, (2)

which is non-negative if and only if E
[
𝑃𝐹 (𝑞 | 𝐶, 𝑃)

]
≥ 𝑤 . By the

arbitrariness of 𝑤 and Lemma 2.2, we can conclude that, for any

choice of the wholesale price𝑤 > 0, there exists a uniquemaximizer

𝑞★𝑤 = BR(𝑤) of 𝑞 ↦→ 𝑢R (𝑤,𝑞) where

BR(𝑤) B
{
𝑔(𝑤) if𝑤 < E[𝑃],
0 if𝑤 ≥ E[𝑃] .

(3)

Supplier’s move. Given the retailer’s best response 𝑞★𝑤 = BR(𝑤),
the supplier’s utility is, for any𝑤 > 0,

𝑢S (𝑤,𝑞★𝑤) = 𝑞★𝑤
(
𝑤 − E[𝐶]

)
. (4)

Since 𝑞★𝑤 = 0 for all𝑤 ≥ E[𝑃] and𝑤 − E[𝐶] ≤ 0 for all𝑤 ≤ E[𝐶],
to maximize the supplier’s expected utility, we can restrict our

search to 𝑤 ∈
(
E[𝐶], E[𝑃]

)
, where 𝑢S (𝑤,𝑞★𝑤) = 𝑔(𝑤)

(
𝑤 − E[𝐶]

)
is strictly positive and differentiable. To find the maximum, then,

we can study the sign of the derivative of the supplier’s expected

utility, obtaining, for all𝑤 ∈
(
E[𝐶], E[𝑃]

)
,

𝜕

𝜕𝑤
𝑢S (𝑤,𝑞★𝑤) = 𝑔′(𝑤)

(
𝑤 − E[𝐶]

)
+ 𝑔(𝑤). (5)

Thus, 𝐴 (in the statement of the theorem) is the set of all stationary

points of 𝑢S (𝑤,𝑞★𝑤) and the condition that argmax𝑤∈𝐴 𝑔(𝑤) ·
(
𝑤 −

E[𝐶]
)
is a singleton is exactly stating that there exists a unique

maximizer of 𝑔(𝑤)
(
𝑤 − E[𝐶]

)
= 𝑢S (𝑤,𝑞★𝑤), which coincides with

the existence of a unique SE. □

In general, the payoffs under SE may be unique under weaker

conditions than the ones for the uniqueness of the SE, but such

weaker conditions do not appear to be simply stated in our case.

We also note that efficiency of the Stackeleberg equilibrium can

be measured using the price of anarchy. Some preliminary results

on this topic can be found in the extended version [7].

3 LEARNING THE SE
A limitation of Theorem 2.1 is that, even when a stage game has a

unique SE, in order to compute it, both players need to know the un-

derlying distributionD. In this section, we show how to circumvent

this issue and achieve convergence to the unique SE without relying

on the knowledge of D. We do this by reconstructing the salient

features of D through a learning technique in a repeated game. An

instance of the repeated game is characterized by a distribution D
on

3 [0, 1]3
, that governs the (possibly correlated) production cost,

retail price, and demand.

We study the following online protocol. At each round 𝑡 =

1, 2, . . . :

(1) Nature draws (𝐶𝑡 , 𝑃𝑡 , 𝐷𝑡 ) i.i.d. according to D.

(2) The supplier (S) selects a wholesale price𝑊𝑡 ∈ [0, 1] and
reveals it to the retailer (R).

(3) The production cost 𝐶𝑡 is revealed to S.

(4) R buys a quantity 𝑄𝑡 ∈ [0, 1], paying 𝑄𝑡𝑊𝑡 to S.

(5) The retail price 𝑃𝑡 and the demand 𝐷𝑡 are revealed to R.

(6) The market buys a quantity min{𝑄𝑡 , 𝐷𝑡 }, paying the corre-
sponding min{𝑄𝑡 , 𝐷𝑡 }𝑃𝑡 to R.

The individual goals of the supplier and the retailer are to maxi-

mize, for any time horizon 𝑇 , their individual long-term expected

utilities in reference to a SE (𝑤★, 𝑞★); more precisely:

E
[
𝜎 (𝑤★, 𝑞★,𝐶1)

]
− 1

𝑇

𝑇∑
𝑡=1

E
[
𝜎 (𝑊𝑡 ;𝑄𝑡 ,𝐶𝑡 )

]
,

E
[
𝜌 (𝑞★;𝑤★, 𝑃1, 𝐷1)

]
− 1

𝑇

𝑇∑
𝑡=1

E
[
𝜌 (𝑄𝑡 ;𝑊𝑡 , 𝑃𝑡 , 𝐷𝑡 ) |𝑊𝑡

]
,

where we define 𝜎 (𝑤 ;𝑞, 𝑐) B 𝑞𝑤 − 𝑞𝑐 for (𝑤,𝑞, 𝑐) ∈ [0, 1]3
and

𝜌 (𝑞;𝑤, 𝑝, 𝑑) B min{𝑞, 𝑑}𝑝 − 𝑞𝑤 for (𝑞,𝑤, 𝑝, 𝑑) ∈ [0, 1]4
. The con-

ditional expected utility of the retailer is to be maximized with

high probability with respect to (𝑊𝑡 )𝑡 ∈N. The asymmetry in the

objectives of the supplier (S) and retailer (R) is due to the fact that

𝑊𝑡 is revealed to R before R makes a decision at time 𝑡 , while S has

to act before observing 𝑄𝑡 .

