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ABSTRACT

Distributed multiagent patrolling strategies that learn idleness es-
timators are improved by using the estimator output in a random
decision-making process and activating interaction.
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1 INTRODUCTION

Dismissing centralisation and complexity to acquire flexibility and
robustness, for the problem of patrolling with several vehicles, can
be achieved by learning decentralised strategies from centralised
strategies. The work presented here contributes to Idleness Estima-
tor (IE) strategies [8] by a non deterministic use of idleness estimates
and a communication scheme for exchange of information between
agents. Section 2 describes MultiAgent Patrolling (MAP). In Section
3, a method for processing idleness estimates and an interaction
scheme are presented. Section 4 is devoted to the assessment and
Section 5 concludes and outlines perspectives.

2 BACKGROUND AND RELATED WORKS

MAP aims, for a set of agents A, at checking places as often as
possible and is based on a graph G = (V, E), where V = {1,..., N}
is the set of nodes and E the set of edges with travel times [3—
7,13, 15]. For a node v at time ¢ there is a difference between i (1),
the individual idleness for the agent g, i.e. the time elapsed since its
latest visit, and iy (t), the true idleness, i.e. the time elapsed since the
last visit of any agent. Strategies may be assessed using normalized
Idleness average (Iav) and Worst Idleness (WI) [6].

Conscientious Reactive (CR) agents choose the next node in
their neighbourhood selecting that with the largest individual idle-
ness [6]. The Heuristic Pathfinder Cognitive Coordinated (HPCC)
strategy centralises the individual idleness of all agents and com-
putes the true idleness. Agents weight idleness and travel time
by respectively by r € [0,1] and 1 — r, select a target node using
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the Heuristic method and compute a path to this node using the
Pathfinder method [1, 2, 12].

Using HPCC sequences of individual and true idleness and min-
imising the Mean Square Error (MSE) with respect to parameters ©,
IE learns offline models m(., .): the mean, me, a linear model, le, and
an MLP with one ReLU layer, re. Online, at time ¢, the agent a pro-
vides its vector of individual idleness i%(t) = (i{ (?), ..., i3 (t)) to the
estimator, which, after applying i%(t) = min(max(m(i%(t), ©),0),
i%(t)) returns an estimated vector of true idleness i%(t) = (f{‘(t), e
f]‘i,(t)) that is used by the Heuristic and Pathfinder methods [8].

Another strategy selects the next node by random drawing in
a probability distribution over the nodes generated by a neural
network trained from node sequences of HPCC [9-11]. Networks,
noted L-H, have an input of size N coding the current node, a width
H, L LSTM layers, and an N-dimensional softmax layer. For the
RAMPAGER strategy the pretraining stage, performed by learning
the edges in E, is substituted by an analytical initialisation procedure
with respect to G [10].

3 IMPROVED IDLENESS ESTIMATORS

IE strategies are deterministic while node predictors are not. Be-
cause agents applying a deterministic individual strategy with no
preassigned role would make the same decision while taking differ-
ent decisions is more efficient, the decision process proposed here is
random. This approach is at the opposite of the search of a conver-
gence to a consensus [14]. The entropy of idleness used by agents
to make decision is increased by adding a step to their decision pro-
cess: for each node v € V at time t, any Random Idleness Estimator
(RIE) agent a € A, after making an estimate of the global idleness
i%(t), considers this estimate as a mean m of a r.v. I supported in
I =H0,1,...,i%(t) = i}. The input for the Heuristic and Pathfinder
methods is sampled in the distribution (po,. .., p;) with Vk € I,
Pk = P(I = k). Aiming at finding the less specific distribution with
the specified mean, the entropy optimisation problem to solve is:

max (—Z;Dk 10g(Pk))
pi}

{po.p1s---s
k=0
(1)

i i
st Zpkzl kakzm Vk € [10,i]],px = 0
k=0 k=0

Generally it leads to solve high degree polynomials and solution is
approximated by:

1
. =— ifm=—-,
Pk 2

i+1 )
o pp=abk, whereb= (™ anda= 2L ifm < -
px=ab”, whereb=m anda = {757, 1 m<2,
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Figure 1: Normalised WI, averaged over 100 runs, on Islands.
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o pr=ab’F where b’ = andazlib—,li;],1fm>5.

