
Reward-Machine-Guided, Self-Paced Reinforcement Learning
Extended Abstract

Cevahir Koprulu
The University of Texas at Austin

Austin, TX, USA
cevahir.koprulu@utexas.edu

Ufuk Topcu
The University of Texas at Austin

Austin, TX, USA
utopcu@utexas.edu

ABSTRACT
Self-paced reinforcement learning (RL) aims to improve the sample
efficiency of RL by automatically creating sequences, i.e., curricula,
of probability distributions over contexts. However, existing self-
paced RL methods fail in tasks that involve temporally extended
behaviors. As a remedy, we exploit prior knowledge about the
underlying task structure and develop a self-paced RL algorithm
guided by reward machines, i.e., a finite-state machine that encodes
such structure. The proposed algorithm integrates reward machines
in the updates of 1) the policy and value functions obtained by an RL
algorithm, and 2) the automated curriculum that generates context
distributions. Our empirical results evidence that the proposed al-
gorithm achieves optimal behavior in cases where existing methods
fail, and also reduces curriculum length and variance.
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1 INTRODUCTION
The design of task sequences, i.e., curricula, aims to increase the
data efficiency of reinforcement learning (RL) by beginning with
easier tasks and gradually increasing the difficulty [8]. To replace
manual curriculum design, Klink et al. [6] develop self-paced RL,
which automatically creates a sequence of probability distributions
over contexts [3], parameterizing dynamics, reward function, and
initial state distribution of an environment. Although self-paced RL
[5] outperforms the state-of-the-art curriculum learning methods
[2, 10], existing self-paced RL approaches work poorly in long-
horizon planning tasks with non-Markovian reward functions. A
remedy is to exploit high-level structural relationships [9, 11], e.g.,
via a type of finite-state machine, called reward machines (RMs) [4].

We study self-paced RL for long-horizon planning tasks in which
RMs are available a priori to the agent. Our contribution is three-
fold. 1) We propose an intermediate self-paced RL algorithm that
updates the policy and value functions via an RM. 2) We establish a
reward-machine-context mapping that, given a transition in the RM,
outputs the smallest set of context parameters, that determine if a
high-level event occurs. 3) We develop a reward-machine-guided,
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Figure 1: Workflow diagram of proposed approaches.

self-paced RL algorithm that extends intermediate self-paced RL by
navigating curricula via the mapping (see Figure 1). Our empirical
results show that proposed methods accomplish tasks in our use
cases, whereas state-of-the-art methods fail. Guiding curriculum
generation also avoids inefficient exploration of curriculum space.

2 PROBLEM
We focus on long-horizon planning tasks, modeled as labeled con-
textual Markov decision processes (CMDPs) M̄𝐿 , where RMs R
encode their non-Markovian reward functions. Consider a two-door
environment (see Figure 2), where an agent has to pass the first
door 𝑑1, then get the key in the box 𝑏, unlock the second door 𝑑2,
and reach the goal 𝑔, without hitting the walls𝑤 . A labeled CMDP
M̄𝐿 = ⟨𝑆,𝐴, C,M𝐿⟩ consists of state, action, and context spaces 𝑆 ,
𝐴, C, respectively, and a mapping M𝐿 from C to a labeled MDP
[12] M𝐿 (𝑐) = ⟨𝑆,𝐴, 𝑝𝑐 , 𝑅𝐿𝑐 , 𝜙𝑐 , 𝛾,P, 𝐿𝑐 ⟩. Parameterized by 𝑐 ∈ C, a
labeled MDPM𝐿 (𝑐) combines a probabilistic transition function 𝑝𝑐 ,
an initial state distribution 𝜙𝑐 , a non-Markovian reward function
𝑅𝐿𝑐 , a discount factor 𝛾 , a finite set P of propositional variables, and
a labeling function 𝐿𝑐 : 𝑆 ×𝐴 × 𝑆 → 2P . In two-door, 𝑐 determines
the door positions, hence affecting 𝑝𝑐 and 𝑅𝐿𝑐 . A reward machine
[4] R = ⟨𝑄, q𝐼 , 2P ,𝑂, 𝛿q, 𝛿𝑟 ⟩ consists of a finite set 𝑄 of states, an
initial state q𝐼 ∈ 𝑄 , an input alphabet 2P , an output alphabet 𝑂 , a
deterministic transition function 𝛿q, and an output function 𝛿𝑟 . In
Figure 2, the transition from q0 to q1 = 𝛿q (q0, ℓ) occurs when the
agent gets label ℓ = {𝑑1}, yielding reward 𝛿𝑟 (q0, ℓ) = 1.

