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ABSTRACT
We formalize the problem of multi-agent path finding with time
windows (MAPF-TW). The optimization objective is to maximize
the average customer satisfaction for all agents when they reach
their respective goal vertices without path conflicts. We first prove
that solving MAPF-TW optimally is NP-hard. We then reduce the
MAPF-TW problem into a multi-commodity flow problem and pro-
pose an integer linear programming (ILP) model. Next, we propose
the conflict-based search with time windows (CBS-TW) for the
MAPF-TW problem, which is also optimal. Finally, we conduct sim-
ulation experiments on two different maps with random obstacles.
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1 INTRODUCTION
Multi-agent path finding (MAPF) studies how to find paths without
collision for multiple agents [2]. MAPF has attracted significant
attention because of its widely practical applications in automated
systems, such as automated warehouses [13], and automatic aircraft
trailers [4]. Solving MAPF optimally is NP-hard[16]. Many critical
results are reported on this topic, such as optimal [6–8], bounded
sub-optimal [1, 10], and unbounded sub-optimal [3, 9, 14, 15] algo-
rithms.

Sometimes agents need to complete some tasks with time con-
straints. Several studies have explored the effect of task time con-
straints on MAPF. MAPF-DL [5] maximizes the number of agents
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that can reach their given goal vertices within the deadline. MAPF-
DT [12] proposes some due time-related objectives, which reflect
the degree of deadline violations. In many practical scenarios, such
as takeaway and delivery, the customer is satisfied only when the
agent completes a task within the time window. However, the previ-
ous studies do not focus on how to meet the time window. We thus
formalize the multi-agent path finding with time windows (MAPF-
TW) to maximize the average customer satisfaction without path
conflicts. We first prove solving MAPF-TW optimally is NP-hard.
Then the MAPF-TW problem is reduced into a multi-commodity
flow problem, and an integer linear programming (ILP) model is
proposed. Next, we propose the conflict-based search with time
windows (CBS-TW), whose cost is the customer satisfaction.

Figure 1: An illustration of time window.

2 PROBLEM DEFINITION
The input of MAPF-TW consists of a undirected graph 𝐺 (𝑉 , 𝐸),
agent set 𝑅 and time window set 𝑇 (𝑇 ⊂ R+). 𝑉 and 𝐸 in graph
𝐺 are the vertex and edge set respectively. Agent set {𝑎1, ..., 𝑎𝑛}
includes 𝑛 agents moving on graph 𝐺 . Every agent 𝑎𝑖 has a start
vertex, 𝑠𝑖 ∈ 𝑉 and a goal vertex, 𝑔𝑖 ∈ 𝑉 . Time is assumed to be
discreted. Agent 𝑎𝑖 is located in vertix 𝑣 at time 𝑡 and move to
an adjacent unblocked vertex 𝑣 ′ that meet (𝑣, 𝑣 ′) ∈ 𝐸 or stays in
current vertex 𝑣 in the next time 𝑡 + 1. The path 𝜋𝑖 of agent 𝑎𝑖 can
be represented by a sequence of vertices 𝜋𝑖 =

(
𝑣1
𝑖
, 𝑣2
𝑖
, ..., 𝑣𝑡

𝑖

)
, where

𝑣𝑡
𝑖
∈ 𝑉 . Vertex conflict

(
𝑎𝑖 , 𝑎 𝑗 , 𝑣, 𝑡

)
and edge conflict

(
𝑎𝑖 , 𝑎 𝑗 , 𝑣, 𝑣

′, 𝑡
)

represent the path collisions. The solution 𝜋 = (𝜋1, 𝜋2, ..., 𝜋𝑛) is
a set of feasible conflict-free paths. As shown in Fig. 1, the time
window 𝑇𝑊𝑖 of agent 𝑎𝑖 is composed of two elements, the early
time 𝑒𝑡𝑖 and the last service time 𝑙𝑡𝑖 . Customer satisfaction (CS) is
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equal to 1 when agent 𝑎𝑖 reaches the goal vertex before 𝑒𝑡𝑖 . When
agent 𝑎𝑖 reaches after 𝑙𝑡𝑖 , customer satisfaction is equal to 0. When
agent𝑎𝑖 reaches between 𝑒𝑡𝑖 and 𝑙𝑡𝑖 , customer satisfaction decreases
linearly from 1 to 0. The objective of MAPF-TW is to maximize the
average customer satisfaction 𝐶𝑆 or minimize its negative value.

