
Online 2-stage Stable Matching
Extended Abstract

Evripidis Bampis

Sorbonne Université, CNRS, LIP6

Paris, France

evripidis.bampis@lip6.fr

Bruno Escoffier

Sorbonne Université, CNRS, LIP6

Paris, France

Institut Universitaire de France

bruno.escoffier@lip6.fr

Paul Youssef

Université Grenoble Alpes, LIG,

Saint-Martin d’Hères, France

paul.youssef@univ-grenoble-alpes.fr

ABSTRACT
We focus on an online 2-stage problem, motivated by the following

situation: consider a system where students shall be assigned to

universities. There is a first stage where some students apply, and

a first (stable) matching 𝑀1 has to be computed. However, some

students may decide to leave the system (change their plan, go to a

foreign university, or to some institution not in the system). Then,

in a second stage (after these deletions), we shall compute a second

(final) stable matching𝑀2. As in many situations important changes

to the assignments are undesirable, the goal is to minimize the num-

ber of divorces/modifications between the two stable matchings

𝑀1 and 𝑀2. Then, how should we choose 𝑀1 and 𝑀2? We show

that there is an optimal online algorithm to solve this problem. In

particular, thanks to a dominance property, we show that we can

optimally compute𝑀1 without knowing the students that will leave

the system. We generalize the result to some other possible modifi-

cations in the input (such as additional capacities of universities).

We also tackle the case of more stages, showing that no competitive

(online) algorithm can be achieved for the considered problem as

soon as there are 3 stages.
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1 INTRODUCTION
Stable matchings have been extensively studied in the literature,

both from a theoretical and a practical point of view. In the classi-

cal stable matching problem, one is given two equal-sized sets of

agents, say men and women, where each person has strict prefer-

ences over the persons of the opposite sex. The goal is to match

each man to exactly one woman and each woman to exactly one

man, i.e., to find a perfect matching of men and women which is

also stable. A perfect matching𝑀 is stable if there is no blocking pair,
i.e., a pair of a man and a woman who are not matched together

in 𝑀 , but they prefer each other more to their current partners

in the matching. In 1962, Gale and Shapley, in their seminal pa-

per [11], showed that a stable matching always exists, and designed
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a polynomial-time algorithm that finds such a matching. The stable

matching problem is motivated by various applications where a

centralized automated matching scheme is necessary in order to

assign positions to applicants (matching of interns to hospitals [22],

[23], university admission [3], school placement [1], faculty recruit-

ment [3], etc.). In most of these applications, the matching schemes

employ extensions of the Gale and Shapley algorithm taking into

account particular ingredients of each application, including the

use of incomplete preference lists, the existence of ties, etc.

Given the dynamic nature of many applications, there is an in-

creasing interest on matching-related problems in the setting of

dynamic graph algorithms where vertices or edges arrive or leave

over time. A first work in this direction was proposed by Khuler et

al. [19] who considered the online stable marriage problem, where

one is interested in the minimization of the number of blocking

pairs. More recently, some studies are concerned with scenarios

closely related to stable matchings, namely rank-maximal or (near)

popular matchings [5], [15], [24]. Biro et al., in [6], studied the dy-

namics of stable marriage and stable roommates markets. Another

interesting work in this setting is the one by Kanade, Leonardos and

Magniez [18] who considered a setting where at each step, two ran-

dom adjacent participants in some preference list are swapped and

studied the problem of maintaining a matching while minimizing

the number of blocking pairs.

A series of recent works tackle the situation where one wants to

maintain stability of matchings when data evolves, while trying to

minimize the modifications made in the matchings, as modifying

pairs are usually highly non desirable in many applications:

• In [12], [13], [14], Genc et al. study the notion of robustness in

stablematching problems by introducing (𝑎, 𝑏)-supermatches.

An (𝑎, 𝑏)-supermatch is a stable matching such that: if 𝑎 pairs

break up, a new stable matching can be found by changing

the partners of these 𝑎 pairs and at most 𝑏 other pairs. They

also define the most robust stable matching as one that re-

quires the minimum number of repairs (i.e., minimizes 𝑏)

among all stable matchings.

• In [9], Chen et al. study the concepts of robustness where a

matching must be stable even if the agents slightly change

their preferences, and near stability where a matching must

become stable if the agents slightly adjust their preferences.

• In [8], Bredereck et al. study a 2-stage incremental version

of the stable matching problem in terms of parametererized

complexity. More precisely, one is given: a preference profile

P1 for stage one, a preference profile P2 for stage two, a

stable matching 𝑀1 for profile P1 and a nonegative integer

𝑘 . The question is whether there is a stable matching for
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stage two, 𝑀2, whose distance from 𝑀1 is smaller than or

equal to 𝑘 . They also study the incremental version of the

stable roommates problem. They perform a parameterized

complexity analysis for both problems with respect to the

"degree of change" both in the input (preference profiles)

and the output (stable matchings).