3
In contrast to Section 2, we assume here that D is bounded (without loss of generality,

by 1). This assumption is for simplifying the presentation; all the following results can

be extended to the unbounded case simply by assuming subgaussianity.
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3.1 Convergence to SE With Partial
Information (ETC vs BR)

In Section 2, we showed that the stage game admits a unique SE

under the assumptions in Theorem 2.1, and one can obtain the SE

if D is known by both the supplier (S) and the retailer (R). We now

show that a repeated interaction between S and R who act rationally

and selfishly can lead to a convergence to the SE, even assuming

that S and R have only partial information on D. In Section 3.2,

we will show that the same result can be obtained even when S

and R have essentially no information on D at a cost of a slower

convergence rate. We make the following assumption.

Assumption 2. The distribution D of (𝐶, 𝑃, 𝐷) ∈ [0, 1]3 satisfies
the following:

(1) E[𝐶] < E[𝑃].
(2) 𝐷 and 𝐶 are conditionally independent, given 𝑃 .
(3) The conditional distribution of 𝐷 given 𝑃 admits a density

(with respect to the Lebesgue measure) such that 𝑓 (𝑑 | 𝑝) > 𝐿,
for some 𝐿 > 0 and all (𝑝,𝑑) ∈ [0, 1]2.

(4) Condition 2 of Theorem 2.1 holds (i.e., the SE is unique).

Condition 1 states that, on average, the supplier’s cost is lower

than the retail price, eliminating trivial scenarios. Condition 2 states

that the demand 𝐷 may depend on the supplier’s cost 𝐶 only via

the retail price 𝑃 . Condition 3 is a mild technical condition guaran-

teeing that the learning problem is at least Lipschitz (see below).

Essentially, Assumption 2 implies that our base assumption (As-

sumption 1) is satisfied and guarantees that Theorem 2.1 can be

applied, so that the learning problem is tractable.

We now assume partial knowledge of the supplier and the retailer,

where S has more information on the production cost, while R has

more information about the direct interaction with the market.

Assumption 3. The supplier has access to the marginal distri-
bution of 𝐶 , but not to that of (𝑃, 𝐷); the retailer has access to the
marginal of (𝑃, 𝐷), but not to that of 𝐶 .

The retailer’s strategy is to best-respond to any wholesale price.

Note that 𝑞★𝑤 = BR(𝑤) can be computed exactly via Equation (3)

thanks to Assumptions 2 and 3.

Under these assumptions on the setting, and given that the re-

tailer best-responds, the supplier can compute their expected cost

E[𝐶] and is left with solving a zeroth-order Lipschitz optimization

problem (i.e., maximizing Equation (4)) without the knowledge of

the Lipschitz constant of its objective. This can be done with a

simple Explore-Then-Commit algorithm (Algorithm 1), which we

assume to be the supplier’s strategy.
4

Theorem 3.1. Under Assumptions 2 and 3, for any horizon𝑇 , if the
supplier runs Algorithm 1 with input𝑇 and the retailer best-responds,
then

E
[
𝜎 (𝑤★

;𝑞★,𝐶)
]
− 1

𝑇

𝑇∑
𝑡=1

E
[
𝜎 (𝑤𝑡 ;𝑞𝑡 ,𝐶𝑡 )

]
≤

(
1 − E[𝐶]
E[𝑃]𝐿 + 2

)
𝑇−1/2,

(6)

where (𝑤★, 𝑞★) is the unique SE of the stage game. Also, for all suffi-
ciently large 𝑇 :

4
We denote by ⌊𝑥 ⌋ the floor of 𝑥 , i.e., the largest integer 𝑛 ≤ 𝑥 .

input: Time horizon 𝑇

for 𝑡 = 1, . . . , ⌊𝑇 1/2⌋ do
Select the wholesale price𝑤𝑡 B 𝑡/

(
⌊𝑇 1/2⌋ + 1

)
Observe the quantity 𝑞𝑡

end
for 𝑡 = ⌊𝑇 1/2⌋ + 1, . . . ,𝑇 do

Select a wholesale price𝑤𝑡 = 𝑤𝑠★ , where

𝑠★ ∈ argmax

𝑠=1,..., ⌊𝑇 1/2 ⌋
𝑞𝑠

(
𝑤𝑠 − E[𝐶]

)
Observe the quantity 𝑞𝑡

end
Algorithm 1: Explore-Then-Commit

(1) E
[
𝜌 (𝑞★;𝑤★, 𝑃, 𝐷)

]
− 1

𝑇

∑𝑇
𝑡=1
E
[
𝜌 (𝑞𝑡 ;𝑤𝑡 , 𝑃𝑡 , 𝐷𝑡 )

]
≤

(
𝐿−1 +

2

)
𝑇−1/2 .

(2)


(𝑤★, 𝑞★) − (𝑤𝑇 , 𝑞𝑇 )




1
≤

(
(E[𝑃]𝐿)−1 + 1

)
𝑇−1/2 .