It is NP-hard to solve MAPF-TW optimally with the maximum
average customer satisfaction 𝐶𝑆 . The NP-complete 3-SAT prob-
lem [11] can be reduced to the MAPF-TW problem, which implies
solving MAPF-TW optimally is also NP-hard.

3 ILP-BASED MAPF-TWMODEL
We first translate the MAPF-TW problem into the minimum cost
maximummulti-flow problem on a time-expanded networkG {V, E}.
Then we propose an ILP model for the MAPF-TW problem that is
adapted from the model of MAPF-DT [12]. 𝑇 is the time horizon of
the time-expanded network. If agent 𝑎𝑖 goes through 𝑒 𝑗 ∈ E, then
the decision variable 𝑥𝑖, 𝑗 = 1; otherwise 𝑥𝑖, 𝑗 = 0. If agent 𝑎𝑖 reaches
the goal vertex at time 𝑡 , the decision variable 𝑦𝑡

𝑖
= 1; otherwise

𝑦𝑡
𝑖
= 0. If agent 𝑎𝑖 goes through 𝑒 𝑗 to reach the goal vertex at time

𝑡 , 𝑥𝑖, 𝑗 can be defined as 𝑥𝑡
𝑖
.

𝑛∑︁
𝑖=1

𝑥𝑖,𝑗 ≤ 1, ∀𝑒 𝑗 ∈ E (1)∑︁
𝑒𝑗 ∈𝛿+ (𝑣𝑡 )

𝑥𝑖,𝑗 −
∑︁

𝑒𝑗 ∈𝛿− (𝑣𝑡 )
𝑥𝑖,𝑗 = 0, ∀1 ≤ 𝑖 ≤ 𝑛, 𝑣𝑡 ∈ V\

{
S+, S−

} (2)

∑︁
𝑒𝑗 ∈𝛿− (𝑠𝑖 )

𝑥𝑖,𝑗 =
∑︁

𝑒𝑗 ∈𝛿+(𝑔𝑖 )
𝑥𝑖,𝑗 = 1, ∀1 ≤ 𝑖 ≤ 𝑛, 𝑠𝑖 ∈ S+, 𝑔𝑖 ∈ S− (3)

𝑛∑︁
𝑖=1

∑︁
𝑒𝑗 ∈𝛿− (𝑣𝑡 )

𝑥𝑖,𝑗 ≤ 1, ∀𝑣𝑡 ∈ V (4)

𝑛∑︁
𝑖=1

𝑥𝑖,(𝑢𝑡 ,𝑣𝑡+1 ) +
𝑛∑︁
𝑖=1

𝑥𝑖,(𝑣𝑡 ,𝑢𝑡+1 ) ≤ 1, ∀ (𝑢𝑡 , 𝑣𝑡+1 ) , (𝑣𝑡 ,𝑢𝑡+1 ) ∈ E (5)

𝑦𝑡𝑖 ≤ 𝑦𝑡+1𝑖 , 𝑦𝑡𝑖 ≤ 𝑥𝑡𝑖 , 𝑦
𝑡+1
𝑖 − 𝑦𝑡𝑖 + 𝑥

𝑡
𝑖 ≤ 1, ∀1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑡 ≤ 𝑇 − 1 (6)

𝑦𝑇𝑖 = 𝑥𝑇𝑖 , ∀1 ≤ 𝑖 ≤ 𝑛 (7)

We can use constraints (1)−(5) to generate feasible MAPF solu-
tion. Constraint (6) and constraint (7) represent the time constraint
and the relationship between 𝑥𝑇

𝑖
(𝑥𝑖, 𝑗 ) and 𝑦𝑇𝑖 respectively. We as-

sume that agents stay at their goal vertices after arrival. The arrival
time for agent 𝑎𝑖 can be expressed as 𝑇 −∑𝑇

𝑡=1 𝑦
𝑡
𝑖
. The customer

satisfaction 𝐶𝑆𝑖 of agent 𝑎𝑖 is:

𝐶𝑆𝑖 =


1, 𝑇 − ∑𝑇

𝑡=1 𝑦
𝑡
𝑖
⩽ 𝑒𝑡𝑖

𝑙𝑡𝑖 −(𝑇 −
∑𝑇
𝑡=1 𝑦

𝑡
𝑖
)

𝑙𝑡𝑖 −𝑒𝑡𝑖
, 𝑒𝑡𝑖 < 𝑇 − ∑𝑇

𝑡=1 𝑦
𝑡
𝑖
< 𝑙𝑡𝑖

0, 𝑙𝑡𝑖 ⩽ 𝑇 −
∑𝑇
𝑡=1 𝑦

𝑡
𝑖

(8)

We minimize the negative average customer satisfaction, which
can be expressed as:

min 𝐶𝑆 = −
∑𝑛
1 𝐶𝑆𝑖

𝑛
, (9)

where 𝑛 is the number of agents.

