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ABSTRACT
Power grids with high amounts of renewable energy resources
must cope with high amplitude, fast timescale variations in power
generation. Frequency regulation through demand response has the
potential to coordinate temporally flexible loads, such as air condi-
tioners, to counteract these variations. We propose a decentralized
agent trained with multi-agent proximal policy optimization with
localized communication. We explore two communication frame-
works: hand-engineered, or learned through targeted multi-agent
communication. The resulting policies perform well and robustly
for frequency regulation, and scale seamlessly to arbitrary numbers
of houses for constant processing times.
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1 INTRODUCTION
Renewable energy sources such as wind turbines and solar pan-
els are subject to short-term, high-amplitude variations, referred
to as intermittency. These creates major challenges when manag-
ing the balance between power generation and consumption [12].
At the second timescale, this balancing task is referred to as fre-
quency regulation [3, 23]. The demand response approach [22]
aims at adjusting the power demand to meet the supply by co-
ordinating flexible loads temporally [23]. Air conditioners (ACs)
are ideal candidates as they represent a significant part of global
power consumption. [1, 6]. In this paper, we focus on the task of
fast timescale demand response for frequency regulation using res-
idential ACs. ACs are discretely powered and subject to hardware
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dynamic constraints such as lockout: once turned off, they must
wait some time before being allowed to turn back on to protect the
compressor. The agents must cope with uncertainty in the future reg-
ulation signal, be scalable to provide enough power flexibility, and
decentralized with localized communications for implementation
considerations. Finally, the decisions must be made in a few seconds.
These constraints impede the deployment of classical methods. On-
line Optimization (OO) [13, 14, 29] cannot cope with long-term
constraints. Model Predictive Control (MPC) [10, 16, 17, 19, 26]
struggles when scaling with the number of agents [7, 10, 15]. We
instead tackle this problem with multi-agent reinforcement learn-
ing (MARL) to learn decentralized and scalable policies. Our best
agents are trained with Multi-Agent Proximal Policy Optimization
(MA-PPO) [28] through Centralized Training, Decentralized Execu-
tion (CT-DE) [11]. Hand-engineered and learned targeted [8] local
communication frameworks are tested – and both outperform the
baselines. MARL has been used on longer time scale demand re-
sponse problems [2, 20, 27] and environments have been developed
accordingly [4, 24, 25]. To the best of our knowledge, this is the
first usage of MARL for scalable, high frequency demand response
using flexible binary loads such as ACs with lockout. Our main
contributions are:

• an open source, multi-agent Gym [5] environment1 simulat-
ing the real-world problem of frequency regulation through
demand response at the second timescale.

• two decentralized MA-PPO agents1 with different communi-
cation strategies, both outperforming baselines.

• an in-depth analysis of the dynamics, communications, scal-
ability and robustness of the trained agents.

2 PROBLEM FORMULATION
The environment can be described as a decentralized, partially ob-
servable Markov decision process (Dec-POMDP). We simulate its
dynamics as an aggregation of 𝑁 houses, each equipped with a sin-
gle air conditioning (AC) unit controlled by an agent. The thermal
dynamics of every house are simulated using a second-order model
based on Gridlab-D’s Residential module user’s guide [9]. The reg-
ulation signal, which is the desired aggregated consumption of the
ACs, is simulated as the sum of (1) a base signal which covers the
1The code is available: https://github.com/ALLabMTL/MARL_for_fast_timescale_DR.
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Table 1: Performance of the different agents, computed over 10 environment seeds.

𝑁de = 10 𝑁de = 50 𝑁de = 250 𝑁de = 1000
Per-agent RMSE Signal (W) Max T. (°C) Signal (W) Max T. (°C) Signal (W) Max T. (°C) Signal (W) Max T. (°C)

Greedy 2668 ± 14 0.93 3166 ± 12 1.15 3313 ± 12 1.22 3369 ± 15 1.24
BBC 830 ± 207 0.09 426 ± 63 0.10 318 ± 7 0.10 296 ± 4 0.10
MPC 344 ± 96 0.12 - - - - - -