Problem Statement: Given a labeled CMDP M̄𝐿 , its RM R, and
a target context distribution 𝜑 , obtain an optimal policy that solves
max𝜋 E𝜑 (𝑐 ),𝜙𝑐 (𝑠 ),𝜋 [

∑∞
𝑡=0 𝛾

𝑡𝑅𝐿𝑐 (𝑠0𝑎0 · · · 𝑠𝑡𝑎𝑡𝑠𝑡+1)], where 𝑎𝑡 ∼ 𝜋 .

3 INTERMEDIATE SELF-PACED RL
Given initial and target context distributions 𝜚 (·|𝜈0) and 𝜑 , respec-
tively, self-paced RL [5] addresses the problem we describe by
generating a sequence of context distributions {𝜚 (·|𝜈𝑘 )}𝐾𝑘=1. The
agent updates 𝜋 using trajectories collected in contexts drawn from
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𝜚 (·|𝜈𝑘 ), parameterized by 𝜈𝑘 , that self-paced RL obtains by solving

max
𝜈 ′
𝑘

1
𝑁

𝑁∑︁
𝑖=1

𝑇𝑖−1∑︁
𝑡=0

𝛾𝑡𝑔(𝑐𝑖 )𝑟𝑖,𝑡 − 𝛼𝐷KL (𝜚 (𝑐 |𝜈 ′𝑘 ) | | 𝜑 (𝑐))

s.t. 𝐷KL (𝜚 (𝑐 |𝜈 ′𝑘 ) | | 𝜚 (𝑐 |𝜈𝑘−1)) ≤ 𝜖, (1)

where 𝑔(𝑐𝑖 ) = 𝜚 (𝑐𝑖 |𝜈𝑘 )
𝜚 (𝑐𝑖 |𝜈𝑘−1 ) is the importance sampling weight used

to estimate the value of state 𝑠𝑖,0 in context 𝑐𝑖 with respect to the
current context distribution 𝜚 (·|𝜈𝑘 ), as 𝑐𝑖 is sampled from 𝜚 (·|𝜈𝑘−1).
We propose intermediate self-paced RL, that extends self-paced RL
by running an RL agent on a product CMDP M̄𝐿

R = ⟨𝑆,𝐴, C, M̄𝐿⟩,
which differs from M̄𝐿 due to its product state space 𝑆 = 𝑆 × 𝑄 ,
combining the states of M̄𝐿 and R. On M̄𝐿 (𝑐), an agent follows
policy 𝜋 to collect trajectory 𝜏 = {(𝑠𝑡−1, 𝑎𝑡−1, 𝑟𝑡 , 𝑠𝑡 )}𝑇𝑡=1, with state
𝑠𝑡 ∈ 𝑆 , action 𝑎𝑡 ∼ 𝜋 , and reward 𝑟𝑡 = 𝑅𝐿𝑐 (𝑠𝑡−1, 𝑎𝑡−1, 𝑠𝑡 ) in 𝑐 .

4 FROM REWARD MACHINES TO CONTEXTS
In two-door, we observe that the first context parameter 𝑐 [1], i.e.,
the position of the first door, determines which M̄𝐿

R transitions
enable the agent to pass the first door, yielding label {𝑑1}. Changing
𝑐 [1] causes different M̄𝐿

R transitions to yield label {𝑑1}. However,
such change does not impact the transitions that enable the agent
to pass the second door, i.e., to obtain label {𝑑2}. Taking this obser-
vation into account, we define a reward-machine-context mapping
F : 𝑄 ×𝑄 → 2𝐷 , which outputs the smallest set of identifier context
parameters that determines if a transition in R happens, where
𝐷 is the dimensions of C. In two-door, 𝐷 is {1, 2} and F outputs
F(q0, q1) = {1}, F(q1, q2) = ∅, and F(q2, q5) = {1, 2}, etc.

