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ABSTRACT
Human-robot interaction (HRI) is progressively addressing multi-
party scenarios, where a robot interacts with more than one human
user at the same time. Conversely, research in this area is still at an
early stage for human-robot collaboration (HRC). The intervention
of a robot in human collaboration could be helpful to handle mutual
disturbances of workers operating at the same time on the same
target object. Therefore, this work outlines design methodologies
of non-dyadic human-robot collaborations to address concurrent
human-human tasks in manufacturing applications. After this, pre-
liminary results regarding a robotic agent’s high-level understand-
ing of such scenarios realised through a variational autoencoder
trained by means of transfer learning are shown.
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1 INTRODUCTION
Human-robot interaction research is constantly progressing [1].
Researchers are increasingly addressing scenarios that go beyond
the more commonly explored dyadic interaction between a human
and a robot [6, 10]. There are works in HRI regarding non-dyadic
interactions [12], but they are still outnumbered by the plethora
of works related to dyadic HRI. Furthermore, fewer works tackle a
human-robot collaboration application in a multi-party scenario
(see Figure 1) [11, 12, 20], making this a promising field for scientific
investigation. Therefore, this work outlines a collaborative scenario
in which the robot works jointly with two human users who per-
form concurrent tasks. After having contextualised this type of
tasks, a case scenario in manufacturing applications is described.
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Figure 1: A collaborative robot is assisting two human users
working concurrently on a manufacturing object (adapted
from [9]).

Besides, by adopting a high-level understanding model of an
intelligent agent in such a scenario by means of deep learning
models [15], this work demonstrates that it is possible to train such
models by using datapoints related to single users to be able to
make inference about pairs of users present in the scene at the
same time.

2 DESIGN OF NON-DYADIC HRC FOR
CONCURRENT TASKS

In collaborative tasks, two agents cooperate to achieve a common
goal. There are different possible ways in which this collabora-
tion can unfold. In turn-taking collaborations, the agents mutually
switch between activity and inactivity while working in the shared
workspace (e.g., collaborative assembly) [16]. In joint tasks, they
must act at the same time, due to the constraints of the task itself
(e.g., joint load lifting) [8]. However, there are concurrent tasks in
which the two agents need to complete a common goal together,
but jointly performing different operations, consequently causing
mutual disturbances (e.g., tactical vehicle control) [7].

The collaborations described so far consider only two agents in
the scene. The inclusion of a third agent is justified if it performs a
role that differs from that of the others. If it acts as an entity with
its own sub-task towards the same common goal, thus interfering
with the other agents, it could be collapsed into one of the agents
[19]. Indeed, in this case, from the perception of one of the agents,
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it could be considered as a component of its counterpart in the
collaboration. A third agent could, instead, perform the role of a
mediator in the collaboration. Through its intervention in the scene,
it would not act on the final goal directly; rather, it would indirectly
assist in the collaboration by mitigating the disturbances the two
working agents may cause to each other, to improve their joint
performance. The other agents would both perceive the third one
not as an extension of the counterpart, but as a different standalone
agent that supports their actions. This case is the one considered in
this work and is further described below in concurrent tasks related
to a manufacturing scenario, without excluding other potential
applications, such as social robotic interactions [2, 3, 14].

In some production chains, one worker at a time works on the
object of manufacturing. Therefore, the productivity of the process
would be enhanced by enabling two workers to perform manufac-
turing operations on a target object at the same time. However, by
doing so, there is a chance that workers may interfere with each
other while performing operations on the object (e.g., by changing
the position and orientation of the object to have it in an optimal
configuration for the operation to perform). To simplify this rather
challenging scenario, in terms of cognitive load for the workers,
a robot (e.g., a robotic manipulator endowed with vision sensors)
could act as an intermediary between the two users (see Figure 1).
In this way, the workers do not need to interact with each other
while working, as queries regarding the state of the target object
(e.g., rearrangement of object’s orientation) can be handled by the
robot (see Figure 2) [11]. Because of this, team collaboration is re-
placed by the robot’s mediation and the interaction and consequent
disturbances between the users are reduced [11].

Figure 2: Concurrent non-dyadic human-robot collaboration.
Left: Representation in terms ofmultiplicity [19]. Right: Rep-
resentation of the roles of humans and robot, in relation to
the task and each other [17]. Here, we consider the humans
with an active role, while the robot with an adaptive one.

To pinpoint which type of activities would be crucial to recog-
nise in such a scene, it is important to further delineate the role
of the robot in the collaboration. More precisely, it needs to know
how to handle resources of the setup (e.g., object of manufacturing)
between the two users. Additionally, the robot needs to understand
which user requires its attention. When the users are both working
on the target object, the robot needs to address requirements from
both of them. When one of them finishes a sub-step of the manu-
facturing and gets ready for the next one, the robot can shift all its
resources to the user who is currently working and improve their
performance. Finally, a user can query the robot’s attention through

a signal (e.g., specific hand gesture) for the robot to be aware that
resources must be reallocated. The description of the unfolding of
this collaboration allows us to depict three main activities the robot
needs to detect from a single user:

• working on the object of manufacturing;
• preparing for the next task;
• requesting a reallocation of resources from the robot.

Consequently, in the described scenario, a robotic agent should be
sensitive to 9 possible cases, related to the possible pairings of the
3 states related to a single user.

3 EXPERIMENTS AND RESULTS
Based upon the case scenario previously described (see Section 2),
the possibility of using data recordings related to single subjects to
then infer a group activity in this type of scenarios was investigated
[13]. Sequences of 3D skeletal poses of single participants perform-
ing the three aforementioned states were collected and paired in
post-processing. This was done to obtain a training dataset that was
relatable to the actual situation of having two people performing
joint activities in the scene at the same time. This dataset was used

Figure 3: Comparison between supervised and transfer learn-
ing during the testing phase.

to train a variational autoencoder (VAE) [4, 5], with spatio-temporal
graph convolutional networks (STGCNs) [18] in the encoder, to
recognise the nine group activities previously mentioned (see Sec-
tion 2) by means of transfer learning. Specifically, the VAE was
exposed to the training data in an unsupervised way, and then its
STGCN layers were appended to a softmax layer to produce the
output label [13]. This approach was compared against directly
training the same STGCN layers in a supervised way.

The strategy based on transfer learning led to better and more
stable accuracy than training the layers on their own (mean: 0.511
and SD: 0.361 for the supervised learning, mean: 0.864 and SD: 0.11
for the transfer learning, see Figure 3). Similarly to this, testing re-
sults with datapoints coming from a related multi-user scenario [13]
are consistent (mean: 0.337 and SD: 0.0916 for supervised learning,
mean: 0.616 and SD: 0.0288 for transfer learning).

Future works regarding this topic are further testing of the pro-
posed inference methodology with different types of deep neural
networks and the realisation of an experimental validation in which
a robot uses such inference system to handle concurrent tasks be-
tween two human users.
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