MA-DQN 541 ± 86 0.09 321 ± 24 0.10 246 ± 8 0.11 234 ± 4 0.12
MA-PPO-HE 253 ± 1 0.08 161 ± 8 0.08 127 ± 2 0.11 122 ± 3 0.13
TarMAC-PPO 247 ± 3 0.07 158 ± 2 0.09 115 ± 1 0.13 101 ± 2 0.14

Figure 1: Both MA-PPO policies scale seamlessly in the number of agents: signal and consumption on 800s for 𝑁de = 50 and 1000.

needs in energy for each house to maintain an acceptable tempera-
ture and (2) a 0-mean Perlin noise simulating the high-frequency
variations. Agents observe the indoor and outdoor temperatures,
the state of the AC and its lockout time, and the current per-agent
signal and total consumption of the aggregation. They act by turn-
ing the AC ON or OFF, constrained by a lockout to protect the
compressor. In addition, agents can communicate. To keep the
implementation decentralized and flexible, each agent can only ex-
change information with a number 𝑁𝑐 of neighbours. The reward
for each agent is the weighted sum of squared penalties due to (1)
the house’s air temperature being different from the target, which
is unique to the agent, and to (2) the consumption signal tracking,
which is common across all agents.

3 AGENTS
Two types of MARL agents were trained on this environment using
the CT-DE paradigm. MA-DQN, based on the Deep Q-Network [18]
algorithm, and MA-PPO [28], based on PPO [21]. We implemented
two variations for communications between agents: in the hand-
engineered (HE) version, applied to MA-DQN and MA-PPO, the
agents send a predetermined part of their observations as the mes-
sages to their neighbours. These messages are concatenated with
the receiver’s own observations as the input to the policy, fixing
the number of houses an agent communicates with. We also imple-
mented a MA-PPO version of TarMAC [8], where message contents
are learned and the received messages are aggregated based on an
attention mechanism. This allows a more flexibility as per the num-
ber of houses each agent communicates with. We compare their
performance with a bang-bang controller (BBC) for temperature
and classical and centralized baselines such as a greedy myopic
knapsack solver and a model predictive controller (MPC).

4 RESULTS AND ANALYSIS
Wedeploy the agents on a benchmark environment with𝑁de houses
on trajectories of 43200 steps of 4 seconds. We measure the per-
agent root mean square error (RMSE) between the regulation signal

𝑠𝑡 and aggregated power consumption 𝑃𝑡 and the temperature RM-
SEs of the maximal temperature error of the aggregation. Table 1
shows the performance of different agents in environments with
and without lockout with 𝑁de of 10, 50, 250 and 1000 houses. BBC
tracks the temperature but not the signal. Greedy myopic fails: it
does not plan for the lockout and runs out of available agents. MPC
gives good results for 10 agents, but could not be run on 𝑁de = 50
for computing time reasons. DQN controls the temperature well
but is only slightly better than BBC on the signal. The PPO agents
show significantly better performance. Both scale gracefully with
the number of agents, but TarMAC-PPO outperforms MA-PPO-HE
at high 𝑁de. Figure 1 shows the consumption and signal over 800
seconds for both agents deployed over 𝑁𝑑 = 50 and 1000 over
800 seconds. For 𝑁𝑑 = 50, they do not perfectly match the signal.
However, the same agents do better on 1000 houses. Indeed, as
the environment is homogeneous, local errors average out when
scaling. We remarked that MA-PPO-HE learned cyclic coordination
patterns through their fixed message structure, while such patterns
were absent from TarMAC-PPO. Further experiments showed that
the best performing PPO agents were trained on environments
with 𝑁tr = 10 houses, as training with more agents makes credit
assignment harder. We also observed that communicating with
only 9 neighbours often leads to the best performance. We fur-
ther show that TarMAC-PPO is robust to faulty communications,
heterogeneous houses and ACs, and environmental shifts.

5 CONCLUSION
In this work, we tackle the problem of high-frequency regulation
with demand response by controlling discrete and dynamically
constrained residential loads equipped with air conditioners with
a decentralized, real-time agent trained by MA-PPO with hand-
engineered messages or learned targeted communication. The poli-
cies perform significantly better than baselines, scale seamlessly to
large numbers of houses, and are robust to most disturbances. Our
results show that MARL can be used successfully to solve some of
the complex multi-agent problems induced by the integration of
renewable energy in electrical power grids.
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