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ABSTRACT

Recent advances in visualisation technologies have opened up new
possibilities for human-agent communication. For systems where
agents use automated planning, visualisation of agent intentions,
i.e., agent planned actions, can assist human understanding and
decision making (e.g., deciding when human control is required or
when it can be delegated to an agent). We are working in an appli-
cation area, shipbuilding, where branched plans are often essential,
due to the typical uncertainty experienced. Our focus is how best
to communicate, using visualisation, the key information content
of branched plans. It is important that such visualisations commu-
nicate the complexity and variety of the possible agent intentions
i.e., executions, captured in a branched plan, whilst also connect-
ing to the practitioner’s understanding of the problem. Thus we
utilise an approach to generate the complete branched plan, to be
able to provide a full picture of its complexity, and a mechanism to
select a subset of diverse traces that characterise the possible agent
intentions. We have developed an interface which uses 3D visual-
isation to communicate details of these characterising execution
traces. Using this interface, we conducted a study evaluating the
impact of different modes of presentation on user understanding.
Our results support our expectation that visualisation of branched
plan characterising execution traces increases user understanding
of agent intention and plan execution possibilities.
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INTRODUCTION

In systems requiring joint human and Al agent decision making
there is a need for human users to understand the intentions of
agents, along with the agent rationale for different decisions. This
requires the AI agent to be able to explain its reasoning to the
human, something which remains a significant challenge [12, 25].
This is reflected in initiatives like DARPA’s Explainable Al Program
[13] and events such as [11, 31, 32].
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For those application domains where Al agents (virtual or robot)
use automated planning to control behaviour, the challenge is how
to clearly communicate to the human the intentions of the agent
which are encapsulated in its generated plans. It has been shown
that 3D visualisation and simulation of agent plans can help human
user understanding of agent intent [6, 33]. However, generating un-
derstandable visualisations is challenging because a plan sequence
already implicitly encapsulates the balance made between depen-
dency, constraint and choice, as well as the implied implementation
of the plan steps themselves. This challenge is exacerbated when
more complex plan structures are required, such as branched plans
for partially observable domains.

This is the case for our application — shipbuilding - where
branched plans are often essential, due to the typical uncertainty
experienced. The advantage of branched plans is that they allow
efficient action sequences to be captured for each of the possible
worlds that might occur and thus capture a diverse space of alterna-
tive solutions. However, the size of the space of possible executions
makes it challenging to communicate this to a practitioner, along
with the intentions of the agent whose behaviour is underpinned by
the plan (e.g., Figure 1, the branched plan used in our evaluation).

Thus, the problem we address in this work is how to communi-
cate key information content of branched agent plans to human
decision makers. This comprises a number of sub-problems: (i) how
to communicate the complexity and variety of the possible execu-
tions captured within a branched plan; (ii) how to select subsets of
execution traces that capture the scope of possibilities in branch-
ing plan structures to communicate to practitioners - something
which is essential, as it is not desirable, or possible, to present all
linearisations of a branched plan to a practitioner; and (iii) how
to communicate the complexity of the branched plan and the se-
lected execution traces to practitioners, in ways that connect with
their understanding of the problem and increases their ability to
understand the agents intention (their planned actions).

Our contribution addresses these sub-problems. We have: (i)
developed a full branched plan generation mechanism, using [2],
to branch on sensor action values and emphasize key action points;
(ii) developed a mechanism to select subsets of execution traces
capturing the scope of possibilities in branching plan structures; and
(iii) demonstrated increased user understanding of agent intention
and plan execution possibilities resulting from the way in which
diverse trace information is communicated through visualisation.

BACKGROUND

A partially observable planning problem, e.g., [2], can be defined
by a tuple, P = (F,A,M, I, G), with fluents F, actions A, sensor
model M, the initial state clauses I, over F, and goal, G. The clauses
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of the initial state provide both the known positive and negative
literals, as well as constraints over the currently unknown parts
of the initial state. An action is defined by its preconditions and
effects. An action is applicable if its preconditions are satisfied in
the agent’s partial state and the application of an action causes its
effects to be applied to the agent’s current state. Sensing actions are
triggered whenever they become applicable and their observations
update the agent’s state. A solution to the problem is a branched
plan, 7, which has both deterministic action nodes and branching
nodes, such that every branch of the tree results in a goal state. The
branching nodes are labelled with a proposition and have branches
for each of the possible valuations. The application of a branched
plan requires traversing the plan tree applying the deterministic
actions and selecting the appropriate branches by detecting the
value of the proposition in the environment.

