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ABSTRACT
We consider the obnoxious facility location problem (in which

agents prefer the facility location to be far from them) and propose

a hierarchy of distance-based proportional fairness concepts for

the problem. These fairness axioms ensure that groups of agents at

the same location are guaranteed to be a distance from the facility

proportional to their group size. We consider deterministic and

randomized mechanisms, and compute tight bounds on the price of

proportional fairness. In the deterministic setting, not only are our

proportional fairness axioms incompatible with strategyproofness,

the Nash equilibria may not guarantee welfare within a constant

factor of the optimal welfare. On the other hand, in the randomized

setting, we identify proportionally fair and strategyproof mecha-

nisms that give an expected welfare within a constant factor of the

optimal welfare.
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1 INTRODUCTION
In the obnoxious facility location problem (OFLP), some undesirable

facility such as a garbage dump or an oil refinery is to be located on

a unit interval (i.e. the domain of locations is [0, 1]), and the agents

along the interval wish to be as far from the facility as possible [2–5].

In this problem, agents have single-dipped preferences, contrasting

with the single-peaked preferences of agents in the classic facility

location problem (in which agents prefer to be located as close as

possible to the facility).

In this work, we pursue notions of proportional fairness as a cen-
tral concern for the problem. Specifically, we formulate a hierarchy

of proportional fairness axioms which guarantee that each group of
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agents at the same location are a distance from the facility propor-

tional to the relative size of the group. While proportional fairness

axioms have been formulated and studied in the classic facility loca-

tion problem [1], they have not yet been applied to the OFLP. Our

paper provides a comprehensive overview of proportionally fair

solutions for the obnoxious facility location problem, examining the

interplay between proportional fairness and utilitarian/egalitarian

welfare, and investigating concerns of agent strategic behaviour in

both the deterministic and randomized settings.

2 MODEL
Let 𝑁 = {1, . . . , 𝑛} be a set of agents, and let 𝑋 := [0, 1] be the

domain of locations. Our results can be naturally extended to any

compact interval on R. Agent 𝑖’s location is denoted by 𝑥𝑖 ∈ 𝑋 ;

the profile of agent locations is denoted by 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ 𝑋𝑛
.

We also assume the agent locations are ordered such that 𝑥1 ≤
· · · ≤ 𝑥𝑛 . A deterministic mechanism is a mapping 𝑓 : 𝑋𝑛 → 𝑋

from a location profile 𝑥 ∈ 𝑋𝑛
to a facility location 𝑦 ∈ 𝑋 . We

define a randomized mechanism as a probability distribution over

deterministic mechanisms. Given a facility location 𝑦 ∈ 𝑋 , agent 𝑖’s

utility is equal to its distance from the facility𝑢 (𝑦, 𝑥𝑖 ) := |𝑦−𝑥𝑖 |. We

are interested in maximizing the objectives of Utilitarian Welfare
(UW), defined for a facility location 𝑦 and location profile 𝑥 as the

sum of agent utilities

∑
𝑖 𝑢 (𝑦, 𝑥𝑖 ), and Egalitarian Welfare (EW),

defined as the minimum agent utility min𝑖 𝑢 (𝑦, 𝑥𝑖 ).
In mechanism design, it is typically desirable for mechanisms to

satisfy strategyproofness, meaning that no agent can improve their

(expected) distance from the facility by lying about its location.

2.1 Proportional Fairness Axioms
We introduce adaptations and approximations of the proportional

fairness axioms studied by Aziz et al. [1], for the obnoxious facil-

ity location problem. We show that the 2-approximations are the

tightest approximations for a solution to be guaranteed to exist.

Definition 2.1 (2-Individual Fair Share (IFS)). Given a profile of

locations 𝑥 , a facility location 𝑦 satisfies 2-Individual Fair Share
(2-IFS) if 𝑢 (𝑦, 𝑥𝑖 ) ≥ 1

2𝑛 ∀𝑖 ∈ 𝑁 .

