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ABSTRACT
The (group) no-show paradox refers to the undesirable situation
where a group of agents has the incentive to abstain from voting
to get a more favorable winner. We examine the computational
complexity of verifying whether the group no-show paradox exists
given agents’ preferences and the voting rule. We prove that the
verification problem is NP-hard to compute for commonly studied
voting rules such as Copeland, maximin, single transferable vote,
and Black’s rule. We propose integer linear programming-based
algorithms and a breadth-first search algorithm for the verification
problem. Experimental results illustrate that the former work better
for a small number of alternatives, and the latter work better for a
small number of agents. Using these algorithms, we observe that
the group no-show paradoxes rarely occur in real-world data.
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1 INTRODUCTION
The no-show paradox, first observed by Fishburn and Brams [12],
generally refers to the counter-intuitive event where a group of
agents has the incentive to abstain from voting to make the winner
more favorable to them. This is undesirable because when it occurs,
agents can manipulate the result just by not showing up, which
is much easier (thus more threatening) than strategic manipula-
tion [1, 6, 8, 13, 14, 25] and control [2, 10, 24]. The no-show paradox
also discourages voters from participating in the election, reduc-
ing turnout and undermining democracy. Unfortunately, even the
single-voter no-show paradox always exists under a wide range of
voting rules, including all Condorcet rules [5, 6, 20], scoring run-off
methods [26] and all Pareto Optimal majoritarian voting rules [3].

Consequently, to understand its practical relevance, there is an
extensive literature on verifying the frequency of various kinds of
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no-show paradox under different assumptions, such as impartial
culture [17, 22, 23], single-peaked preferences [16], semi-random
models [27]. Pérez [21] and Duddy [9] studied strong versions of
no-show paradox’s likelihood in Condorcet rules. Recently Brandt
et al. [7] presented an ILP-based method for finding minimal voting
paradoxes, including the no-show paradox.

We can verify the existence of a single-voter no-show paradox
for many commonly-studied voting rules in polynomial time by
simply enumerating the possible absentee. But we have multiple
open questions for the group no-show paradox: How likely is the
occurrence of the group no-show paradox under commonly
studied voting rules? What is the computational complexity
of verifying the paradox?

A high complexity of verifying the existence of a paradox will
disallow voters from trying manipulation. However, a low complex-
ity can be advantageous from a mechanism designer’s perspective
because it would allow us to verify whether the group no-show
paradox is a significant concern in practice for a voting rule. This
would help select robust voting rules against voter abstention.

Our contributions. We characterize the computational com-
plexity of verifying group no-show paradox (GNSP) under several
common voting rules: Copeland, Maximin, STV, and all Condorceti-
fied positional scoring rules, including Black’s rule. We prove that,
unfortunately, the verification problem is NP-complete under all of
them. To computationally solve the problem, we propose integer
linear program (ILP)-based algorithms and a breadth-first search
search algorithm for verifying GNSP for these voting rules. Our
experiments on both synthetic data and real election data from Pre-
fLib [19] illustrate that the ILP algorithms work better for a small
number of alternatives, and the search algorithm works better for a
small number of agents. We also see that no-show paradoxes rarely
occur in real-world elections.

2 THE GROUP NO-SHOW PARADOX IN
VOTING

For any𝑚 ∈ N, letA denote the set of𝑚 ≥ 3 alternatives. LetL(A)
denote the set of all linear orders or rankings overA. The vector of
𝑛 agents’ votes, denoted by 𝑃 , is called a (preference) profile. In this
paper, we focus on resolute voting rules, 𝑟 : L(A)∗ → A, that map
a profile to a single alternative in A. For any profile 𝑃 and any pair
of alternatives 𝑎, 𝑏, let 𝑃 [𝑎 ≻ 𝑏] denote the total number of votes
in 𝑃 where 𝑎 is preferred to 𝑏. Let WMG(𝑃) denote the weighted
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majority graph of 𝑃 , whose vertices are A and whose weight on
edge 𝑎 → 𝑏 is 𝑤𝑃 (𝑎, 𝑏) = 𝑃 [𝑎 ≻ 𝑏] − 𝑃 [𝑏 ≻ 𝑎]. The Condorcet
winner of a profile 𝑃 , denoted by CW(𝑃), is the alternative that
only has outgoing edges in WMG(𝑃).

Positional scoring rules, e.g., Plurality, Borda, do not suffer from
the no-show paradox. So, we focus on other voting rules that do.
Popular voting rules like Copeland, Maximin, and other Condorceti-
fied voting rules choose the Condorcet winner when one exists,
and all these rules suffer from the no-show paradox. The single
transferable vote (STV) is an example of run-off or multi-round
voting rules that suffer from the no-show paradox. Tie-breaking
methods are applied whenever a voting rule leads to ties to get a
single winner. See [4] for an exposition to voting rules.

