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ABSTRACT
We develop a game-theoretical model of a classroom scenario,

where 𝑛 students collaborate on a common task and the job of

the course instructor is to grade the individual contribution of each

student to teamwork. Our main result is a method of grading indi-

vidual contributions based on the matrix of peer evaluations such

that 1) the collective truth-telling is a strict Nash equilibrium and

2) the method of assessment is psychometrically reliable.
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1 INTRODUCTION
Teamwork and report writing are taught at universities, but grading

every individual student based on a team’s report is a challenge.

For instance, if all the team members get the same grade, then a

free-rider problem may occur — see [11], [10], [4], or [1]. The most

obvious solution to the free-rider problem is peer evaluation ([6]).

A system of peer evaluation is a procedure of calculating the

"true” (at least, as it is perceived by team members) contribution

of each of the team members to the common task based on mutual

evaluations reported by teammembers. A system of peer evaluation

may or may not have certain desired qualities. Among most impor-

tant sought–after qualities of educational assessment are validity
and reliability ([9], [13], [14]).

A valid assessment measures what it is supposed to measure. A

reliable assessment yields the same results each time it is used in

the same setting.

In this paper, we develop a mathematical model of peer evalu-

ation for individual contribution to teamwork. We prove that the

collective truth–telling in our model is a strict Nash equilibrium

and argue that it means that the assessment system is valid. We

also show that our assessment method is reliable.
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2 RELATEDWORKS
While we are constructing a mathematical model of peer evaluation

in learning teams, there are a few superficially similar problems in

game theory literature.

The first of them is peer grading or peer assessment — see, for

example [18], [16], [8], and [17]. Despite an essentially the same

name, the main scenario is completely different. In peer grading, a

large group of students are required to submit their individual work
(essays, assignments, reports etc.) to a common pool and then each

student gets to evaluate a small number of peers’ works according

to criteria designed by the course instructor.

The second problem that is related to ours is peer nomination

— see, for example, [2], [3], [12]. In peer nomination, the real-life

motivation is a scenario where a number of researchers are compet-

ing for grants and they themselves select proposals that are worthy

of funding. This set-up is somewhat similar to ours in that there

assumed to be a ground truth — ranking, i.e., an order on the set

of proposals. The key differences with our set-up are that in peer

nomination the group is large, i.e., every agent only evaluates a

fraction of other agents’ proposals, and that the output is binary

while the output in our scenario is numeric.

The third game–theoretical problem that somehow resembles

ours is fair division — see, for example, [7] and [15]. In fair division,

𝑛 agents, too, compete for some common resource. However, the

similarity ends here. The main difference is that in fair division,

each agent has their own opinion on the value of each resource and

the objective is to distribute resources between the agents so that

each agent’s fraction of resource is at least 1/𝑛.
A rigorous mathematical theory of peer evaluation is outlined in

[5]. However, their theory is very broad and does not provide a spe-

cific reliable method of grading (reliability is not even mentioned).

Here, we are going to narrow the scope of the theory and, borrow-

ing some ideas from [5], provide a practical method of grading.

3 MATHEMATICAL THEORY
3.1 Set-up
We assume that 𝑛 ≥ 3 students collaborate on a common task (such

as a group project) and there exists the ground truth — individual

contribution of each student to teamwork. If the true contribution

of the 𝑖 th student is 𝑡𝑖 , then the ground truth is the vector

𝑡 = (𝑡1, 𝑡2 . . . , 𝑡𝑛) ∈ Δ𝑛−1 ⊂ R𝑛,
where

Δ𝑛−1 = {(𝑡1, . . . , 𝑡𝑛) : 𝑡1 ≥ 0, . . . , 𝑡𝑛 ≥ 0,

𝑛∑︁
𝑖=1

𝑡𝑖 = 𝑛} ⊂ R𝑛
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is the (𝑛 − 1)-simplex. Note that we require the mean individual

contribution rather than the sum to equal 1.