Interaction is introduced in RIE, leading to Interacting Random
Idleness Estimator (IRIE). The shared idleness of the node v for the
agent a corresponds to the minimum individual idleness of v among
its own and those the agent has received from other agents. Let,
it4(t) = (i7%(1), ... ,iy'(t)) be its shared idleness. At the begin-
ning of the run it4(0) = i%(0). At each time step it is incremented
or reset in the same way than individual idleness. When, at time
t, a and a’ are in range they are able to communicate and subject
to a relation Ry, i.e. aRya’. Pairs of agents which are not directly in
range can communicate via intermediate agents. This corresponds
to T; the transitive closure of R;. At t, for agentsa,b € A:aT; b, a
and b will be able to interact. Each agent a € A apply the following
rule to update its vector of shared idleness i*?(t):

if 3n € [|1,|A] = 1|] : aT;ay, ... ,aTtay, then
2
ig?(t) — min(if® (1), iy™ (1), iy (1), ..., iy (1)) @

i%(1) is used to estimate i%(¢) but, with respect to the stochastic
approach, i = i}%(t).

4 NUMERICAL EXPERIMENTS

Strategies are assessed using a MAP software!: Pytrol, a simulator,
MAPTrainer, to train models and, MAPTor, an annex tool. Experi-
ments are performed with benchmark graphs, Island, A and Grid
[2, 3,5, 6, 8-12, 16], traveled by 5, 10, 15 and 25 agents applying
HPCC with r = 0.5, CR, RAMPAGER, RIE and IRIE with r set to 0.2
and 0.5 for both. Each simulation is executed for 3000 steps and the
WI and Iav are computed. For RAMPAGER, models already trained
on a database [10] are used. For RIE and IRIE models are trained
on the same database on i%(t) and true idleness fields. In terms of
validation MSE, re and le are the best models with 7120 against
7901 for me and high values confirm what has been reported: the
data does not represent a function [8].

On Islands, Figure 1 shows that on the WI IRIE outperforms CR.
For the Iav, machine learning strategies are better than CR and
IRIE is better than RAMPAGER which outperforms RIE. On A IRIE
is better than CR and RAMPAGER and IRIE are outperformed by
RIE on the Iav, as well as on the WI for RAMPAGER, see Figure
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Figure 2: Normalised WI, averaged over 100 runs, on A.
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Figure 3: Normalised WI, averaged over 100 runs, on Grid.

2. On Grid, results, shown in Figure 3 for WI, indicate that IRIE
is better than RIE which is better than RAMPAGER. Whatever
the graph strategies showing the best performance are HPCC and
IRIE 0.2 and strategies showing the worst performance are RIE 0.5
and CR. HPCC is the best strategy because it is not distributed
and results highlight importance of communication: IRIE 0.2 is the
best distributed strategy and IRIE is better than CR. Distributed
strategies present better performance with r = 0.2 than with 0.5: a
lower weight for an unreliable idleness brings benefits. The best
model for idleness estimation is me in 52 cases, le in 30 cases cases,
and re in 14 cases. RIE has better performance than RAMPAGER
and CR for respectively 62% and 67% of scenarios. There is no
relation between training and simulation performances.

5 CONCLUSION

RIE outperforms RAMPAGER and IRIE hinge upon opportunistic
communication and interaction between agents and outperforms
RIE. The mean, as idleness estimator, is the best statistical model,
highlighting that the contribution of neural networks for idleness
estimator is small. Directions for future work are optimization of
the evaluation criterion, exchange of intent, explicit estimation of
an order on nodes or a parameter of a distribution, assessment of
an estimator built for a given number of agents in a situation where
this number is different, and training of an estimator for a range of
number of agents.
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