We adopt the following definition that inherits the spirits of var-
ious definitions of the group no-show paradox problem previously
given in social choice literature [11, 12, 17, 20].

Definition 1 (Group no-show paradox (GNSP)). A group no-
show paradox occurs in a profile 𝑃 under a resolute voting rule 𝑟 , if
there exists a subset of agents 𝑃 ′ ⊆ 𝑃 , each of which prefers 𝑟 (𝑃 − 𝑃 ′)
to 𝑟 (𝑃), thus giving them the incentive to abstain from voting.

Example 1. Let 𝑃 = 6@[2 ≻ 1 ≻ 3] + 4@[1 ≻ 3 ≻ 2] + 4@[3 ≻
2 ≻ 1]. If group 𝑃 ′ consisting of 2 votes of [3 ≻ 2 ≻ 1] abstain from
voting, then the Copeland winner (with lexicographic tie-breaking)
changes from 1 to 2. Notice that 2 ≻ 1 for both agents in 𝑃 ′. This
means that no-show paradox occurs in Copeland at 𝑃 . 2
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Figure 1: GNSP under Copeland.

3 COMPLEXITY OF VERIFYING GNSP
We discuss the computational complexity of computing the exis-
tence of group no-show paradox for Copeland, Maximin, Condoceti-
fied positional scoring rules, and STV. No-show paradoxes trivially
do not occur for positional scoring rules, so we do not discuss them
here. Given a voting rule 𝑟 , we denote GNSP-𝑟 the computational
problem that takes a profile 𝑃 (𝑛 votes on 𝑚 alternatives) as an
input and outputs whether GNSP will occur for 𝑃 .

For any fixed𝑚 and anonymous voting rule 𝑟 , GNSP-𝑟 can be
solved in polynomial time if the winner of 𝑟 can be computed in
polynomial time. This is because all possible profiles after absten-
tions can be enumerated in polynomial time. Unfortunately, for a
variable𝑚, we get negative results, summed up in Theorem 1.

Theorem 1. GNSP-𝑟 is NP-complete to compute when 𝑟 is Copeland,
Maximin or STV where the tie-breaking mechanism is lexicographic,
fixed-agent, or most popular singleton ranking-based tie-breaking.
GNSP-𝑟 is NP-complete to compute for all Condorcetified positional
scoring rules for any tie-breaking mechanism.

The problem is in NP for all the voting rules— because given a
subset of agents 𝑃 ′, we can run the voting mechanism with and
without the group to check if they have an incentive to abstain
from voting. The NP-hardness is proved by reductions from RXC3,
which is a restriction of exact 3 cover that requires every element
to be in exactly three sets and is proved to be NP-complete [15].

4 ALGORITHMS AND EXPERIMENTALS
Algorithms.We propose two types of algorithms for verifying the
group no-show paradox under different circumstances.

We developed a BFS algorithm that enumerates all possible group
abstentions in a breadth-first manner. In the worst case (when GNSP
does not occur), the algorithm checks all possible combinations of
group abstentions. and has a run-time of [( 𝑛

𝑚! )
𝑚! ·Run-time(𝑟 )]. Al-

though this is polynomial-time for fixed𝑚, becomes too expensive
for large 𝑛 since the degree of the polynomial is very high.

For large 𝑛, we developed intelger linear program (ILP) formula-
tions of the group no-show paradox for four different voting rules –
Copeland, maximin, Black’s rule, and STV. For our formulation, the
variables are the number of voters voting for each linear order in
L(A). The objective function minimizes the number of abstentions
and the constraints are defined by each voting rule’s properties.
However, this formulation can be computationally expensive for
high𝑚. For example, for Copeland, for any preference profile, we
need to solve 𝑂 (3

𝑚 (𝑚−1)
2 ) ILPs, each with 𝑂 (𝑚2) constraints.
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Figure 2: Likelihood of GNSP under Copeland.

Experiments and Results. From experiments on synthetic data,
we found that, as expected, the run-time grows exponentially with
the number of alternatives,𝑚, for the ILP-based algorithm, whereas
it grows exponentially with the number of agents, 𝑛, for the BFS
algorithm. We used our algorithms on real election data on PrefLib.
Out of the 306 observed preference profiles, only one profile each
violates group participation for Copeland, Black’s rule and STV,
and we found no violations for Maximin. In all three occurrences of
the paradox, there were high number of candidates and all agents
had unique preference rankings. We repeated the experiments on
synthetic data, as seen in Figure 2. We generate data using impar-
tial culture assumptions (no correlation among the voting agents)
and also by sampling from Mallows models [18] (which indicate
different levels of consensus among the voting agents). It can be
seen that more consensus among the agents (low 𝜙 value) leads
to a lower likelihood of GNSP. This behavior is also seen for other
voting rules as well and might explain why we see rare occurrences
of GNSP for real data.
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