Item 2 shows last-iterate convergence to the unique SE (in con-

trast to the weaker time-average convergence that is typically ob-

tained in regret minimization). Equation (6) and Item 1 give perfor-

mance guarantees for both the supplier and the retailer, showing

that not only their utilities converge to that of the SE, but that both

their cumulative utilities match (up to lower-order terms) those

that would be gathered by consistently selecting the SE (𝑤★, 𝑞★)
at all time steps with full knowledge of D. Crucially, while for the

supplier it is possible to obtain finite-time regret guarantees, for

the retailer these only hold asymptotically. Finally, given that in

this setting the supplier’s actions𝑤𝑡 are deterministic, we omitted

from Item 1 the redundant conditioning on𝑤𝑡 and both Item 1 and

Item 2 hold deterministically.

Proof. By Theorem 2.1, under Assumption 2, the best-response

function BR defined in (3) maps each wholesale price 𝑤 into its

unique best-response 𝑞★𝑤 = BR(𝑤), which the retailer (R) can com-

pute by Assumption 3. Since R is best-responding, the utility of

the supplier (S), for any𝑤 > 0, is 𝑞★𝑤
(
𝑤 − E[𝐶]

)
. Note that, under

Assumption 2, the unique SE is (𝑤★, 𝑞★
𝑤★), where𝑤★

is the unique

maximizer of 𝑞★𝑤
(
𝑤 − E[𝐶]

)
, which S cannot compute directly be-

cause Assumption 3 is not sufficient for S to determine𝑞★𝑤 . However,

S can calculate E[𝐶] with the knowledge of the marginal distribu-

tion of 𝐶 . Hence, S gets a noise-free evaluation 𝑞★𝑤𝑡

(
𝑤𝑡 − E[𝐶]

)
at

each round 𝑡 , after selecting the wholesale price𝑤𝑡 for the round.

Now, note that S’s objective 𝑤 ↦→ 𝑞★𝑤
(
𝑤 − E[𝐶]

)
is Lipschitz.

Indeed, recalling (4), (5), and Assumption 2 (for more details, see

the extended version [7]), we get that, for any𝑤 ∈ (0, 1),���� 𝜕

𝜕𝑤
𝑞★𝑤

(
𝑤 − E[𝐶]

) ���� ≤ 1

E[𝑃]𝐿 ·
(
1 − E[𝐶]

)
+ 1.

Since for any time horizon 𝑇 , S selects the best point in a grid of

step-size at most 𝑇−1/2
, we have that

lim

𝑇→∞

��𝑤𝑇 −𝑤★
�� ≤ lim

𝑇→∞
𝑇−1/2 = 0. (7)

Then, using again (5) and Assumption 2 (for more details, see the

extended version [7]), we get that R’s best-response function BR

is 1/(E[𝑃]𝐿)-Lipschitz. Recalling (2), we also have that for any

fixed wholesale price 𝑤 , R’s instantaneous utility at time 𝑡 , 𝑞 ↦→
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E
[
𝜌 (𝑞;𝑤, 𝑃𝑡 , 𝐷𝑡 )

]
is 1-Lipschitz. Hence

lim

𝑇→∞

��𝑞𝑇 − 𝑞★
𝑤★

�� ≤ lim

𝑇→∞
𝑇−1/2/(E[𝑃]𝐿) = 0. (8)

Putting (8) and (7) together, gives Item 2. Equation (6) is an immedi-

ate consequence of the

(
(1 − E[𝐶])/(E[𝑃]𝐿) + 1

)
-Lipschitzness

of S’s objective 𝑤 ↦→ 𝑞★𝑤
(
𝑤 − E[𝐶]

)
. Item 1 is an immediate

consequence of the (𝐿−1 + 1)-Lipschitzness of R’s utility 𝑤 ↦→
E
[
𝜌 (𝑞★𝑤 ;𝑤, 𝑃𝑡 , 𝐷𝑡 )

]
, which follows directly from the chain rule. □

The previous result yields sublinear regret guarantees for S even

when S is oblivious to the expected retail price E[𝑃] and the lower

bound 𝐿 on the conditional density of the demand. Since the Lips-

chitz constant of S’s objective is a deterministic function of E[𝐶], 𝐿,
and E[𝑃], the reader might wonder if improved regret guarantees

could be achieved if these quantities were known to S. We show

now that this is indeed the case.

We refine Assumption 3 as follows.

Assumption 4. The supplier has access to the E[𝐶], 𝐿, and E[𝑃];
the retailer has access to the marginal distribution of (𝑃, 𝐷).

Under Assumptions 2 and 4, and given that R best-responds to

any wholesale price𝑤 , the supplier S can compute their expected

cost and solve their zeroth-order Lipschitz optimization problem

with the knowledge of (an upper bound of) the Lipschitz constant of

its objective. This can be donewith the Piyavskii–Shubert algorithm

(Algorithm 2). We now assume that this is S’s strategy.

input: Time horizon 𝑇 , Lipschitz constant𝑀 > 0

initialization: Let𝑤1 B 1

for 𝑡 = 1, . . . ,𝑇 do
Select the wholesale price𝑤𝑡

Observe the quantity 𝑞𝑡
Update the proxy function

𝜌𝑡 (·) B min𝑠∈[𝑡 ]
{
𝑞𝑠

(
(·) − E[𝐶]

)
+𝑀

��𝑤𝑠 − (·)
��}

Let𝑤𝑡+1 ∈ argmax𝑤∈[0,1] 𝜌𝑡 (𝑤)
end

Algorithm 2: Piyavskii–Shubert

The Piyavskii–Shubert algorithm has been known for half a

century [18, 20] but only recently proven to enjoys outstanding

theoretical guarantees for its query complexity, regret, and robust-

ness [5, 11]. In particular, the following theorem follows directly by

specializing [5, Theorem 3.5] and [11, Theorem 1] to our setting.

