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ABSTRACT

The options framework in Hierarchical Reinforcement Learning
breaks down overall goals into a combination of simpler tasks (op-
tions) and their policies, allowing for abstraction in the action space.
Ideally, options can be reused across different goals; indeed, this is
necessary to build a continual learning agent that can effectively
leverage its prior experience. Previous approaches allow limited
transfer of pre-learned options to new task settings. We propose a
novel option indexing approach to hierarchical learning (OI-HRL),
where we learn an affinity function between options and items
present in the environment. With OI-HRL, we effectively reuse a
large library of pre-trained options in zero-shot generalization at
test time by restricting goal-directed learning to relevant options
alone. We develop a meta-training loop that learns the representa-
tions of options and environments over a series of HRL problems
by incorporating feedback about the relevance of retrieved options
to the higher-level goal. Our model is competitive with oracular
baselines and substantially better than a baseline with the entire
option pool available for learning the hierarchical policy.

KEYWORDS

Hierarchical Reinforcement Learning; Option Indexing

ACM Reference Format:

Kushal Chauhan, Soumya Chatterjee, Akash Reddy, Aniruddha S, Balara-
man Ravindran, and Pradeep Shenoy. 2023. Matching Options to Tasks
using Option-Indexed Hierarchical Reinforcement Learning: Extended Ab-
stract. In Proc. of the 22nd International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2023), London, United Kingdom, May 29 —
June 2, 2023, IFAAMAS, 3 pages.

1 INTRODUCTION

Suppose an agent encounters a new task in a new environment.
Without prior experience, the agent will need to explore and in-
teract with the environment using primitive actions as it learns to
navigate and accomplish various goals. For the agent to effectively
use hierarchical reinforcement learning, it has to first partition the
overall task into appropriate subtasks, and then learn how to accom-
plish subtasks in an appropriate sequence. A naive search in such
combinatorial spaces can be computationally prohibitive. We focus
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on a continual learning agent that solves multiple related tasks in a
given domain, and leverages prior experience to accomplish new
tasks in an efficient manner. We propose using options (subtasks &
associated policies) as a repository of knowledge that is transferred
from prior tasks to the target task. While the problem of transfer,
using options in particular, and HRL in general, has been explored
in the past [2, 4, 5, 9], our proposed setting has not received much
attention in the literature: efficient retrieval of relevant options for
anew HRL task, from a large library of pre-learned options. This
capability is crucial in sparse reward settings where the hierarchical
policy can only afford to explore necessary parts of the search space;
including even a few irrelevant options can significantly impact
convergence rates or even task completion.

Our primary challenge is to determine relevant options for a
particular task without first solving the task itself. Our key insight is
that the state of the environment, and the actions enabled by items
in the environment [3, 7], provide substantial information about
what tasks are achievable. Based on this insight, we propose Option-
Indexed Hierarchical Reinforcement Learning (OI-HRL), which
solves new goals in a known domain by first fetching the relevant
options from the option library, then constructing a hierarchical
policy using the fetched options. Our proposal has three major ideas:
(1) an option representation based on the frequent cooccurrence of
option sets, (2) an affinity score between a given environment state
and the options relevant to goals achievable in that environment,
and (3) a meta-training loop, which learns this affinity score by
solving a series of related HRL tasks in a given problem domain.
We sketch the outline of our proposal & experiments here; for a
more detailed treatment, please consult the extended version [1].

2 APPROACH

Consider a kitchen with food items, utensils, and appliances. An
agent can accomplish goals such as picking up a bowl, picking
up an egg, picking up a pan, cracking an egg, cooking on a stove,
making an omelet, slicing apples, placing on a table, etc. We use
the term task to refer to the accomplishment of a specific end goal.
We distinguish tasks into two types: base tasks, which do not have
any dependencies, and composite tasks, which depend upon earlier
goals having been achieved first, in a specific order. We assume
the agent has access to a set of pre-trained option policies O =
{01,03,...0¢}, one for completing each base task.
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Figure 1: Mean reward vs A2C training iterations.

When an environment is initialized, a composite task t; is chosen,
and the environment is filled with the necessary items (and a few
random distractors). The chosen goal task is used to get a MDP
M, = (S, A, Ry, P) where S and A are the set of states and
actions, Ry, and P are the reward and transition functions. Here
the reward function is sparse, with the reward being non-zero only
when the task t; is completed. When encountering a new task, our
agent leverages its experience to retrieve the relevant options from
the option library. Subsequently, the agent learns an HRL policy
using only the retrieved options. If the retrieved set of options is
sufficient for accomplishing the goal, the HRL policy (eg. learned
by Advantage Actor Critic method [8]) will succeed in completing
the goal. Furthermore, the fewer extraneous options retrieved, the
faster the HRL policy can be learned.