4 CBS-TW
In this section, we present an optimal MAPF-TW algorithm, CBS-
TW, which is based on CBS [7]. Algorithm 2 shows the high-level of
CBS-TW. At first, CBS-TW will check the root node to see whether

there are path conflicts in a path plan. If there are no path conflicts,
we get the optimal solution. Otherwise, based on the first path
conflict, we expand two new constraint tree (CT) nodes from the
root node and put them into the OPEN set. The root node is thrown
into the CLOSED set. Next time, we do a best-first search and choose
the CT node with the minimum cost from the OPEN set. If there
are path conflicts in the selected CT node, we continue to expand
until we find a CT node without path conflicts. On the low level,
CBS-TW performs 𝐴∗ to find the optimal path for a single agent
from its start vertex to its goal vertex with the constraints. Then
it returns the agent’s path cost −𝐶𝑆𝑖 , which is calculated by the
function (8) of the ILP model. Additionally, we prune all agents
with time step > 𝑙𝑡𝑖 .

Algorithm 1 High level of CBS-TW
Require: MAPF-TW instance
Ensure: Best path solution 𝜋 found so far
1: 𝑅𝑜𝑜𝑡 .𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 ← ⊘
2: 𝑅𝑜𝑜𝑡 .𝑝𝑙𝑎𝑛 ← find path for every agent by the low-level search
3: 𝑅𝑜𝑜𝑡 .𝑐𝑜𝑠𝑡 ← 0
4: OPEN set← {𝑅𝑜𝑜𝑡 }
5: while 𝑡𝑟𝑢𝑒 do
6: 𝑁 ← argmin𝑁 ∈OPEN set𝑁 .𝑐𝑜𝑠𝑡

7: OPEN set← OPEN set \ {𝑁 }
8: Check whether there is a path conflict in 𝑁 .𝑝𝑙𝑎𝑛

9: if 𝑁 .𝑝𝑙𝑎𝑛 has no path conflict then
10: Return 𝑁 .𝑝𝑙𝑎𝑛
11: end if
12: C← first path conflict

(
𝑎𝑖 , 𝑎 𝑗 , ...

)
in 𝑁 .𝑝𝑙𝑎𝑛

13: for 𝑎𝑖 in𝐶 do
14: 𝑁 ′ ← new CT node
15: 𝑁 ′ .𝑝𝑙𝑎𝑛 ← 𝑁 .𝑝𝑙𝑎𝑛

16: 𝑁 ′ .𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 ←𝑁 .𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠
⋃ {

𝑎𝑖 , 𝑎 𝑗 , ...
}

17: Update 𝑁 ′ .𝑝𝑙𝑎𝑛 by the low-level search for 𝑎𝑖
18: 𝑁 ′ .𝑐𝑜𝑠𝑡 ← average customer satisfaction in 𝑁 ′ .𝑝𝑙𝑎𝑛
19: OPEN← OPEN set

⋃ {𝑁 ′ }
20: end for
21: end while

5 SIMULATION EXPERIMENTS
In this section, we count the success rate (SR) of CBS-TW when
the number of agents changes from 10 to 70 on two different maps
through simulation experiments. We conduct all experiments on
a 3.00GHz Intel Core i7-9700 desktop computer with 32 GB RAM.
Experiments are done using python 3.7. We use the 4-neighbor 2D
random map of 32×32 and 128×128. The density of the obstacle
is 20%. Every test needs 50 instances. We randomly generate the
start vertices, goal vertices, and time windows with the different
numbers of agents for one instance. The limited running time is
set to be 60 seconds. The following table shows the SR of CBS-TW.
Since the agent density is high and the path conflicts are more in
the small map, CBS-TW takes more time to expand more CT nodes
to solve the path conflicts. While the agent density is low and the
number of path conflicts is smaller in the large map, CBS-TW has a
higher SR.

Table 1: The SR of CBS-TW in two different maps.

Metrics Map Number of agents
10 20 30 40 50 60 70

SR 32 100% 92% 42% 24% 2% 4% 0%
128 100% 100% 100% 98% 76% 72% 48%
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