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ABSTRACT
We propose novel fairness notions for social choice under single-
peaked preferences, for group-fairness as well as individual-fairness.
Agents are assumed to be partitioned into logical groups, which
could be based on natural attributes such as gender, race, or lo-
cation. To capture fairness within each group, we introduce the
notion of group-wise anonymity. To capture fairness across the
groups, we propose a weak notion as well as a strong notion of
fairness. The proposed fairness notions turn out to be natural gen-
eralizations of existing individual-fairness notions. We characterize
the fair deterministic social choice rules and provide two separate
characterizations of the fair random social choice rules: (i) direct
characterization (ii) extreme point characterization (as convex com-
binations of deterministic rules). We also explore individual fairness
by looking at the special case with singleton groups.
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1 INTRODUCTION
Social choice involves aggregating the preferences of agents over
a set of alternatives to decide an outcome. There are two natural
families of social choice rules - deterministic (select a single al-
ternative) and random (select a probability distribution over the
alternatives). The two most desired properties in social choice, una-
nimity and strategy-proofness, are found to be incompatible, unless
the rules are dictatorial [12, 13, 15]. Black [6] introduced the single-
peaked domain, which is a special structure on rankings (ordinal
preferences) over which unanimity and strategy-proofness become
compatible. This resulted in the characterizations of unanimous
and strategy-proof social choice rules in single-peaked domain.
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Another desirable property for social choice is fairness. Random
social choice rules are often viewed as divisible PB rules [4], where
the probability of each alternative is interpreted as the fraction
of budget allocated to it. This interpretation motivated the study
of fair social choice rules [1, 3, 5, 7]. The existing group-fairness
notions guarantee fairness to every subset of agents and are satisfied
only by the random dictatorial rule when applied to strict rankings
[2, 3, 8, 10]. However, often in real-world, agents are naturally
partitioned into groups based on gender, race etc., and it is adequate
to guarantee fairness to these groups (called affirmative action or
reservation in real-world [11]). Our work studies this model.

2 PREREQUISITES
Let 𝑁 = [𝑛] be the set of agents and 𝐴 = {𝑎1, . . . , 𝑎𝑚} be the set of
alternatives with a prior ordering ≺ given by 𝑎1 ≺ . . . ≺ 𝑎𝑚 . The
min/max of a set of alternatives is derived w.r.t. ≺. We use [𝑎, 𝑏] to
denote {𝑐 | 𝑎⪯𝑐⪯𝑏 or 𝑏⪯𝑐⪯𝑎}. Let P(𝐴) denote the collection of all
complete, reflexive, anti-symmetric, and transitive binary relations
on 𝐴, where for 𝑃 ∈P(𝐴), 𝑎𝑃𝑏 is interpreted as "𝑃 prefers 𝑎 over 𝑏".
The 𝑘𝑡ℎ ranked alternative according to 𝑃 is denoted by 𝑃 (𝑘). We
use𝑈 (𝑎, 𝑃) to denote {𝑏 ∈ 𝑆 | 𝑏𝑃𝑎}.

Definition 1. A preference 𝑃 ∈ P(𝐴) is called single-peaked if
for all 𝑎, 𝑏 ∈ 𝐴, [𝑃 (1) ⪯ 𝑎 ≺ 𝑏 or 𝑏 ≺ 𝑎 ⪯ 𝑃 (1)] implies 𝑎𝑃𝑏.

Let D be the set of all single-peaked preferences on 𝐴. Each
agent 𝑖 reports a preference 𝑃𝑖 ∈ D and 𝑃𝑆 denotes the collection of
preferences of all agents in a set 𝑆 ⊆ 𝑁 . ADeterministic Social Choice
Function (DSCF) on D𝑛 is a function 𝑓 : D𝑛 → 𝐴, and a Random
Social Choice Function (RSCF) on D𝑛 is a function 𝜑 : D𝑛 → Δ𝐴,
where Δ𝐴 is the set of all probability distributions over 𝐴. For any
𝐵 ⊆ 𝐴, we define 𝜑𝐵 (𝑃𝑁 ) as ∑𝑎∈𝐵 𝜑𝑎 (𝑃𝑁 ), where 𝜑𝑎 (𝑃𝑁 ) is the
probability of 𝑎 at 𝜑 (𝑃𝑁 ).

There exist two kinds of characterizations of RSCFs in the liter-
ature: direct characterization and extreme point characterization
(express RSCFs as convex combinations of DSCFs).

