
DGPO: Discovering Multiple Strategies with Diversity-Guided
Policy Optimization

Extended Abstract

Wenze Chen
Tsinghua University

Beijing, China
cwz19@mails.tsinghua.edu.cn

Shiyu Huang
4Paradigm Inc.
Beijing, China

huangshiyu@4paradigm.com

Yuan Chiang
Tsinghua University

Beijing, China
yjennice2001@gmail.com

Ting Chen
Tsinghua University

Beijing, China
tingchen@tsinghua.edu.cn

Jun Zhu
Tsinghua University

Beijing, China
dcszj@tsinghua.edu.cn

ABSTRACT
Recent algorithms designed for reinforcement learning tasks focus
on finding a single optimal solution. However, in many practical
applications, it is important to develop reasonable agents with
diverse strategies. In this paper, we propose Diversity-Guided Policy
Optimization, an on-policy framework for discovering multiple
strategies for the same task. Our algorithm uses diversity objectives
to guide a latent code conditioned policy to learn a set of diverse
strategies in a single training procedure. Experimental results show
that our method efficiently finds diverse strategies in a wide variety
of reinforcement learning tasks. We further show that DGPO has
similar performance and achieves a higher diversity score or better
sample efficiency compared to other baselines.
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1 INTRODUCTION
Reinforcement learning (RL) has achieved human-level perfor-
mance in various tasks, e.g., video games [2, 4, 5, 11] and robot-
ics [8, 13]. However, RL algorithms are notorious for highly “over-
fitting” the given task, i.e., while there is a diverse set of quality
solutions for the given problem, RL algorithms can only obtain a
single optimal one. Finding a set of qualified diverse strategies is
crucial for a robust agent.

In this paper, we proposed Diversity-Guided Policy Optimization
(DGPO), an on-policy framework for discovering multiple strategies
for the same task. Our contributions are as follows: (1) We formalize
two constrained optimization problems to efficiently discover a
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set of optimal strategies. (2) We carefully designed a novel on-
policy algorithm, denoted as DGPO, that can find a diverse set of
quality strategies simultaneously. (3) We empirically show that our
method achieves competitive performance and has better diversity
or sample efficiency than other baselines on various benchmarks.

2 PRELIMINARY
Latent conditioned policy:We consider policy 𝜋𝜃 that is condi-
tioned on latent variable 𝑧 to model the diverse strategies, where
𝜃 is the parameter of the policy 𝜋 . We denote the latent condi-
tioned policy as 𝜋 (𝑎 |𝑠, 𝑧) and the latent conditioned critic network
as 𝑉 𝜋 (𝑠, 𝑧). A latent variable 𝑧 ∼ 𝑝 (𝑧) will be randomly sampled at
the beginning of every episode and policy 𝜋 will be used to sam-
ple a trajectory 𝜏𝑧 , with 𝑧 being fixed for the entire episode. The
latent variable 𝑧 is sampled from a categorical distribution with the
number of categories 𝑛𝑧 and 𝑝 (𝑧) is the uniform distribution.
Discounted state occupancy: The discounted state occupancy
measure of policy 𝜋 is defined as 𝜌𝜋 (𝑠) = (1 − 𝛾)∑∞

𝑡=0 𝛾
𝑡𝑃𝜋𝑡 (𝑠),

where 𝑃𝜋𝑡 (𝑠) is the probability that policy 𝜋 visits state 𝑠 at time 𝑡 .
The goal of the RL agent is to train a policy 𝜋 to maximize the accu-
mulated reward 𝐽 (𝜃 ) = E𝑧∼𝑝 (𝑧 ),𝑠∼𝜌𝜋 (𝑠 ),𝑎∼𝜋 ( · |𝑠,𝑧 ) [

∑
𝑡 𝛾
𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 )].

3 METHODOLOGY
We implement DGPO by developing a new variation of PPO [10].
Specifically, DGPO can be separated into two parts: diversity-constrained
optimization and extrinsic-reward-constrained optimization. In
diversity-constrained optimization, the policy maximizes 𝐽 (𝜃 )
only when its behaviors are sufficiently different from the existing
policy’s. Otherwise, it updates an intrinsic rewards-based objective
to encourage policies to behave differently. We introduce a novel
diversity metric to evaluate the diversity score of the given set of
policies as below:

DIV(𝜋𝜃 ) = E𝑧∼𝑝 (𝑧 ) [min
𝑧′≠𝑧

𝐷𝐾𝐿 (𝜌𝜋𝜃 (𝑠 |𝑧) | |𝜌𝜋𝜃 (𝑠 |𝑧′))]

≥ E𝑧∼𝑝 (𝑧 ),𝑠∼𝜌𝜋 (𝑠 )
[
min
𝑧′≠𝑧

log
𝑝 (𝑧 |𝑠)

𝑝 (𝑧 |𝑠) + 𝑝 (𝑧′ |𝑠)

]
.