The instructor observes the final product of teamwork (e.g., a

report or a presentation) and evaluates the team with a score 𝑇 .

Intuitively, if the course instructor just wanted to give all students

individual scores proportional to their effort, then the "fair" score

given to student 𝑖 should be 𝑡𝑖 ×𝑇 .

The vector 𝑡 is known to students but can’t be observed by the

instructor directly.What students report to the instructor is a matrix

𝐴 ∈ M𝑛×𝑛 (R≥0)

of evaluations of each student by each student, whereM𝑛×𝑛 (R≥0)
is the set of 𝑛 × 𝑛 matrices with non-negative real entries.

Further, let the entry in row 𝑖 , column 𝑗 of matrix 𝐴, i.e., 𝑎𝑖 𝑗 , be

evaluation of student 𝑖 by student 𝑗 . If all students were truthful

in their evaluations, then all columns of the matrix 𝐴 would be

proportional to 𝑡 , i.e., 𝐴 would have rank 1.

Definition 3.1. A mechanism (term adopted from [5]) is an algo-

rithm of calculating the vector of individual grades, i.e., a function

𝑓 : M𝑛×𝑛 (R≥0) −→ Δ𝑛−1,

𝐴 = (𝑎𝑖 𝑗 )1≤𝑖≤𝑛,1≤ 𝑗≤𝑛 ↦−→ 𝑓 (𝐴) = 𝑔 = (𝑔1, 𝑔2 . . . , 𝑔𝑛) .

Note that the output of the mechanism, i.e., the vector 𝑔 of in-

dividual grades may or may not be equal to the vector 𝑡 of true

contributions.

3.2 Valid and reliable assessment
Definition 3.2. A mechanism is incentive–compatible if collective

truth-telling is a strict Nash equilibrium, i.e., lying decreases one’s

own score given that others tell the truth.

A mechanism is reliable if, assuming that all students report the

truth, then 𝑔𝑖 is an increasing function of 𝑡𝑖 . In particular, 𝑔𝑖 does

not depend on 𝑡 𝑗 for 𝑗 ≠ 𝑖 .

Note that if collective truth-telling were not a strict Nash equi-

librium, then the assessment method would measure the ability of

manipulation with scores rather than honest teamwork, i.e., assess-

ment would not be valid. To understand reliability, think of students

A and B from different teams whose teams got the same score and

whose true individual contribution is the same. For assessment to

be reliable, students A and B should get the same final grade.

3.3 Relative contributions
We assume that at most one entry of the ground truth vector 𝑡 is

0, i.e., that 𝑡𝑖 + 𝑡 𝑗 > 0 and 𝑎𝑖𝑘 + 𝑎 𝑗𝑘 > 0 whenever 𝑖 ≠ 𝑗 . Also, we

assume that 𝑛 ≥ 5. Note that our mechanism is reliable even for

𝑛 = 3 and 𝑛 = 4, but we do not know even if incentive–compatible

mechanisms exist for 𝑛 = 3 or 𝑛 = 4.

The key ingredient of our mechanism is the relative contribution

𝑟𝑘𝑖 𝑗 =
𝑎𝑖𝑘

𝑎𝑖𝑘 + 𝑎 𝑗𝑘
, (1)

of student 𝑖 to student 𝑗 according to student 𝑘 . Thus, for every 𝑖

and every 𝑗 ≠ 𝑖 , we have the vector

𝑟𝑖 𝑗 =

(
𝑟1𝑖 𝑗 , · · · , 𝑟 𝑖𝑖 𝑗 , · · · , 𝑟

𝑗
𝑖 𝑗
, · · · , 𝑟𝑛𝑖 𝑗 ,

)
(2)

of relative contributions of students 𝑖 and 𝑗 according to their team-

mates. The vector 𝑟𝑖 𝑗 has𝑛−2 entries. Note that 𝑟𝑖 𝑗 +𝑟 𝑗𝑖 = (1, . . . , 1).
Now let

𝑏𝑖 𝑗 =

{
1, 𝑖 = 𝑗,
median(𝑟𝑖 𝑗 )
median(𝑟 𝑗𝑖 ) , 𝑖 ≠ 𝑗 .