Partially observable planning problems, P, with a certain subset
of exclusive-or knowledge can be compiled into deterministic clas-
sical planning problem, Ppg7, following the approach in [2]. A key
aspect of this encoding is that each sensing action is replaced by a
pair of standard actions: one captures the effect of the sensor in the
case that its proposition holds in the world and the other for the
negative case. As a result the valuation of the sensors becomes a
choice for the planner to make. A solution for Ppgr is therefore an
optimistic and partial solution for P, which we denote, 7optimistic-

Case Study: Shipbuilding

This work is related to the Shipbuilding 4.0 initiative [30] which
will see a move to “smart” shipbuilding, with deployment of semi-
autonomous agents, such as construction robots, for use in limited
access areas.

Automated Planning technologies are able to generate agent
plans of actions that maximise the achievement of mission goals
whilst at the same time adhere to strict operational safety con-
straints. Thus we adopt a planning approach and represent the
shipbuilding planning problem as a partially observable planning
problem, which captures various typical aspects of construction,
including preparation, movement of robots and materials and the
actual construction. Scenarios feature uncertainty in both the re-
quired preparation of the ground to permit construction and move-
ment, and in the integrity of building materials. The model includes
actions for movement, block-placing and sensing actions for iden-
tifying debris in the environment. Given the typical uncertainty
which is a feature of domains such as this, we have found branched
plans are often essential.

An important aspect of such domains is the need to keep the hu-
man(s) in-the-loop for joint decision making. Thus our focus is the
use of visualisation to facilitate collaborative decision making be-
tween humans and agents (e.g., via manipulation and interrogation
of objects and affordances in a virtual environment). In particular
in this work our interest is how best to communicate the key infor-
mation content of branching agent plans - the agents intention -
to human decision makers.

BRANCHED PLAN GENERATION

We are interested in application domains that require branched
plans, due to the uncertainty that is experienced. Branched plans
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Figure 1: Visualisation of the branched plan for the problem
used in the evaluation (see text for further detail).

allow efficient action sequences to be captured for each of the
possible worlds that might be encountered during execution (with
respect to the model). As a result branched plans can capture a
diverse space of alternative solution sequences. Moreover sensor
values and traces are not associated with likelihoods, leading to an
interpretation that each of the executions is as likely as any other.

Given our focus in this work, we require a complete branching
tree structure to be generated, so that we can provide a practitioner
with a full picture of the complexity of the branched plan. Our
approach to this generation uses the K-Replanner [2]: an online
approach to partially observable planning which supports efficient
plan generation through a compilation to classical planning. The
underlying classical planner is used to generate an optimistic plan,
Toptimistic and the K-Replanner approach follows this plan until
an inconsistency is discovered, at which point it replans. However,
as K-Replanner only explores individual real worlds, we extend it
to generate the full plan [18]. At each sensing action encountered
in the optimistic plan, the plan is branched for each of the possible
values and each of these branches is explored iteratively. Although
not explored in this work, we observe that if the entire tree is
prohibitively large it would be possible to explore a partial plan, by
bounding the number of branching points. The action sequences
from this partial plan could be bounded and used as input for our
visualisation tools (this is particularly suited to the INTERLEAVED
mode. Discussed further in: “Empirical Evaluation”).

In addition, the K-Replanner’s optimistic plan, 7optimistic, plays
an important role in our approach to communicating, through
visualisation, the branched plan possibilities to the user. As this op-
timistic plan is used to drive the planner’s strategy during planning
it means that our visualisation accurately represents the intention
of the system. Whereas with more direct approaches to partially
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Figure 2: Radial visualisation of branched plan for sample
problem: indicating actions and branching points; extended
with selected execution traces (highlighted, view in colour).

observable planning it might prove challenging to accurately reflect
their strategies, K-Replanner’s strategy is particularly amenable. For
further detail on optimistic plan visualisation see: “User Interface:
Presenting 3D Visualisations”.