(1)

A discriminator 𝑞𝜙 (𝑧 |𝑠𝑡 ) is trained in a supervised manner to ap-
proximate 𝑝 (𝑧 |𝑠), where 𝜙 is the parameter of the discriminator
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Figure 1: The overall framework of the DGPO algorithm. Top illustrates the way of calculating 𝑟𝑡𝑜𝑡𝑎𝑙𝑡 , where𝑚𝑎𝑠𝑘𝑟 = I[J(𝜋𝜃 ) ≥
𝑅𝑡𝑎𝑟𝑔𝑒𝑡 ] and𝑚𝑎𝑠𝑘𝑑 = I[DIV(𝜋𝜃 ) ≥ 𝛿]. Center shows the network structure and the data flow of the DGPO algorithm. Bottom
shows the latent variable sampling process.

network. We introduce the intrinsic reward based on learned dis-
criminator 𝑞𝜙 (𝑧 |𝑠) as below:

𝑟 𝑖𝑛𝑡 = min
𝑧′≠𝑧

log
𝑞𝜙 (𝑧 |𝑠𝑡 )

𝑞𝜙 (𝑧 |𝑠𝑡 ) + 𝑞𝜙 (𝑧′ |𝑠𝑡 )
(2)

The diversity objective 𝐽𝐷𝑖𝑣 (𝜃 ), which has a similar definition to
𝐽 (𝜃 ) but considers intrinsic rewards, can be defined as 𝐽𝐷𝑖𝑣 (𝜃 ) =
E𝑧∼𝑝 (𝑧 ),𝑠∼𝜌𝜋 (𝑠 ),𝑎∼𝜋 ( · |𝑠,𝑧 ) [

∑
𝑡 𝛾
𝑡𝑟 𝑖𝑛𝑡 ]. To implement diversity-constrained

optimization, we optimize the extrinsic-rewards objective 𝐽 (𝜃 )
when the data’s diversity metric 𝐷𝑖𝑣 (𝜋𝜃 ) ≥ 𝛿 , where 𝛿 is a hyper-
parameter, and optimize 𝐽𝐷𝑖𝑣 (𝜃 ) when 𝐷𝑖𝑣 (𝜋𝜃 ) < 𝛿 . In extrinsic-
reward-constrained optimization, the policywill optimize 𝐽𝐷𝑖𝑣 (𝜃 )
when 𝐽 (𝜃 ) is greater than a threshold 𝑅𝑡𝑎𝑟𝑔𝑒𝑡 , where 𝑅𝑡𝑎𝑟𝑔𝑒𝑡 is a
hyper-parameter. Fig. 1 summarizes the DGPO algorithm.

4 EXPERIMENTS
We evaluate our algorithm on multiple RL benchmarks, i.e., Multi-
agent Particle-world Environment (MPE) [7], StarCraft II Micro-
management Challenge (SMAC) [9], and Atari [1]. We compare
our algorithm with 4 baseline algorithms, including MAPPO [12],
DIAYN [3], SMERL [6], and RSPO [14]. Due to the space limit, we
only show part of the empirical results here.

We conduct experiments on two StarCraft II maps, i.e., 2s_vs._1sc
and 3m from the SMAC benchmark. In each map, we set 𝑛𝑧 = 3
and measure the average winning rates over 5 seeds for all the
algorithms. Fig. 2(a) shows that while other algorithms are either
unstable in terms of diversity or performance, DGPO can find a
set of quality diverse strategies. In fact, DGPO has higher diversity
scores and competitive performance in comparison with baseline
algorithms. Fig. 2(b) visualizes three strategies obtained by DGPO
on 3m map. In this map, we control three agents (in red) to combat
build-in agents (in blue). We visualize the moving trajectories of our
agents in green arrows. Empirical results show that in addition to
moving forward (the middle arrow) to attack the enemies directly,

DGPO agents produce kiting strategies, i.e., our agents keep switch-
ing between attacking and moving upward or downward. Through
this, they can attack enemies and avoid damage from them.
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Figure 2: Experimental results in two SMAC scenarios.

5 CONCLUSIONS
In this paper, we proposed Diversity-Guided Policy Optimization
(DGPO), an on-policy algorithm that can efficiently discover di-
verse quality strategies. DGPO formulates the training process as
two constrained optimization problems and solves them as a prob-
abilistic inference task. Empirical results indicate that DGPO has
competitive performance and sample efficiency with state-of-the-
art on-policy RL algorithms and achieves the highest diversity score
in comparison with baseline algorithms in various domains.
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