Definition 2. An RSCF is said to be a probabilistic fixed ballot
rule (PFBR) if there is a collection {𝛽𝑆 }𝑆⊆𝑁 of probability distribu-
tions satisfying the following two properties:

(i) Ballot Unanimity: 𝛽∅ (𝑎𝑚) = 1 and 𝛽𝑁 (𝑎1) = 1, and
(ii) Monotonicity: for all𝑎𝑡 ∈ 𝐴, 𝑆 ⊂ 𝑇 ⊆ 𝑁 =⇒ 𝛽𝑆 ( [𝑎1, 𝑎𝑡 ]) ≤

𝛽𝑇 ( [𝑎1, 𝑎𝑡 ])
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such that for all 𝑃𝑁 ∈ D𝑛 and 𝑎𝑡 ∈ 𝐴, we have
𝜑𝑎𝑡 (𝑃𝑁 ) = 𝛽𝑆 (𝑡 ;𝑃𝑁 ) ( [𝑎1, 𝑎𝑡 ]) − 𝛽𝑆 (𝑡−1;𝑃𝑁 ) ( [𝑎1, 𝑎𝑡−1]);

where 𝛽𝑆 (0;𝑃𝑁 ) ( [𝑎1, 𝑎0]) = 0.

Lemma 1. An RSCF on D𝑛 is unanimous and strategy-proof if
and only if it is a probabilistic fixed ballot rule [9].

Definition 3. A DSCF 𝑓 is a min-max rule if for all 𝑆 ⊆ 𝑁 ,
there exists 𝛽𝑆 ∈ 𝐴 satisfying

𝛽∅ = 𝑎𝑚, 𝛽𝑁 = 𝑎1, and 𝛽𝑇 ⪯ 𝛽𝑆 for all 𝑆 ⊆ 𝑇
such that

𝑓 (𝑃𝑁 ) = min
𝑆⊆𝑁

[
max
𝑖∈𝑆

{𝑃𝑖 (1), 𝛽𝑆 }
]
.

A random min-max rule is a convex combination of min-max
rules, which is expressed as 𝜑 =

∑
𝑤∈𝑊 𝜆𝑤𝜑𝑤 where

∑
𝑤∈𝑊 𝜆𝑤 =

1, and for every 𝑗∈𝑊 , 𝜑 𝑗 is a min-max rule and 0 ≤ 𝜆 𝑗 ≤ 1.

Lemma 2. An RSCF on D𝑛 is unanimous and strategy-proof if
and only if it is a random min-max rule [14].

3 GROUP-FAIRNESS
Let 𝐺 = [𝑔] and N be a partition of 𝑁 into 𝑔 groups defined as
N = (𝑁1, . . . , 𝑁𝑔). A permutation 𝜋 of 𝑁 is group preserving if for
all 𝑞 ∈ 𝐺 , 𝑖 ∈ 𝑁𝑞 implies 𝜋 (𝑖) ∈ 𝑁𝑞 . To achieve fairness within the
group, we ensure that all the agents in it are treated symmetrically.

Definition 4. An RSCF is group-wise anonymous if for all
group preserving permutations 𝜋 of 𝑁 and all 𝑃𝑁 ∈ D𝑛 , we have
𝜑 (𝑃𝑁 ) = 𝜑 (𝑃𝜋 (𝑁 ) ) where 𝑃𝜋 (𝑁 ) = (𝑃𝜋 (1) , . . . , 𝑃𝜋 (𝑛) ).

To ensure fairness across groups, we define two notions each
with three parameters: 𝜅𝐺 = (𝜅𝑞)𝑞∈𝐺 , 𝜓𝐺 = (𝜓𝑞)𝑞∈𝐺 , and 𝜂𝐺 =

(𝜂𝑞)𝑞∈𝐺 . For every group 𝑞 ∈ 𝐺 , 𝜓𝑞 is a function that selects 𝜅𝑞
alternatives as the representatives of 𝑞. Assumptions on 𝜓𝐺 and
examples satisfying them are discussed in our long version [16]. Our
weak fairness notion ensures that the𝜅𝑞 representatives collectively
receive a probability of at least𝜂𝑞 , while the stronger notion ensures
that at least one of them gets a probability of at least 𝜂𝑞 .

Definition 5. An RSCF 𝜑 is (𝜿𝑮 , 𝝍𝑮 , 𝜼𝑮)-weak fair if for all
𝑃𝑁 ∈ D𝑛 and all 𝑞 ∈ 𝐺 , it holds that 𝜑𝜓𝑞 (𝑃𝑁𝑞 ) (𝑃𝑁 ) ≥ 𝜂𝑞 .

Definition 6. An RSCF 𝜑 is (𝜿𝑮 , 𝝍𝑮 , 𝜼𝑮)-strong fair if for all
𝑃𝑁∈D𝑛 and 𝑞 ∈𝐺 , there exists 𝑎 ∈𝜓𝑞 (𝑁𝑞) such that 𝜑𝑎 (𝑃𝑁 ) ≥ 𝜂𝑞 .