For retrieving options, we learn an affinity/similarity measure
between options and the initial state of the environment. Based on
this affinity, we retrieve a subset of options from the base option
set 8. We maintain an index ¥ and a Query Generation Network
(QGN) N. The index ¥ c R< x O stores options O together with
a key vector ¥(0;) € R? for option O, ie. ¥ = {(¥(0;),0;)}.
The QGN generates a query q € R? based on objects initially
present in the environment (sp). This query is transformed using
pi = Softmax(qT¢(0;)) to produce a probabilistic ranking over
options, from which the top-p options are retrieved [6].
Meta-training: We iterate over sampled tasks t;. At each step an
MDP My, is created from the sampled task; the QGN and option in-
dices are used to select a subset of options O as described, alongside
retrieval probabilities p for all options. An HRL policy is learned
over options 19) using A2C [8], and used to sample a set of successful
trajectories A. We calculate y, the normalized frequencies of option
usage in A, and update the retrieval networks based on (y, p).

k
1
L(y.p) =7 D, vilog(p)
i=1

Indexing & retrieval: We propose two distinct ways of meta-
learning the parameters of the QGN N and option embeddings
¥(0;)— (1) Pretrained Index: We learn a co-occurrence-based rep-
resentation for each option using option sequences that the agent
encounters in the meta-training phase, and use them as the (fixed)
option indices ¥/(O;), (2) Learned Index: We meta-learn both the
parameters of the QGN N and option embeddings ¥/(O;) in an
end-to-end manner. In the former approach, we update N alone; in
the latter, we update both (N, ¥), in the meta-training loop.

Test-time adaptation: In some cases, options selected using OI-
HRL are not sufficient to complete the goal, and the HRL policy
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will necessarily fail to converge. However, the fetched set is still
represents a potentially better starting point than learning a pol-
icy from scratch. In order to further improve performance in this
scenario, the OI-HRL-Refine variant iteratively drops options that
are infrequently used in successful (reward-finding) training runs,
and, includes additional unchosen options from O after a number
of unsuccessful (incomplete) training runs, in the decreasing or-
der of the selection probability predicted by the QGN. We see that
this additional optimization further improves average reward rates,
through increased task completion rates on the test set.

3 EXPERIMENTS

We experiment on a number of diverse but interrelated food prepa-
ration tasks in AI2THOR, an interactive 3D environment where an
agent can navigate around and interact with a variety of objects. In
order to study the effect of selecting a subset of options, we compare
OI-HRL with the following baselines having varying number of
options made available to the HRL learner.

e HRL-N: HRL using the exact set of options required to com-
plete the task. This is an oracular upper bound on perfor-
mance for OI-HRL (uses privilaged information).

e HRL-N+K: like HRL-N but with k extra (irrelevant) options.

e HRL-FuLL: using the entire library of options O.

Figure 1 shows the mean reward obtained on a test task distri-
bution by the A2C policy as a function of training steps. As test
tasks widely vary in difficulty, we see substantial variance in mean
rewards, even for the oracular HRL-N skyline. Adding 10 irrelevant
options (HRL-N+10) causes a significant drop in asymptotic perfor-
mance, and subdued growth over the first 1M iterations. Adding 20
extra options (HRL-N+20) results in little to no learning, and is close
to the HRL-Full baseline. OI-HRL matches or exceeds the sample
efficiency of HRL-N+10 for the first 1M iterations and achieves
asymptotic performance comparable to HRL-N+10. Note that these
baselines are oracular in nature and make use of privileged infor-
mation, albeit with some added noise; in particular, task completion
and reward is theoretically guaranteed using these baselines. De-
spite the absence of guarantees, OI-HRL remains competitive with
these baselines. OI-HRL Refine improves the performance of OI-
HRL further, significantly covering the performance gap between
OI-HRL and the oracular HRL-N.

4 CONCLUSION

We presented OI-HRL, an option indexing approach towards large-
scale reuse of learned options in HRL, where only a small fraction
of options are relevant to the task at hand. We proposed a method
by which we can infer option relevance based on the state of the
environment and showed that these relevance or affinity scores
could be effectively learned over a distribution of tasks in a meta-
training framework. Our results show an exponential improvement
in average reward rates for OI-HRL compared to baselines that
include all available options, and relevant options plus some fixed
number of irrelevant options. While we do not address the question
of where the library of options comes from, it is natural to expect a
continual learning agent will acquire such a library of skills over
the course of its lifetime.
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