Theorem 3.2 ([5, 11]). Under Assumptions 2 and 4, for any horizon
𝑇 , if the supplier runs Algorithm 2 with inputs 𝑇 and 𝑀 B (1 −
E[𝐶])/(E[𝑃]𝐿) + 1, and the retailer best-responds, then the function
𝑤 ↦→ 𝑞★𝑤

(
𝑤 − E[𝐶]

)
is𝑀-Lipschitz and, for all 𝑡 ∈ [𝑇 ],

max

𝑤∈[0,1]

{
𝑞★𝑤

(
𝑤 − E[𝐶]

)}
− 𝑞★𝑤𝑡

(
𝑤𝑡 − E[𝐶]

)
≤ 9𝑀

log
2
(𝑀𝑡)
𝑡

max

𝑤∈[0,1]

{
𝑞★𝑤

(
𝑤 − E[𝐶]

)}
− 1

𝑇

𝑇∑
𝑡=1

𝑞★𝑤𝑡

(
𝑤𝑡 − E[𝐶]

)
≤ 2𝑀

ln(4𝑇 )
𝑇

Theorem 3.2 allows us to prove the following result.

Theorem 3.3. Under Assumptions 2 and 4, for any horizon 𝑇 ,
if the supplier runs Algorithm 2 with inputs 𝑇 and 𝑀 B (1 −
E[𝐶])/(E[𝑃]𝐿) + 1, and the retailer best-responds, then:

E
[
𝜎 (𝑤★

;𝑞★,𝐶)
]
− 1

𝑇

𝑇∑
𝑡=1

E
[
𝜎 (𝑤𝑡 ;𝑞𝑡 ,𝐶𝑡 )

]
≤ 2𝑀

ln(4𝑇 )
𝑇

(9)

where (𝑤★, 𝑞★) is the unique SE of the stage game. Moreover,

(1) lim

𝑇→∞

(
E
[
𝜌 (𝑞★;𝑤★, 𝑃, 𝐷)

]
− 1

𝑇

𝑇∑
𝑡=1

E
[
𝜌 (𝑞𝑡 ;𝑤𝑡 , 𝑃𝑡 , 𝐷𝑡 )

] )
= 0

(2) lim

𝑇→∞



(𝑤★, 𝑞★) − (𝑤𝑇 , 𝑞𝑇 )




1
= 0

Proof. Proceeding as in the proof of Theorem 3.1 and applying

Theorem 3.2, we get that the retailer’s instantaneous utility at time

𝑡 , 𝑞 ↦→ E
[
𝜌 (𝑞;𝑤, 𝑃𝑡 , 𝐷𝑡 )

]
is 1-Lipschitz for any fixed wholesale

price 𝑤 , and the supplier’s instantaneous utility at time 𝑡 , 𝑤 ↦→
𝑞★𝑤

(
𝑤 − E[𝐶𝑡 ]

)
is𝑀-Lipschitz, where 𝑞★𝑤 is defined as in (3), for all

𝑤 ∈ [0, 1]. As above, under Assumption 2, the unique SE is precisely

(𝑤★, 𝑞★
𝑤★), where 𝑤★

is the unique maximizer of 𝑞★𝑤
(
𝑤 − E[𝐶]

)
.

Applying again Theorem 3.2, we obtain immediately the result. □

3.2 Convergence to SE With No Information
(ETC vs FTL)

If the retailer R had access to the distribution D, or at least to

the marginal distribution of (𝑃, 𝐷), R could best-respond to the

supplier’s move𝑤𝑡 at each time 𝑡 , as described in Sections 2 and 3.1.

Since, in this section, none of these is available to R, we assume

that R acts according to the next-best available strategy, i.e., best-

responding to an empirical distribution that can be maintained

by gathering samples. In the literature, this strategy is known as

Follow-the-Leader (FTL) and is detailed in Algorithm 3. For 𝑡 = 1,

input: Time horizon 𝑇 ≥ 12

initialization: Let
Q B

{
1/(⌈𝑇 1/3⌉ + 1), . . . , ⌈𝑇 1/3⌉/(⌈𝑇 1/3⌉ + 1)

}
Observe the wholesale price𝑊1

Draw a quantity 𝑄1 from Q uniformly at random

Observe the demand 𝐷1 and the retail price 𝑃1

for 𝑡 = 2, 3, . . . do
Observe the wholesale price𝑊𝑡

Select a quantity

𝑄𝑡 ∈ argmax𝑞∈Q
(

1

𝑡−1

∑𝑡−1

𝑠=1
min{𝑞, 𝐷𝑠 }𝑃𝑠 − 𝑞𝑊𝑡

)
Observe the demand 𝐷𝑡 and the retail price 𝑃𝑡

end
Algorithm 3: Follow-the-Leader (FTL)

R picks a quantity at random and observes the demand 𝐷1. During

each time step 𝑡 ≥ 2, define, for all 𝑤,𝑞 ∈ [0, 1], the auxiliary

function

𝜌𝑡 (𝑤,𝑞) :=
1

𝑡 − 1

𝑡−1∑
𝑠=1

min{𝑞, 𝐷𝑠 }𝑃𝑠 − 𝑞𝑤.