Definition 2.2 (2-Unanimous Fair Share (UFS)). Given a profile of

locations 𝑥 , a facility location 𝑦 satisfies 2-Unanimous Fair Share
(2-UFS) if for any set of agents 𝑆 with identical location, 𝑢 (𝑦, 𝑥𝑖 ) ≥
|𝑆 |
2𝑛 ∀𝑖 ∈ 𝑆.
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Table 1: Table of price of fairness and welfare approximation
results.

Price of Fairness Best Known Approx.

by 2-UFS SP Mech.2-IFS 2-UFS

Deter.

UW 2 2 Incompatible
EW 1 n-1

Rand.

UW 12/11 1.09384. . . 1.5

EW 1 1 1

Randomized mechanisms satisfy these axioms in expectation if

the expected utility of each agent satisfies the respective axioms.

For these axioms, we denote the polynomial time mechanism

which computes the optimal 2-IFS/UFS facility location in terms of

utilitarian welfare as 𝑓 ∗
2𝐼𝐹𝑆

and 𝑓 ∗
2𝑈𝐹𝑆

, respectively.

In this paper, we consider the price of 2-IFS/UFS fairness, which
measures the loss of efficiency from imposing a certain fairness

constraint. The price of fairness can also be interpreted as the ap-

proximation ratio for the respective optimal mechanism satisfying

the fairness constraint. We formally define it below.

A fairness property 𝑃 is a mapping from an agent location profile

𝑥 ∈ 𝑋𝑛
to a (possibly empty) set of facility locations 𝑃 (𝑥) ∈ 𝑋 .

Every facility location 𝑃 (𝑥) satisfies the fairness property 𝑃 . The

price of fairness for property 𝑃 is the worst case ratio between the

optimal welfare and the optimal welfare from a facility location

satisfying 𝑃 .

Definition 2.3 (Price of Fairness for Utilitarian/EgalitarianWelfare).
Let {𝑓 ∗

𝑈𝑊
,𝑓 ∗
𝐸𝑊

} be the mechanism that returns the solution max-

imizing utilitarian/egalitarian welfare. For UW/EW and fairness

property 𝑃 , we define the price of fairness as the worst case ratio

(over all location profiles) between the optimal UW/EW and the

optimal UW/EW achieved by a facility location satisfying fairness

property 𝑃 :

max

𝑥∈[0,1]𝑛

∑
𝑖 𝑢 (𝑓 ∗ (𝑥), 𝑥𝑖 )

max𝑦∈𝑃 (𝑥 )𝑊 (𝑦, 𝑥𝑖 )
.

For UW, 𝑓 ∗ (𝑥) := 𝑓 ∗
𝑈𝑊

(𝑥) and𝑊 (𝑦, 𝑥𝑖 ) :=
∑
𝑖 𝑢 (𝑦, 𝑥𝑖 ).

For EW, 𝑓 ∗ (𝑥) := 𝑓 ∗
𝐸𝑊

(𝑥) and𝑊 (𝑦, 𝑥𝑖 ) := min𝑖 𝑢 (𝑦, 𝑥𝑖 ).

3 RESULTS
We prove tight bounds on the price of 2-IFS and 2-UFS fairness

for utilitarian and egalitarian welfare, and that in the deterministic

setting, no strategyproof mechanism can satisfy any approximation

of our proportional fairness axioms. For the randomized setting,

our price of fairness bounds are derived from the approximation

ratios of the optimal 2-IFS/UFS mechanisms for the respective wel-

fares. We also give examples of randomized strategyproof 2-UFS

mechanisms with a constant approximation ratio for utilitarian

welfare, or are optimal for egalitarian welfare. Full details of the

mechanisms can be found in the full paper. A summary of these

results can be found in Table 1.

Since strategyproofness is incompatible with our fairness ax-

ioms, we are interested in the performance of proportionally fair

mechanisms in our model when accounting for agent strategic be-

haviour. Such performance can be quantified by the price of anarchy,
which quantifies the worst-case degradation of efficiency from a

pure Nash equilibrium of reports. We show that for 𝑓 ∗
2𝐼𝐹𝑆

and 𝑓 ∗
2𝑈𝐹𝑆

a pure Nash equilibrium may not exist, but the approximate pure
𝜖-Nash equilibrium always exists for all 𝜖 > 0.

