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ABSTRACT
The contextual bandit problem is a theoretically justified frame-
work with wide applications in various fields. While the previous
study on this problem usually requires independence between noise
and contexts, our work considers a more sensible setting where
the noise becomes a latent confounder that affects both contexts
and rewards. Such a confounded setting is more realistic and could
expand to a broader range of applications. However, the unresolved
confounder will cause a bias in reward function estimation and
thus lead to a large regret. To deal with the challenges brought by
the confounder, we apply the dual instrumental variable regres-
sion, which can correctly identify the true reward function. We
prove the convergence rate of this method is near-optimal in two
types of widely used reproducing kernel Hilbert spaces. Therefore,
we can design a computationally efficient and regret-optimal algo-
rithm based on the theoretical guarantees for confounded bandit
problems.
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1 PROBLEM FORMULATION
We consider a contextual bandit problem with K arms. A learner
interacts with the environment in several rounds t = 1, 2, · · · ,T ,
whereT is the time horizon. At each round t , the environment gen-
erates a context ct in a compact set C. The learner is given an action
set A with cardinality K . The context and action spaces can be
discrete or included in Rd . The learner will obtain a reward yt after
it chooses the action at ∈ A. We model the reward function for the
context-action pair as yt = f (ct ,at )+et , where et is a bounded σ 2-
subgaussian noise term. For notation brevity, we let xt := (ct ,at )
andX := C×A. Furthermore, we consider a correlated bandit prob-
lem and allow for noise et that is potentially correlated with the
context ct , namely, E[et |ct ] , 0.We use a causal model in Figure 1
to describe the correlation. As the structural causal graph shows,
the noise term E serves as an unobserved confounder, making the
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causal identification between the context-action pair X and the
reward Y challenging.

Z X Y E

Figure 1: A causal model with unobserved confounders and
instrumental variables.

To address the challenge, we assume that the learner can observe
an extra instrumental variables zt at each round, and that the tu-
ple (ct , zt ) is i.i.d. generated according to Figure 1. The properties
of instrumental variables: relevance, exclusion, unconfoundedness,
allows us to estimate an unbiased f̂ (x) that captures the struc-
tural relationship between X and Y [2, 5]. The natural filtration
Ft is defined w.r.t. the sequence of contexts, actions, instrumen-
tal variables and the collected rewards up to t . A policy π of the
learner is a non-anticipatory decision sequence of actions in A,
i.e., πt : Ft−1 → A. The expected regret of an algorithm is defined
to be Reд(T ) =

∑T
t=1 Eπ [f (ct ,a

∗
t ) − f (ct ,at )], where the optimal

action is a∗t := argmaxa∈A f (ct ,a), and at = π (Ft−1) is the arm
pulled according to the policy π at step t . The expectation is taken
w.r.t. the randomness in algorithms. Our goal is to find algorithms
to minimize the expected regret.

2 ALGORITHM DESIGN
Dual Formulation. We first provide a dual formulation of IV

regressions. To avoid ambiguity, we denote f ∗ as the truth and f
as a general functional variable. Since samples are stochastic and
noisy, we propose the following minimization problem

min
f ∈H

R(f ) := 1
2EYZ [(Y − EX |Z [f (X )])2]. (1)

The true structural function f ∗ can be identified by the optimum
of the above minimization problem if f ∗ is in the function space
H . The conditional expectation operator EX |Z [·] is difficult to
approximate by samples, because of the limited sample size and the
possibly high dimensions of X and Z . Since (1) is a convex problem
with respect to f , we can solve its dual problem to obtain a solution:

R(f ) = max
u ∈U

Ψ(f ,u), (2)

whereΨ(f ,u) = EXYZ [f (X )u(Y ,Z )−Yu(Y ,Z )− 1
2u(Y ,Z )

2]. Proved
in [1, 4], the optimal solution u∗(y, z) to the above problem takes
the form u∗(y, z) = EX |z [f (X )] − y.
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RKHS. The function spaces H and U are chosen to be repro-
ducing kernel Hilbert spaces associated with positive definite and
continuous kernels k : X×X → R and l : (Y ×Z)×(Y ×Z) → R,
respectively. Let ϕ(x) := k(x, ·) and φ(y, z) := l((y, z), ·) be the
canonical feature maps of H and U, respectively. Due to the prop-
erties of RKHS, Ψ(f ,u) can be rewritten as

Ψ(f ,u) = ⟨CYZX f − r ,u⟩U −
1
2 ⟨u,CYZu⟩U,

where r = EYZ [Yφ(Y ,Z )],CYZ = EYZ [φ(Y ,Z )⊗φ(Y ,Z )],CYZX =
EXYZ [φ(Y ,Z ) ⊗ ϕ(X )]. For a deep insight into the covariance op-
erator CYZ and the cross-covariance operator CYZX (its adjoint is
denoted as CXYZ ), we refer the readers to [1].

In empirical versions, corresponding operators might not be
invertible, so a regularizer λ = (λ1, λ2) can be added to the solution.
The modified empirical version is

Ψ̂λ(f ,u) = 1
n
∑n
i=1(f (xi ) − yi )u(yi , zi ) +

λ2
2 ∥ f ∥2

H

− 1
2n

∑n
i=1 u(yi , zi )

2 − λ1
2 ∥u∥2

U
.