Note that this is not built to maximize the empirical average of

the utility gained in last 𝑡 − 1 interactions, i.e., it differs from 𝑞 ↦→
1

𝑡−1

∑𝑡−1

𝑠=1

(
min{𝑞, 𝐷𝑠 }𝑃𝑠−𝑞𝑊𝑠

)
. Indeed, the retailer is not interested
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in maximizing their expected utilities at time steps 𝑡 but rather, their

more challenging expected utility given𝑊𝑡 . Equivalently stated,

the retailer is not maximizing an expected revenue computed with

respect to the empirical distribution of the sequence of random

vectors (𝐶1, 𝑃1, 𝐷1,𝑊1), . . . , (𝐶𝑡−1, 𝑃𝑡−1, 𝐷𝑡−1,𝑊𝑡−1) at time 𝑡 , but

rather, that of (𝐶1, 𝑃1, 𝐷1,𝑊𝑡 ), . . . , (𝐶𝑡−1, 𝑃𝑡−1, 𝐷𝑡−1,𝑊𝑡 ) given𝑊𝑡 .

This way, 𝜌𝑡 (𝑤,𝑞) is an unbiased estimate of E
[
𝜌 (𝑞;𝑤, 𝑃𝑡 , 𝐷𝑡 )

]
for

all 𝑤,𝑞 ≥ 0 and 𝑡 ≥ 2, which in turn implies that E
[
𝜌𝑡 (𝑊𝑡 , 𝑞) |

𝑊𝑡

]
= E

[
𝑢S (𝑞;𝑊𝑡 , 𝑃𝑡 , 𝐷𝑡 ) | 𝑊𝑡

]
for all 𝑞 ≥ 0 and 𝑡 ≥ 2. This

corresponds precisely to the instantaneous objective of the retailer.

Therefore, naturally, the choice of a discretized retailer at time 𝑡 ≥ 2

is

𝑄𝑡 ∈ argmax

𝑞∈Q

(
𝜌𝑡 (𝑊𝑡 , 𝑞)

)
= argmax

𝑞∈Q

(
1

𝑡 − 1

𝑡−1∑
𝑠=1

min{𝑞, 𝐷𝑠 }𝑃𝑠 − 𝑞𝑊𝑡

)
.

Similarly to the previous section, we assume here that the supplier

adopts an Explore-Then-Commit strategy (Algorithm 4), with the

caveat that, in this section, the expected production cost E[𝐶] is
not available to S but has to be estimated.

input: Time horizon 𝑇 ≥ 12

for 𝑡 = 1, . . . , ⌈𝑇 1/3 + 1⌉ do
for 𝑠 = 1, . . . , ⌈𝑇 1/3⌉ do

Select the wholesale price

𝑊(𝑡−1) ⌈𝑇 1/3 ⌉+𝑠 B 𝑠/
(
⌈𝑇 1/3⌉ + 1

)
Observe the quantity 𝑄 (𝑡−1) ⌈𝑇 1/3 ⌉+𝑠 and production

cost 𝐶 (𝑡−1) ⌈𝑇 1/3 ⌉+𝑠
end

end
Compute

𝑆★ ∈ argmax𝑠∈{ ⌈𝑇 1/3 ⌉2+1,..., ⌈𝑇 1/3+1⌉ ⌈𝑇 1/3 ⌉ } 𝑄𝑠

(
𝑊𝑠 −

1

⌈𝑇 1/3 ⌉2

∑ ⌈𝑇 1/3 ⌉2

𝑗=1
𝐶 𝑗

)
for 𝑡 = ⌈𝑇 1/3 + 1⌉ ⌈𝑇 1/3⌉ + 1, . . . ,𝑇 do

Select the wholesale price𝑊𝑡 B𝑊𝑆★

Observe the quantity 𝑄𝑡

end
Algorithm 4: Explore-Then-Commit (without knowledge of

E[𝐶])

Theorem 3.4. Under Assumption 2, for any horizon𝑇 ≥ 12, if the
supplier runs Explore-Then-Commit (Algorithm 4) with input 𝑇 and
the retailer runs Follow-the-Leader (Algorithm 3) with input 𝑇 , then:

E
[
𝜎 (𝑤★

;𝑞★,𝐶)
]
− 1

𝑇

𝑇∑
𝑡=1

E
[
𝜎 (𝑊𝑡 ;𝑄𝑡 ,𝐶𝑡 )

]
≤

(
16 + 1 − E[𝐶]

E[𝑃]𝐿 + 7

√
ln𝑇

)
𝑇−1/3, (10)

where (𝑤★, 𝑞★) is the unique SE of the stage game. Moreover:

(1) lim𝑇→∞
(
E
[
𝜌 (𝑞★;𝑤★, 𝑃, 𝐷)

]
− 1

𝑇

∑𝑇
𝑡=1
E
[
𝜌 (𝑄𝑡 ;𝑊𝑡 , 𝑃𝑡 , 𝐷𝑡 |

𝑊𝑡 )
] )

= 0 with probability 1.

(2) lim𝑇→∞


(𝑤★, 𝑞★) − (𝑊𝑇 , 𝑄𝑇 )




1
= 0 with probability 1.