Definition 3.1 (Tardos and Vazirani [6]). A pure 𝜖-Nash equilib-
rium is a profile of reported agent locations 𝑥 ′ = (𝑥 ′

1
, . . . , 𝑥 ′𝑛) such

that no single agent can improve its own utility (with respect to

its true location) by strictly more than 𝜖 by changing its reported

location. A pure Nash equilibrium is a pure 𝜖-Nash equilibrium

where 𝜖 = 0.

As a pure Nash equilibrium may not exist, the price of anarchy

is not well-defined and thus we consider the 𝜖-price of anarchy,

defined as the worst case ratio (over all location profiles 𝑥 ) between

the utilitarian welfare corresponding to all agents reporting truth-

fully and the minimum utilitarian welfare corresponding to agents

reporting in a pure 𝜖-Nash equilibrium.

Definition 3.2. Given 𝑓 and 𝑥 , define the set of pure 𝜖-Nash

equilibria location profiles as 𝜖-𝐸𝑞𝑢𝑖𝑙 (𝑓 , 𝑥). The price of anarchy
for utilitarian welfare is defined as:

𝜖-𝑃𝑜𝐴(𝑓 ) := max

𝑥∈𝑋𝑛

∑
𝑖 𝑢 (𝑓 (𝑥), 𝑥𝑖 )

min𝑥 ′∈𝜖-𝐸𝑞𝑢𝑖𝑙 (𝑓 ,𝑥 )
∑
𝑖 𝑢 (𝑓 (𝑥 ′), 𝑥𝑖 )

.

Theorem 3.3. For any 𝜖 ∈ (0, 1𝑛 ), the 𝜖-price of anarchy for 𝑓
∗
2𝐼𝐹𝑆

and 𝑓 ∗
2𝑈𝐹𝑆

of utilitarian welfare is at least 2𝑛−1+𝑛𝜖
1−𝑛𝜖 . The price of

anarchy is unbounded for 𝜖 ≥ 1

𝑛 .

Theorem 3.4. For any 𝜖 ∈ (0, 1

2𝑛 ), the 𝜖−price of anarchy for
𝑓 ∗
2𝐼𝐹𝑆

and 𝑓 ∗
2𝑈𝐹𝑆

of utilitarian welfare is at most 2𝑛
1−2𝑛𝜖 .

By setting 𝜖 = 0 in the 𝜖-price of anarchy bounds of Theorems 3.3

and 3.4, we achieve the following result.

Corollary 3.5. If a pure Nash equilibrium exists, the price of
anarchy for 𝑓 ∗

2𝐼𝐹𝑆
and 𝑓 ∗

2𝑈𝐹𝑆
of utilitarian welfare is between 2𝑛 − 1

and 2𝑛.

One downside of the 2-UFS definition is that agents located near

each other but not at the same location are considered to be in

separate groups. An axiom which accounts for groups of agents

located relatively close to each other is 2-Proportional Fairness

(2-PF), adapted from [1]. We define it as follows, and prove that it

is the tightest approximation which guarantees a solution.

Definition 3.6 (2-PF). Given a profile of locations 𝑥 , a facility

location 𝑦 satisfies 2-PF if for any set of agents 𝑆 within range 𝑟 ,

𝑢 (𝑦, 𝑥𝑖 ) ≥ 1

𝛼 ( |𝑆 |/(𝑛)) − 𝑟 ∀𝑖 ∈ 𝑆.

Note that 𝛼−PF implies 𝛼−UFS, and therefore also implies 𝛼−IFS.
In the hybrid model, agents either want to be located close to

the facility (as in the classic model), or wish to be located far away

from the facility (as in our obnoxious model). We adapt IFS and

UFS to this model and prove that a solution always exists for these

axioms.
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