• In [10], Gajulapalli et al. considered stable assignment in dif-

ferent settings of the school choice problem. As in the previ-

ous work, they consider a 2-stage problem, but here only the

instance 𝐼1 is known at stage one. The instance 𝐼2 becomes

available only at stage two. The authors consider different

variants where given an optimal solution for the instance of

the first stage, they seek a stable assignment of students to

schools in two settings: In the first setting, it is disallowed

to reassign the school of any student matched in stage one,

and in the second setting the new stable assignment must

provably minimize the number of such reassignments.

2 SUMMARY OF CONTRIBUTIONS
This work lies in this line of research, combining stability require-

ments and low number of modifications in dynamic stable matching

problems. The main difference is that most of these works adopt

a reoptimization-like framework [7], where the first matching is
fixed and the question is how to modify it by respecting some given

constraints. In our case, we consider a 2-stage situation and we

want to compute in an online manner a pair of solutions, one for

each of the two stages, minimizing the number of modifications

between the first and the second stable matchings. Then, our main

problem is how to choose the first stable matching without know-

ing the future so as to minimize the number of modifications in

a 2-stage setting. Our approach is hence inspired by a new trend,

the online multistage optimization framework [16], [4] and it is

closely related to the 2-stage approach followed in [20] where a

two-stage matching problem is considered in which the edges of

the graph are revealed in two stages. Furthermore, we note that

several admission procedures do use two-rounds (or multi-round

procedures), for instance this is the case for national college ad-

missions in Sweden, in Turkey, (previously) in France, or for high

school admissions in New-York city (see [2], [17] and references

therein).

Here, we focus on a 2-stage problem, motivated by the following

situation: consider a system where students shall be assigned to

universities. There is a first stage where some students apply, and

a first (stable) matching 𝑀1 has to be computed. However, some

students may decide to leave the system (change their plan, go

to a foreign university, or to some institution not in the system).

Alternatively, some universities may decide to increase their capac-

ities, if they receive a high number of demands. Then, in a second

stage (after these deletions of students, or with these additional

capacities), we shall compute a second stable matching 𝑀2. The

goal is to minimize the number of divorces/modifications between

the two stable matchings𝑀1 and𝑀2. Then, how should we choose

𝑀1 and𝑀2?

Let us formally define the problems we are looking at. We first

consider the case without capacities (i.e., the classical stable match-

ing framework). In the problem 2-LA-SMP (for 2-stage men-leaving

women-arriving stable matching problem), we are given:

• Two sets 𝑈1,𝑈2 of men, two sets𝑊1,𝑊2 of women, with

𝑈1 ⊇ 𝑈2 and𝑊1 ⊆𝑊2.

• Each man in (resp. woman) gives his (her) preferences (total

ranking) over the corresponding set of women (resp. men).

The goal is to compute two matchings (𝑀1, 𝑀2) such that:

• 𝑀1 is stable for (𝑈1,𝑊1) and𝑀2 is stable for (𝑈2,𝑊2).
• The number of divorces |𝑀1 \𝑀2 | is minimized.

We are interested in the online version of the problem where we

have to compute 𝑀1 at stage 1 while having no knowledge about

𝑈2,𝑊2. In other words, at stage 1, we only know 𝑈1,𝑊1, and the

preferences between men in 𝑈1 and women in𝑊1. We note that

these preferences between 𝑈1 and𝑊1 do not change between the

two stages. Our main result is the following theorem.

Theorem 2.1. There is an optimal on-line algorithm for 2-LA-SMP.

The main tool to prove this theorem is a dominance property,

from which we deduce that choosing the men-optimal stable match-

ing in the first stage is a dominant strategy. In other words, this

is an optimal choice that we can make without knowing who will

leave/enter the system in the second stage. Once this optimal choice

is made in the first stage, the computation of 𝑀2 boils down to

solving a weighted stable matching problem, which can be done

efficiently [21]. We notice that our optimal on-line algorithm is

polynomial time.

We also show that this theorem generalizes to the more general

college-admission case. This corresponds to the motivating exam-

ple where, between stages one and two, some students may leave

the system and some universities may have extra capacities. On

the other hand, we note that when more modifications are allowed

between the two stages (for instance both men and women may

enter the system), then there does not exist optimal on-line algo-

rithms anymore (and even no competitive on-line algorithms with

constant ratios).

We finally tackle the case of more stages, showing that no com-

petitive (online) algorithm exists for the considered problem as

soon as there are 3 stages.

3 FUTUREWORKS.
We showed that the considered 2-stage stable matching problems

admit an optimal online algorithm. While such an optimal online

algorithm does not exist for more than 2 stages in the considered

model, studying stable matching problems on more stages seems

to be an interesting research direction. For instance, we can think

of using randomized online algorithms to reach (asymptotic) com-

petitive ratios, or make further assumptions on the model – for

instance in several online matching problems people arrive one by

one in the game. The study of the off-line problem could be also

of interest, as well as extensions of the results to a more general

preference model (with ties, incomplete preferences,. . . ).
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