Proof. Fix any time horizon 𝑇 ≥ 12. Proceeding as in the proof

of Theorem 3.1 and applying Theorem 3.2, we get that the retailer’s

instantaneous utility at time 𝑡 ,𝑞 ↦→ E
[
𝜌 (𝑞;𝑤, 𝑃𝑡 , 𝐷𝑡 )

]
is 1-Lipschitz

for any fixed wholesale price𝑤 , and the supplier’s instantaneous

utility at time 𝑡 ,𝑤 ↦→ 𝑞★𝑤
(
𝑤 − E[𝐶𝑡 ]

)
is𝑀-Lipschitz, where 𝑞★𝑤 is

defined as in (3), for all𝑤 ∈ [0, 1], and𝑀 B
(
1−E[𝐶]

)
/
(
E[𝑃]𝐿

)
+1.

As above, under Assumption 2, the unique SE is precisely (𝑤★, 𝑞★
𝑤★),

where 𝑤★
is the unique maximizer of 𝑤 ↦→ 𝑞★𝑤

(
𝑤 − E[𝐶]

)
. Now,

fix an arbitrary 𝛿 ∈
(
0, 1/⌈𝑇 1/3 + 1⌉

)
. Observing that for any 𝑡 ≥ 2,

given𝑊𝑡 , the retailer’s quantity 𝑄𝑡 is the argmax of an empirical

average translated by a constant, applying Hoeffding’s inequality

⌈𝑇 1/3 + 1⌉ times and the fact that the retailer’s discretization has

step-size 1/⌈𝑇 1/3 + 1⌉, we obtain that���𝑄𝑠 − 𝑞★
𝑠/( ⌈𝑇 1/3 ⌉+1)

��� ≤ √
ln 2/𝛿

2⌈𝑇 1/3⌉2

+ 1

⌈𝑇 1/3 + 1⌉
(11)

for all 𝑠 = ⌈𝑇 1/3⌉2 + 1, . . . , ⌈𝑇 1/3 + 1⌉ ⌈𝑇 1/3⌉������ 1

⌈𝑇 1/3⌉2

⌈𝑇 1/3 ⌉2∑
𝑗=1

𝐶 𝑗 − E[𝐶]

������ ≤
√

ln 2/𝛿
2⌈𝑇 1/3⌉2

(12)

hold simultaneously with probability at least 1 − ⌈𝑇 1/3 + 1⌉𝛿 . Thus,������𝑄𝑠
©­«𝑊𝑠 −

1

⌈𝑇 1/3⌉2

⌈𝑇 1/3 ⌉2∑
𝑗=1

𝐶 𝑗
ª®¬ − 𝑞★𝑊𝑠

(
𝑊𝑠 − E[𝐶]

) ������
≤ 2

√
2 ln 2/𝛿
⌈𝑇 1/3⌉2

+ 3

⌈𝑇 1/3 + 1⌉

hold simultaneously for all 𝑠 = ⌈𝑇 1/3⌉2 + 1, . . . , ⌈𝑇 1/3 + 1⌉ ⌈𝑇 1/3⌉,
with probability at least 1 − ⌈𝑇 1/3 + 1⌉𝛿 . Consequently, letting

𝑤̃ ∈ argmax

𝑤∈{1/⌈𝑇 1/3+1⌉,..., ⌈𝑇 1/3 ⌉/ ⌈𝑇 1/3+1⌉ }
𝑞★𝑤

(
𝑤 − E[𝐶]

)
and given that the supplier’s discretization has a step size 1/⌈𝑇 1/3 +
1⌉ and𝑤 ↦→ 𝑞★𝑤

(
𝑤 −E[𝐶]

)
is𝑀-Lipschitz, the triangular inequality

yields, for any 𝑡 ≥ ⌈𝑇 1/3 + 1⌉ ⌈𝑇 1/3⌉ + 1,������𝑄𝑡
©­«𝑊𝑡 −

1

⌈𝑇 1/3⌉2

⌈𝑇 1/3 ⌉2∑
𝑗=1

𝐶 𝑗
ª®¬ − E

[
𝜎 (𝑤★, 𝑞★,𝐶)

] ������ ≤
≤

������𝑄𝑡
©­«𝑊𝑆★ − 1

⌈𝑇 1/3⌉2

⌈𝑇 1/3 ⌉2∑
𝑗=1

𝐶 𝑗
ª®¬ − 𝑞★𝑊𝑆★

(
𝑊𝑆★ − E[𝐶]

) ������
+

���𝑞★𝑊𝑆★

(
𝑊𝑆★ − E[𝐶]

)
− 𝑞★

𝑤̃

(
𝑤̃ − E[𝐶]

) ���
+

���𝑞★𝑤̃ (
𝑤̃ − E[𝐶]

)
− E

[
𝜎 (𝑤★, 𝑞★,𝐶)

] ���
≤ 6

√
2 ln 2/𝛿
⌈𝑇 1/3⌉2

+ 9 +𝑀

⌈𝑇 1/3 + 1⌉

with probability at least 1 − ⌈𝑇 1/3 + 1⌉𝛿 . Charging regret 1 to the

supplier for the first ⌈𝑇 1/3 + 1⌉ ⌈𝑇 1/3⌉ rounds, then summing the
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Figure 1: On the 𝑥 axis, the time horizon 𝑇 . On the 𝑦 axis of
the left (resp., right) pane, the wholesale price𝑤𝑇 (resp., the
quantity 𝑞𝑇 ) at time 𝑇 when the suppliers runs Algorithm 1
and the retailer best-responds. The black horizontal line on
the left (resp., right) pane represents the wholesale price𝑤★