SELECTING CHARACTERISING PLAN TRACES

Our focus is communicating branched plans to human practition-
ers, however it is not typically possible, or desirable, to present all
linearisations. Thus we propose using a small subset of the execu-
tion traces to provide examples from across the broad scope of the
alternatives captured in the plan. The intention is to provide the
practitioner with the intuition of what is captured within the plan
without the burden of fully examining every trace. Thus, we aim
to select a small number of execution traces that characterise the
range of executions represented by the branched plan.

Our selection mechanism uses a dissimilarity measure to es-
timate the difference between two alternative action sequences.
Using this measure on action sequences ignores other features in
the trace, and means that the similarity of two traces is determined
by the difference in the agent’s actions and not differences in such
things as sensor readings, which can be irrelevant. Using the dissim-
ilarity measure allows the full set of linearisations to be clustered to
identify its key groupings. Clustering provides flexibility, allowing
a balance between the number of clusters and loss of detail.

Dissimilarity Measure: To estimate the dissimilarity between two
execution sequences we use the Levenshtein distance [20]: the dis-
tance between two word sequences which provides a measure of
the edit difference between the sequences, while also respecting
ordering. In our case we use unique words for each ground action.
This measure was used as it is directly applicable to partially ob-
servable planning domains and it has been demonstrated that the
approach leads to the identification of diverse plans [9].
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Clustering Execution Traces: Clustering identifies groups of elements,
which are similar (or close) to the elements in their own group, while
being dissimilar (or far away from) elements in other groups. We
therefore aim to break the space of possibilities into clusters, each
representing similar execution traces.

We used the Partitioning Around Medoids (PAM) implementa-
tion of the k-medoids method [17]. This approach partitions the data
into k clusters, each associated with a representative data point (the
medoid), considered the most central in the cluster. This approach
operates from a dissimilarity matrix, which can be computed by
comparing each pair of traces using the dissimilarity measure. The
medoids are central members of their respective clusters, and so we
use them as the representatives of their clusters. For an appropriate
value of k, this set of medoids will identify diverse execution traces,
characterising the execution traces in the plan.

Selecting the Number of Clusters: The appropriate choice of k is
likely to depend on the application domain and the depth of un-
derstanding that is appropriate for the user, which might relate to
the seriousness of inappropriate action, e.g., safety and security
concerns. We therefore prefer the relatively lightweight k-medoids
algorithm, which provides the necessary flexibility. One way to
select a reasonable value for k is to calculate the average silhouette
score for the clusters [27], which evaluates the clusters by averag-
ing the similarity within clusters and dissimilarity between clusters,
with respect to the distance measure. This can only be evaluated ac-
curately for at least 2 clusters, so we first test to determine whether
more than 1 cluster is appropriate [10]. The optimal average silhou-
ette score indicates a good trade-off between the size of k and the
amount of dissimilarity in each cluster. We therefore see this as a
suitable default value.

COMMUNICATING BRANCHED PLANS

The size of branched plans makes it challenging to communicate the
space of possible executions to practitioners and consequently the
intentions of agents whose behaviours are underpinned by such a
plan. Our approach to address this exploits two visualisation meth-
ods to: (i) communicate the space of alternative execution traces
captured in the plan; and (ii) highlight the set of characterising
execution traces (selected using the approach discussed earlier).

