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ABSTRACT

Many environments contain numerous available niches of variable
value, each associated with a different local optimum in the space
of behaviors (policy space). In this work we propose a generic re-
inforcement learning (RL) algorithm where multiple sub-policies
are learnt in a manner inspired by fitness sharing in evolutionary
computation and applied in reinforcement learning using Value-
Decomposition-Networks in a novel manner for a single-agent’s
internal population. Further, we introduce an artificial chemistry
inspired platform where it is easy to create tasks with multiple re-
warding strategies utilizing different resources (i.e. multiple niches).
We show that agents trained this way can escape poor-but-attractive
local optima to instead converge to harder-to-discover higher value
strategies in both the artificial chemistry environments and in sim-
pler illustrative environments.
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1 INTRODUCTION

This is a short version of [11]. The principle of competitive exclusion
in ecology says that two species cannot inhabit the same niche, or
put differently, cannot rely on the same set of limited resources [13].
The repulsive effect that an occupied niche has on nearby species
who might otherwise have occupied it is an important part of the
reason why evolution on Earth produced a diversity of species [6],
not just a single generically optimal species like you might expect
from a black box optimization algorithm.

Here we study how ecological concepts of competitive exclusion,
niche discovery, and diversity can be productively applied to a rein-
forcement learning (RL) agent operating in a complex environment.
While evolution may be understood as a “space-filling” process,
which over time generates a species for every as-yet-unfilled point
in niche space [8], the standard image of an RL agent’s learning
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process is the trajectory of a single point traveling through policy
space by following a gradient and, after enough time, arriving at
a globally optimal rest point [12]. In most of the RL literature, the
central obstacle acknowledged to getting RL agents to discover
radically new behaviors that a random policy would never emit
by chance, is that of sparse reward and vanishing gradients when
far from a local optima. This is why the field has been mainly in-
terested in models where an exploration bonus is added to the
environment’s default reward [1, 9]. The aim is to create new gra-
dients where none would otherwise have existed (e.g. [3]). In this
paper, we explore how the ecological perspective may provide an
alternative organizing metaphor that can be used productively to
motivate a new reinforcement learning algorithm.

2 DIVERSITY THROUGH EXCLUSION (DTE)

We consider a single agent as though it contains multiple cooperat-
ing agents. Thus it makes sense to view it through the Dec-POMDP
framework of cooperative MARL and rely on the approach of Value-
Decomposition-Networks (VDN) [10], though here the implications
of the VDN approach are different from its original setting. Since
all the “sub-agents” are inside one agent, and only one can act at a
time, credit should flow only to the agent who actually acted. Please
note, we will below be assuming for simplicity that all rewards are
non-negative. Our approach is based on sampling a policy 7; from a
population for each episode and using it to generate an experience
trajectory. These policies will, in our experiments, be defined by N
different policy heads on top of a common core encoder network
similar to Bootstrapped DON [7].

Applying the value decomposition networks approach [10] we
let the global state-action value function Q be decomposed as

N
Q(0(s),0) = ), Qi(oi(s). a:)
i=1

where Q; is the state-action value function of policy i but here
0i(s) = o(s) and a; = a since all sub-agents experience the same
observations and actions.

In our case, we have more information than in cooperative MARL.
For each state s we know which sub-agent j was responsible for
selecting the joint action @ = a;(o(s)) and we can directly use
this knowledge to assign credit. This amounts to updating the
responsible sub-agent toward a target using the true sequence of
rewards while simultaneously updating all other sub-agents with
the same observation and action sequence but all rewards replaced
by 0.
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Figure 1: 9-headed DQN (left) vs 9-headed DTE (right) on
Simple Artificial Chemistry

Thus for every trajectory (o(s), a) and policy i, a learning update
is performed where a gradient step is taken for the loss

L(o(s), @, {Q;};,R) = (Qi(o(s),a) = R)* + (Z Qj(o(s), @),
J#i
which by the triangle inequality is not smaller than the standard
VDN loss (% Qj(o(s),a) - R)2.

3 EXPERIMENTAL EVALUATION USING AN
ARTIFICIAL CHEMISTRY PLATFORM

To enable the creation of rich environments with many completely
different rewarding strategies we create an artificial chemistry plat-
form where environments are defined by reaction graphs [2, 5]
(see Fig. 2) and reactions occur stochastically when reactants are
brought near one another. Our main environment is inspired by
work on autocatalytic sets (RAF sets) [5]. The most interesting en-
vironment we consider here used here involved metabolic cycles
aimed at being what Hordijk et al. [5] calls Reflexively Autocatalytic
and Food generating (RAF). The notion of [5], that autocatalytic
systems have such RAF subsystems, has critically guided our task
design.

This first task only features two kinds of molecules, red and
green. While all reactions in this task has the same rate, the red
identity reaction gives reward 0.1 and green only 0.75. However,
both are also involved in a pair identity reaction where two red
(reward 0.15) are both reactant and product or two green (reward
0.25) react but remains two green. An agent might first learn to
consistently go to red and then later discover that moving that red
over to the other gives more, while never discovering that bringing
the two green molecules together is even better.

Fig. 1 indeed shows that for DQN, all 9 heads only utilize the red
molecules while DTE early is having two heads going for the more
rewarding green strategy while as learning goes on, eventually all
heads learns to utilize the green pair reaction.

In the more complex Metabolic cycles with distractors task, in-
dividuals benefit from different food generating cycles of reac-
tions that rely on energy which dissipates over time if unused (red
molecules). There are two possible autocatalytic reaction cycles,
one cycle consists of molecules in three different shades of blue and
the other cycle of molecules in three different shades of green. Both
cycles require energy to continue. When they progress, they gener-
ates side products that comes in two types. If the two are brought
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Figure 2: Reaction Graph for molecules in Chemistry Meta-
bolic Cycles with Distractors. The artificial chemistry we
use represents the possible reactions with a directed multi-
graph [4]. The blue nodes are compounds and the red nodes
are reactions. Arrows point from reactant compounds in to
reaction nodes and arrows point out of reaction nodes toward
product compounds.

s o
Learning frames. 169

Figure 3: Left: Initial arrangement of molecules in Chemistry
Metabolic Cycles with Distractors. The agent’s partial view-
ing window is highlighted with a black rectangle. It is 11 x 11
sprites, each sprite being 8x8 pixels (making an 88x88%x3 RGB
image observation). Right: Results for the Chemistry Meta-
bolic Cycles with Distractors task, DTE’s best head learns
the sustainable cycles while both individual DQN runs gets
permanently stuck with the distractor.

together then that reaction generates new energy such that the
cycles can continue, as well as a high reward for the agent. The
population needs to keep both cycles running in order to sustain
the system over time!.

This task also contains one easier way to earn a small amount
of rewarding and it is achieved by simply holding a molecule we
call the distractor (orange in Fig. 3). where we can see 4 of them,
1 towards each corner) in its inventory?. This is the simplest re-
warding strategy and represents a shallow local optima that agents
consistently learns very early. The plot in Fig. 3 shows two DQN
runs both stuck on this shallow local optima while the best of two
DTE head (we let one head get 5 times the data of the other) learns
to run all the cycles sustainably and efficiently.

Isee https://youtu.be/FSStB7RpYis for an example video.
Zsee https://youtu.be/87NSFEPL7fk for an example video


https://youtu.be/FSStB7RpYis
https://youtu.be/87NSFEPL7fk
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