(resp., the quantity 𝑞★) at the SE.

previous bound over all remaining rounds and upper bounding

𝑇 − ⌈𝑇 1/3 + 1⌉ ⌈𝑇 1/3⌉ with 𝑇 yields

E
[
𝜎 (𝑤★

;𝑞★,𝐶)
]
− 1

𝑇

𝑇∑
𝑡=1

𝜎 (𝑊𝑡 ;𝑄𝑡 ,𝐶𝑡 )

≤ ⌈𝑇 1/3 + 1⌉ ⌈𝑇 1/3⌉
𝑇

+ 6

√
2 ln 2/𝛿
⌈𝑇 1/3⌉2

+ 9 +𝑀

⌈𝑇 1/3 + 1⌉

≤
(
15 +𝑀 + 6

√
2 ln 2/𝛿

)
𝑇−1/3

with probability at least 1 − ⌈𝑇 1/3 + 1⌉𝛿 . Thus, (10) follows directly
by choosing, e.g., 𝛿 = 2𝑇−2/3

and upper bounding 12/
√

3 with 7.

The proof of Item 2 is a simple consequence of (11) and the fact that

the retailer’s best-response function BR is Lipschitz. Finally, Item 1

follows directly by (11), (12), and Lipschitzness of the retailer’s

utility 𝑤 ↦→ E
[
𝜌 (𝑞★𝑤 ;𝑤, 𝑃𝑡 , 𝐷𝑡 )

]
as a function of the wholesale

price (which is implied by the chain rule). □

Again, the previous result shows last-iterate convergence of the
supply chain to the unique SE (in contrast to the weaker time-
average convergence that is typically obtained in regret minimiza-

tion). In contrast to our previous results, this theorem holds under

much weaker assumptions on the prior knowledge of the retailer

and the supplier. Indeed, we do not assume anything other than

the knowledge that the support of D is included in [0, 1]3
.

4 EXPERIMENTS
In this section, we describe experiments on synthetic data that

provide further insights on the theoretical results of Section 3. In

our experiments, we consider a constant cost 𝐶 = 0.3, a retail

price 𝑃 uniform on [0, 1], and for all 𝑝 ∈ [0, 1], we assume that

the probability density function given 𝑃 = 𝑝 of the demand is

𝑓 (𝑥 | 𝑝) = (1 − 2𝑝) 𝑥 + 1

2
+ 𝑝 .

4.1 ETC vs BR
In the first experiment, we study the supplier-retailer dynamics in

the setting of Section 3.1, when the supplier runs Explore-Then-

Commit (Algorithm 1) and the retailer best-responds (the resulting

dynamics is deterministic).

0 0.5 1

·10
4

0

0.5

1

1.5
·10

−2

𝑅S

𝑇

0 0.5 1

·10
4

−1.5

−1

−0.5

0

·10
−2

𝑅R

𝑇

Figure 2: On the 𝑥 axis (black horizontal line), the time hori-
zon 𝑇 . On the 𝑦 axis of the left (resp., right) pane, the differ-
ence 𝑅S

𝑇
(resp., 𝑅R

𝑇
) after𝑇 time steps between the cumulative

utility at the SE and that obtained by the supplier (resp., re-
tailer) when the supplier runs Algorithm 1 and the retailer
best-responds.

0 0.2 0.4 0.6 0.8 1

−0.2

0

𝑢S

(
𝑤, BR(𝑤)

)
𝑢S

(
𝑤, BR

′(𝑤)
)

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2 𝑢R

(
𝑤, BR(𝑤)

)

Figure 3: On the 𝑥 axis, the wholesale price 𝑤 . Left pane: in
red, the utility𝑢S

(
𝑤, BR(𝑤)

)
of the supplier when the retailer

best-responds, illustrating the objective of the supplier both
in the noiseless setting of Section 4.1 and and the noisy one
of Section 4.2, where the discretization of the retailer in-
cludes 0; in blue, the utility 𝑢S

(
𝑤, BR

′(𝑤)
)
of the supplier

when the best response BR
′(𝑤) = max{BR(𝑤), 𝑞min} of the

retailer is constrained to be larger than 𝑞min > 0, illustrat-
ing the objective of the supplier in the noisy setting of Sec-
tion 4.2, where the discretization of the retailer does not in-
clude 0. Right pane: the utility 𝑢R

(
𝑤, BR(𝑤)

)
of the retailer

when best-responding to𝑤 .

In Figure 1 the wholesale price𝑤𝑇 and the corresponding quan-

tity 𝑞𝑇 can be seen converging to the SE (𝑤★, 𝑞★). The correspond-
ing long-term differences in utilities with respect to the utilities at

the SE appear in Figure 2. While the performance of the supplier is

as expected, the fact that the retailer frequently outperforms the

SE is somewhat surprising. This behavior can be explained by not-

ing that the utility 𝑢R

(
𝑤, BR(𝑤)

)
of the retailer when the supplier

selects𝑤 and the retailer best-responds with BR(𝑤) is concave and
decreasing (Figure 3, right pane). Hence, whenever the supplier

undershoots with respect to𝑤★
, the potential gain of the retailer

is higher that their potential loss due to the supplier overshooting.