The solution obtained from the following empirical minimization-
maximization problem minf ∈H maxu ∈U Ψ̂λ(f ,u) is denoted by
dualIV(k, l, λ1, λ2). We summarize the assumptions for function
spaces and kernels in dualIV as followings.

Assumption 2.1.
• (Realizability) The RKHSs H and U are correctly specified,
i.e., f ∗ ∈ H and u∗ ∈ U.

• (Invertibility) The covariance operatorsCYZ ,CXYZC−1YZCYZX
are invertible.

• (Continuity) The referred kernels of H and U are continuous
on compact sets.

Concentration Inequalities. The convergence rate of dualmethods
will provide a useful guide to the algorithm design. We prove the
following theorem for d̃-dimensional spaces, which matches the
minimax lower bound in Theorem 2.2.

Theorem 2.1. Let the d̃-dimensional RKHSsH andU associated
with kernels k and l satisfying Assumption 2.1. Consider a dataset
(Xi ,Yi ,Zi )

n
i=1 i.i.d. sampled according to Figure 1, and f̂n is obtained

from dualIV with regularization parameters λi ≃
√
d̃τ/n for i = 1, 2.

Then, there exists a constant M which depends on the true struc-
tural function f ∗ and spaces H ,U, such that for all τ , δ > 0, the

convergence rate of f̂n satisfies ∥ f̂n − f ∗∥L2(PX ) ≤

√
Md̃ (τ+δ )

n with
probability at least 1 − 2e−τ − e−δ .

Theorem 2.2. Consider data (Xi ,Yi )
n
i=1 following the relation-

ship Yi = f (Xi ) + Ei , where Ei is a Gaussian or truncated Gauss-
ian noise, and f is in a d̃-dimensional function space H . For any
estimation algorithm π , there exists a function f ∈ H such that

∥ f − f̂ πn ∥L2(PX ) = Ω

(√
d̃/n

)
for the estimator f̂ πn obtained by π

from the data.

The Epoch Learning Strategy. This epoch strategy (e.g., [3, 6]) is
purely due to technical reasons (Theorem 2.1 requires i.i.d. data),
and we want to avoid a more complicated construction of mar-
tingales. Instead of feeding all the previous data into dualIV, we

Algorithm 1 DualIV Regression with an Epoch Learning Strategy
Input: epoch schedule 0 = τ0 < τ1 < τ2 < · · · , confidence param-

eter δ , kernel functions k, l , tuning parameters η,η1,η2
1: Determine d̃ from kernels k and l
2: for epochm = 1, 2, · · · , do
3: Collect (only) the data in epochm − 1 in Dm−1

4: Let parameters λi = ηi
√
d̃/|Dm−1 | for i = 1, 2

5: Implement dualIV with input λ1, λ2, k, l and Dm−1, and
then obtain f̂m (for epoch 1, f̂1 = 0)

6: Compute γm =
√

ηK |Dm−1 |

d̃ log(2m2/δ )
(for the first epoch, γ1 = 1)

7: for round t = τm−1 + 1, · · · , τm do
8: Observe the context ct and the instrumental variable zt
9: Compute f̂m (ct ,a) for each action a ∈ A and the fol-

lowing probabilities

pt (a) =

{ 1
K+γm (f̂m (ct ,ât )−f̂m (ct ,a))

, for all a , ât

1 −
∑
a,ât pt (a), for a = ât .

where ât = maxa∈A f̂m (ct ,a).
10: Sample at ∼ pt (·) and take the action at
11: Observe a reward yt

only feed the data in the previous epoch. Motivated by greedy algo-
rithms, we design an action sampling policy based on the inverse
gap weighting technique. The sampling policy keeps fixed during
an epoch though changes over epochs. Hence, we can obtain an i.i.d.
sequence within each epoch, and elegantly balance exploration and
exploitation as we move along the epochs. We further prove that
the regret of this algorithm is rate-optimal for properly selected
tuning parameters.

Theorem 2.3. Suppose that Assumption 2.1 hold in kernelized
contextual bandit settings. Moreover, the epoch schedule is set to be
τm = 2m , and the tuning parameters are properly selected to match
the constant in Theorem 2.1. Then, with probability at least 1 − δ , the
expected regret Reд(T ) of Algorithm 1 is at most

O

(
2η−1/2

√
KTd̃ log(2 log2(T )/δ ) + ∥ f ∗∥H

√
8T log(2/δ )

)
.

If we set δ = d̃/T and take expectation w.r.t. the randomness in
contexts, then the expected regret can be further reduced to

O

(√
Kd̃T log(2T log2(T )/d̃) + ∥ f ∗∥H

√
T log(2T /d̃) + d̃ ∥ f ∗∥H

)
via the property of conditional expectation. As a simple corollary of
Theorem 2.3 and Theorem 2.4, the regret of this order is rate-optimal
if we ignore the O(log logT ) term and constants.

Theorem 2.4. Assume thatH is d̃-dimensional. Moreover, K ≤

2d̃/2 and T ≥ d̃(logK)1+ϵ for any small constant ϵ > 0. For any
algorithm π , there exists a bandit instance with a reward function

f ∈ H such that Reд(T ) ≥ Ω

(√
d̃T logK log(T /d̃)

)
.
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