3.0.1 Some notations. Let Γ be the set of all 𝑔 dimensional vectors
such that 𝛾𝑞 ∈ {0, . . . , |𝑁𝑞 |} for all 𝑞. For 𝛾,𝛾 ′∈Γ, we say 𝛾≫𝛾 ′ if
𝛾𝑞≥𝛾 ′𝑞 for all 𝑞 ∈ 𝐺 . Let 𝛾 = (0)𝑞∈𝐺 and 𝛾 = ( |𝑁𝑞 |)𝑞∈𝐺 . For a profile
𝑃𝑁 and 1 ≤ 𝑡 ≤ 𝑚, let 𝛼 (𝑡 ; 𝑃𝑁 ) = (𝛼𝑞)𝑞∈𝐺 where 𝛼𝑞 = |{𝑖 ∈ 𝑁𝑞 |
𝑃𝑖 (1) ⪯ 𝑎𝑡 }|. For 𝑡 ≤ |𝑁𝑞 |, we denote by 𝜏𝑡 (𝑃𝑁𝑞

) the alternative
at the 𝑡𝑡ℎ position when the top-ranked alternatives in 𝑃𝑁𝑞

are
arranged in increasing order (with repetition). A set of alternatives
{𝑎1, 𝑎2, . . . , 𝑎𝑡 } is feasible at (𝑧0, 𝑧1, 𝑧2, . . . , 𝑧𝑡 ;𝜓𝑞) if there exists
a profile 𝑃𝑁𝑞

such that 𝑎1 = min{𝜓𝑞 (𝑃𝑁𝑞
)}, |{𝑖 ∈ 𝑁𝑞 : 𝑃𝑖 (1) ≺

𝑎1}| = 𝑧0, and |{𝑖 ∈ 𝑁𝑞 : 𝑃𝑖 (1) ⪯ 𝑎 𝑗 }| = 𝑧 𝑗 for every 𝑗 ∈ [𝑡].

3.1 Direct Characterization
We first modify the idea of PFBRs to introduce probabilistic fixed
group ballot rules (PFGBRs)which characterize PFBRs satisfying
group-wise anonymity [16].

Definition 7. An RSCF 𝜑 on D𝑛 is said to be a PFGBR if there
is a collection of probabilistic ballots {𝛽𝛾 }𝛾 ∈Γ which satisfies

(i) Ballot Unanimity: 𝛽𝛾 (𝑎𝑚) = 1 and 𝛽𝛾 (𝑎1) = 1, and
(ii) Monotonicity: for all𝛾,𝛾 ′ ∈ Γ,𝛾 ≫ 𝛾 ′ implies 𝛽𝛾 ( [𝑎1, 𝑎𝑡 ]) ≥

𝛽𝛾 ′ ( [𝑎1, 𝑎𝑡 ]) for all 𝑡 ∈ [1,𝑚],
such that for all 𝑃𝑁 ∈ D𝑛 and all 𝑎𝑡 ∈ 𝐴,

𝜑𝑎𝑡 (𝑃𝑁 ) = 𝛽𝛼 (𝑡,𝑃𝑁 ) ( [𝑎1, 𝑎𝑡 ]) − 𝛽𝛼 (𝑡−1,𝑃𝑁 ) ( [𝑎1, 𝑎𝑡−1]);
where 𝛽𝛼 (0,𝑃𝑁 ) ( [𝑎1, 𝑎0]) = 0.

Proposition 1. A PFGBR is (𝜅𝐺 ,𝜓𝐺 , 𝜂𝐺 )-weak fair if and only if
for all 𝑞 ∈ 𝐺 , for all 𝛾,𝛾 ′ ∈ Γ such that 𝛾≫𝛾 ′, and for all 𝑎𝑥∈𝐴 such
that {𝑎𝑥 , 𝑎𝑥+𝜅𝑞−1} is feasible at (𝛾 ′𝑞, 𝑧, 𝛾𝑞 ;𝜓𝑞) for some 𝑧, we have
𝛽𝛾 ( [𝑎1, 𝑎𝑥+𝜅𝑞−1])−𝛽𝛾 ′ ( [𝑎1, 𝑎𝑥−1])≥𝜂𝑞 .

Theorem 1. A PFGBR is (𝜅𝐺 ,𝜓𝐺 , 𝜂𝐺 )-strong fair if and only if
for all 𝑞 ∈ 𝐺 , for all 𝛾0, 𝛾1, . . . , 𝛾𝜅𝑞 ∈ Γ such that 𝛾𝜅𝑞 ≫ . . . ≫
𝛾1 ≫ 𝛾0, and for all 𝑎𝑥 ∈ 𝐴 such that {𝑎𝑥 , 𝑎𝑥+1, . . . , 𝑎𝑥+𝜅𝑞−1} is
feasible at (𝛾0, 𝛾1, . . . , 𝛾𝜅𝑞 ;𝜓𝑞), there exists 𝑡 ∈ [0, 𝜅𝑞 − 1] such that
𝛽𝛾𝑡+1 ( [𝑎1, 𝑎𝑥+𝑡 ]) − 𝛽𝛾𝑡 ( [𝑎1, 𝑎𝑥+𝑡−1]) ≥ 𝜂𝑞 .