By observing Figure 1, we see that that in many rounds the sup-

plier commits to a wholesale price lower than 𝑤★
. Although for

the supplier undershooting and overshooting is equivalent (see the

symmetric form of the supplier’s objective in a neighborhood of its

maximum in Figure 3, left pane, red plot), each𝑤 < 𝑤★
gives the

retailer an opportunity to outperform the utility of the SE. Being
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Figure 5: On the 𝑥 axis, the time horizon 𝑇 . On the 𝑦 axis of
the left (resp., right) pane, the difference𝑅S

𝑇
(resp.,𝑅R

𝑇
) after𝑇

time steps between the cumulative utility at the SE and that
obtained by the supplier (resp., retailer) when the supplier
runs Algorithm 4 and the retailer runs Algorithm 3.
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Figure 6: On the 𝑥 axis, the time horizon 𝑇 . On the 𝑦 axis
of the left (resp., right) pane, the wholesale price 𝑤𝑇 (resp.,
the quantity 𝑞𝑇 ) at time 𝑇 when the suppliers runs Algo-
rithm 4 and the retailer runs Algorithm 3 on a discretization
0, 1/⌈𝑇 1/3 − 1⌉, . . . , ⌈𝑇 1/3⌉/⌈𝑇 1/3 − 1⌉, 1. The black horizontal
line represents the wholesale price 𝑤★ (resp., the quantity
𝑞★) at the SE. In red, the plot of the sequence of exact best
responses BR(𝑤𝑇 ).

0 0.5 1

·10
4

−1

0

1

2

·10
−2

𝑅S

𝑇

0 0.5 1

·10
4

−1

0

1

·10
−2

𝑅R

𝑇

Figure 7: On the 𝑥 axis (black horizontal line), the time hori-
zon 𝑇 . On the 𝑦 axis of the left (resp., right) figure, the dif-
ference 𝑅S

𝑇
(resp., 𝑅R

𝑇
) after 𝑇 time steps between the cumu-

lative utility at the SE and that obtained by the supplier
(resp., retailer) when the supplier runs Algorithm 4 and the
retailer runs Algorithm 3 on a discretization 0, 1/⌈𝑇 1/3 −
1⌉, . . . , ⌈𝑇 1/3⌉/⌈𝑇 1/3 − 1⌉, 1.
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Figure 4: On the 𝑥 axis, the time horizon 𝑇 . On the 𝑦 axis of
the left (resp., right) figure, thewholesale price𝑤𝑇 (resp., the
quantity 𝑞𝑇 ) at time 𝑇 when the suppliers runs Algorithm 4
and the retailer runs Algorithm 3. The black horizontal line
represents the wholesale price 𝑤★ (resp., the quantity 𝑞★)
at the SE. In red, the plot of the sequence of exact best re-
sponses BR(𝑤𝑇 ). It is always zero because the supplier cor-
rectly learns to always play 𝑤 > 0.5 and BR(𝑤) = 0 for all
𝑤 > 0.5. Note that the retailer is indeed learning that they
should play the smallest possibly quantity.

able to compute the best response exactly, the retailer can take

advantage of this fact.

4.2 ETC vs FTL
We now consider the setting of Section 3.2, where no player has

any prior distributional information and all knowledge is learned

by them running ETC (Algorithm 4) and FTL (Algorithm 3), re-

spectively. As in this case the dynamics is stochastic, the plots are

averages over 20 runs of each simulation.

The role of the discretization. Although not immediately apparent,

the retailer’s choice on how to implement their discretization has

significant consequences on the dynamics of the system. Consider

first Algorithm 3, where quantities are discretized as 𝑖/⌈𝑇 1/3 + 1⌉,
for 𝑖 = 1, . . . , ⌈𝑇 1/3⌉, 𝑇 being the time horizon. This effectively sets

a hard positive lower bound to the best-response of the retailer.

As Figure 3 (left pane, blue curve) shows, a consequence of this is

that 𝑤★
is no longer the maximizer of the seller’s utility, unless

𝑇 is sufficiently large. A direct computation using the parameters

chosen for the experiments shows that 𝑇 > 6 · 10
4
is needed to

recover𝑤★
as the solution to the supplier’s optimization problem.

For smaller horizons, the supplier should learn that their optimal

move is to post the highest possible𝑤 . Figure 4 shows that this is

exactly what happens. Therefore, unlike the previous setting, here

the supplier is always outperforming the SE (Figure 5).

This artifact in the dynamics due to the retailer’s discretization

can be completely eliminated with a simple trick. Assume that

the retailer discretizes the unit interval using 𝑖/⌈𝑇 1/3 − 1⌉, for 𝑖 =
0, . . . , ⌈𝑇 1/3 − 1⌉. Now the quantity 𝑞 = 0 is available to the retailer,

therefore the behavior of Figure 3 (left pane, blue) is prevented, and

the supplier has no longer any incentive of choosing prices far away

from𝑤★
. As Figure 6 shows, in this case the dynamics converges

directly to (𝑤★, 𝑞★) and the performance of the two agents change

accordingly (Figure 7).
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