(3)

Note that, according to our assumption, 𝑟𝑖 𝑗 and 𝑟 𝑗𝑖 cannot be both

equal to 0, 𝑏𝑖 𝑗 ∈ R≥0 ∪ {∞}. We will call 𝐵 = (𝑏𝑖 𝑗 )1≤𝑖, 𝑗≤𝑛 the

auxiliary matrix for the raw peer evaluation matrix 𝐴.

3.4 Perceived contributions
Given amatrix of peer evaluations𝐴, we first construct the auxiliary

matrix 𝐵. If all students were truthful in their evaluations, then

𝑏𝑖 𝑗 = 𝑡𝑖/𝑡 𝑗 would hold, i.e., columns of 𝐵 would be proportional to

the ground truth 𝑡 with the coefficient of proportionality chosen so

that 𝑏𝑖𝑖 = 1 for all 𝑖 .

Now, in order to extract the vector 𝑠 of perceived contributions
from 𝐵, we divide each column of 𝐵 by the mean of its entries, then

take the vector of row medians, and then divide the result by its

mean.

The vector 𝑠 has the following important property. Let 𝑛 ≥ 5

and suppose that 𝑛 − 1 out of 𝑛 students report evaluations that are

perfectly consistent, i.e., 𝑛 − 1 out of 𝑛 columns of the matrix 𝐴 are

proportional to each other. Then 𝑠 is independent of the remaining

column of 𝐴, i.e., evaluations reported by the last student don’t

affect the vector 𝑠 of perceived contributions.

3.5 Relative error of reported evaluations
Consider a peer evaluation matrix 𝐴 and the vector of perceived

contributions 𝑠 calculated as described in section 3.4. Consider

normalized columns of 𝐴, i.e.,

𝑣𝑖 𝑗 =
𝑛𝑎𝑖 𝑗∑𝑛
𝑖=1 𝑎𝑖 𝑗

Then

𝑣 𝑗 = (𝑣1𝑗 , 𝑣2𝑗 , . . . , 𝑣𝑛𝑗 ) ∈ Δ(𝑛−1)

is 𝑗 th version of truth and

��𝑣𝑖 𝑗/𝑠𝑖 − 1

��
is the relative error of evalu-

ation of student 𝑖 by student 𝑗 . Let

𝐸 𝑗 =
1

𝑛

𝑛∑︁
𝑖=1

����𝑣𝑖 𝑗 − 𝑠𝑖

𝑠𝑖

���� (4)

be the average relative error of student 𝑗 ’s version of truth. Notice

that 𝐸 𝑗 = 0 if and only if 𝑣 𝑗 = 𝑠 , i.e., evaluations reported by 𝑗 are

perfectly consistent with perceived contributions 𝑠 . It may happen

that 𝑠𝑖 = 0 for some 𝑖 (we assume that at most one entry of 𝑠 may

be 0). In that case, our convention is that 0/0 = 0 and 1/0 = 𝑛.

3.6 Our mechanism
Theorem 3.3. The mechanism defined by

𝑔 𝑗 = (1 − 𝜀)𝑠 𝑗 + 𝜀max(1 − 𝐸 𝑗 , 0), (5)

where 𝜀 > 0, is incentive-compatible and reliable. Here, 𝑠 𝑗 is the
perceived contribution of student 𝑗 calculated as in section 3.4 and 𝐸 𝑗
is the relative error of evaluations reported by student 𝑗 calculated
according to (4).

Here, 𝜀 > 0 is a small number. The author sets 𝜀 = 0.05 in his

classroom, but the exact value of 𝜀 is not important.
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