3.2 Extreme Point Characterization
We modify min-max rules to introduce group min-max rules.

Definition 8. ADSCF 𝑓 is called a groupmin-max rule (GMMR)
if for every 𝛾 ∈ Γ, there exists 𝛽𝛾 ∈ 𝐴 satisfying 𝛽𝛾 = 𝑎𝑚, 𝛽𝛾 =

𝑎1, and 𝛽𝛾 ⪯ 𝛽𝛾 ′ for all 𝛾 ≫ 𝛾 ′ such that
𝑓 (𝑃𝑁 ) = min

𝛾 ∈Γ

[
max{𝜏𝛾1 (𝑃𝑁1 ), . . . , 𝜏𝛾𝑔 (𝑃𝑁𝑔

), 𝛽𝛾 }
]
.

A random group min-max rule (RGMMR) is a convex combi-
nation of GMMRs, i.e.,𝜑 =

∑
𝑤∈𝑊 𝜆𝑤𝜑𝑤 where𝑊 = [𝑞],∑𝑤∈𝑊 𝜆𝑤 =

1, and for every 𝑗 ∈𝑊 , 0 ≤ 𝜆 𝑗 ≤ 1 and 𝜑 𝑗 is a GMMR. A rule is a
PFGBR if and only if it is a RGMMR [16].

Theorem 2. A RGMMR 𝜑 =
∑

𝑤∈𝑊 𝜆𝑤𝜑𝑤 is (𝜅𝐺 ,𝜓𝐺 , 𝜂𝐺 )-weak
fair if and only if for all 𝑞 ∈ 𝐺 , for all 𝛾,𝛾 ′ ∈ Γ such that 𝛾 ≫ 𝛾 ′,
and for all 𝑎𝑥∈𝐴 such that {𝑎𝑥 , 𝑎𝑥+𝜅𝑞−1} is feasible at (𝛾 ′𝑞, 𝑧, 𝛾𝑞 ;𝜓𝑞)
for some 𝑧, we have ∑︁

{𝑤 | 𝛽𝜑𝑤
𝛾 ′ ⪰𝑎𝑥 , 𝛽𝜑𝑤𝛾 ⪯𝑎𝑥+𝜅𝑞−1 }

𝜆𝑤 ≥ 𝜂𝑞 .

Theorem3. ARGMMR𝜑 =
∑

𝑤∈𝑊 𝜆𝑤𝜑𝑤 is (𝜅𝐺 ,𝜓𝐺 , 𝜂𝐺 )-strong
fair if and only if for all 𝑞 ∈ 𝐺 , for all 𝛾0, 𝛾1, . . . , 𝛾𝜅𝑞 ∈ Γ such that
𝛾𝜅𝑞≫. . .≫𝛾1≫𝛾0, and for all𝑎𝑥 ∈ 𝐴 such that {𝑎𝑥 , 𝑎𝑥+1, . . . , 𝑎𝑥+𝜅𝑞−1}
is feasible at (𝛾0, 𝛾1, . . . , 𝛾𝜅𝑞 ;𝜓𝑞), there exists 𝑡 ∈ [0, 𝜅𝑞 − 1] such that∑︁{

𝑤 | 𝛽𝜑𝑤
𝛾𝑡

⪰𝑎𝑥+𝑡 , 𝛽𝜑𝑤
𝛾𝑡+1

⪯𝑎𝑥+𝑡
} 𝜆𝑤 ≥ 𝜂𝑞 .

4 SUMMARY
We introduced group-fairness notions and characterized the unani-
mous, strategy-proof, and group-fair RSCFs under single-peaked
preferences. Individual-fairness is defined by considering a special
case with only singleton groups. While weak individual-fairness
ensures that 𝜑𝑈 (𝑃𝑖 (𝜅𝑖 ),𝑃𝑖 ) (𝑃𝑁 ) ≥ 𝜂𝑖 for every 𝑖 , strong fairness
ensures that there exists 𝑎 ∈ 𝑈 (𝑃𝑖 (𝜅𝑖 ), 𝑃𝑖 ) with 𝜑𝑎 (𝑃𝑁 ) ≥ 𝜂𝑖 . Some
computationally tractable group-fair rules and also characteriza-
tions of individually-fair rules are given in our long version [16].
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