5 RM-GUIDED, SELF-PACED RL
Klink et al. [7]’s self-paced RL algorithm uses an importance weight
𝑔(𝑐𝑖 ) = 𝜚 (𝑐𝑖 |𝜈𝑘 )

𝜚 (𝑐𝑖 |𝜈𝑘−1 ) by assuming that every context parameter has
an effect on the reward that an environment interaction yields,
e.g., the position of the second door, 𝑐 [2], affects which interac-
tion allows the agent to pass the first door, obtaining a reward
of 1. We remove this assumption by proposing F to compute the
importance sampling weight of a reward received in transition
(q𝑡−1, q𝑡 ). RM-guided, self-paced RL achieves this in (1) by utiliz-
ing the marginal context distributions for the identifier context
parameters f𝑡 = F(q𝑡−1, q𝑡 ) to compute 𝑔(𝑐𝑖 ) =

𝜚 f𝑡 (𝑐𝑖 |𝜈𝑘 )
𝜚 f𝑡 (𝑐𝑖 |𝜈𝑘−1 ) where

𝜚 f𝑡 (·|𝜈𝑘 ) and 𝜚 f𝑡 (·|𝜈𝑘−1) are the current and previous marginal
context distributions with respect to f𝑡 , respectively.
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Figure 2: Reward machine of the two-door environment.
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Figure 3: Progression of (Top) context distributions generated
by self-paced RL methods in two-door, and (Bottom) the rate
of task completion in contexts drawn from 𝜑 in two-door (15
runs) and HalfCheetah (10 runs). Bold lines indicate median
values, and shaded regions cover the first and third quartiles.

6 EMPIRICAL RESULTS
We evaluate intermediate and RM-guided self-paced RL algorithms
against a self-paced RL method, SPDL [7], two state-of-the-art
automated curriculum generation methods, GoalGAN [2] and ALP-
GMM [10], as well as two baselines, Default and Default*. Default
draws contexts from 𝜑 without generating a curriculum, and De-
fault* extends it by running an RL algorithm on M̄𝐿

R . The top row
of Figure 3 demonstrates the progression of statistics (mean and
variance) of Gaussian context distributions generated by self-paced
RL algorithms in the two-door environment. RM-guided, self-paced
RL’s curricula converge to 𝜑 faster, by one-fourth of the curricu-
lum updates of others, and have smaller curricula variance, see the
narrow blue region around the median, with statistical significance
of 𝑝 < 0.0001 according to a Welch’s t-test. The bottom-left figure
shows the progression of the rate of task completion in the same en-
vironment. Intermediate and RM-guided self-paced RL algorithms
converge before Default*, which indicates that curriculum genera-
tion boosts learning, whereas the rest of the algorithms fail to ac-
complish the task, concluding that incorporating reward machines
in learning allows the agent to capture the temporal structure of the
task. We also test the algorithms in a customized HalfCheetah-v3
environment [1]. The bottom-right figure reports that only the pro-
posed methods are able to accomplish the task, where RM-guided,
self-paced RL converges faster than its intermediate counterpart.

7 CONCLUSION
We develop two self-paced RL algorithms for long-horizon planning
tasks: 1) intermediate self-paced RL, which uses reward machines to
update the value function and policy of RL agents, and 2) RM-guided,
self-paced RL, which extends the first by navigating curriculum
generation via a reward-machine-context mapping that we propose.
Our empirical evaluations conclude that the proposed algorithms
achieve optimal behavior in long-horizon planning tasks we use,
whereas baselines and state-of-the-art methods fail. In addition,
guiding curriculum generation reduces curricula variance, avoiding
inefficient exploration of the curriculum space.
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