(i) Communicating Space of Executions

We use a visualisation of the complete space of alternative execu-
tions to provide an indication of the number and complexity of the
possible alternatives. Although there is no intention that this will
lead to an understanding of the actual traces, we extend the visuali-
sation to allow practitioners to explore the possible executions.
Branched plans allow efficient solutions to be captured for each
possible concrete state. For our branched plan generator, the branch-
ing nodes are associated with sensing actions allowing an appro-
priate course of action to be selected for each sensor valuation. In
scenarios with a small amount of uncertainty the plan might be
captured by a concise tree. As the level of (relevant) uncertainty
increases, the size of the tree grows and in some cases will be
very large. We observe that there is a natural similarity between
a branched tree and a classical planning state space. This allows
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Figure 4: Visualisation example showing difference between:

(a) simulation; (b) execution of selected plan traces.
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Figure 5: Example sensing action with agent in (1,2) sensing
in (2,2). Here, the agent identifies rubble (a) and clears it (b).

clear rubble action

us to exploit recent results in state space visualisation [22, 24] to

effectively communicate the size/complexity of the branched plan.

We use a radial layout to visualise the tree. The root of the tree
naturally sits in the centre of the visualisation and the branches
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of the tree expand from the root outwards. The graph has action
and sensor action nodes and edges from sensor actions are labelled
with the associated sensor value (i.e., True or False). An example
visualisation of the branched plan for a small construction problem
is presented in Figure 2 and the branched plan for the problem used
in our evaluation is presented in Figure 1. Whereas in [22, 24] the
search spaces branch on alternative choices, our plans branch on
the valuation of sensor actions. It is therefore appropriate that the
distance from the centre reflects the length of the execution, so that
clearly longer executions can easily be identified.

We have extended visualisation by emphasising the key action
nodes, i.e. those that achieve subgoals (shown with emboldened
border in Figures 1 and 2). In order to reduce the complexity of
the visualisation, the nodes are annotated with simplified repre-
sentations of the actions and sensor actions. Further information
is provided through tooltips, which provide longer descriptions of
the actions and decision points, as well as key state information.

(ii) Highlighting Characterising Execution Traces

We use these selected execution traces to enhance the branched
plan radial visualisation and provide meaningful guidance to assist
practitioners to navigate the tree and understand its alternatives.
Figure 2 illustrates the visualisation of diverse alternative execution
traces for our construction problem, with differently coloured lines
added to the radial plan visualisation for each of the diverse traces.

Importantly, these characterising execution traces are the ones
which are communicated to the practitioner, using 3D visualisation,
as discussed in the next section.

COMMUNICATING EXECUTION TRACES

The 3D visualisation of a characterising execution trace provides an
effective mechanism for clearly communicating the agent intention
captured in that particular trace. We contrast this 3D visualisation
of an individual trace to the radial visualisation of a branched plan
discussed earlier, as it refers to the use of 3D graphics to provide a
visual run through of the sequence of actions, via animations, in a
virtual environment. This 3D visualisation can be either: prior to
execution, i.e. simulation; or the actual execution itself.

We have developed a GUI for presenting such 3D visualisations
to practitioners and for uses in our evaluation. The interface is im-
plemented using the Unity3D game engine. An example is shown in
Figure 3. It provides side-by-side synchronous views of the current
action being visualised: a top-down view of the agent acting in the
world (left-hand side), and a 3D isometric view (right-hand side). In
addition, the GUI has an icon-based representation of the sequence
of actions in the execution trace (shown along the bottom).

3D Visualisation of Action Sequences

The generation of 3D visualisations of agent actions relies upon the
ability of the interface to convey realistic and semantically mean-
ingful animations within the virtual environment. To maximise
practitioner understanding of the execution trace visualisations,
we created contextually identifiable discrete sets of 3D animations
constituting meaningful representations of agent actions.

An important requirement for the 3D visualisation is to provide
visual representations that clearly differentiate between simulation
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Figure 6: Example 3D visualisation of agent action sequences showing: a number of sensing actions (actions a, b, d, f and g in
the figure); agent clearing of rubble (actions ¢ and h); and agent construction of walls (actions i and j).

and execution, and to ensure the animations are consistent and
graphically similar. Thus, actions use the same graphical animations
in simulation and execution but use a different rendering style:
simulation actions are rendered in turquoise-coloured wireframe
render; whilst execution actions are rendered in grey-coloured
fully-shaded render (Figure 4).

A key concept in branched plan generation is the use of sensing
actions (see section “Background"), which must be visualised so
that practitioners can understand the implication of the valuation
process. For instance, in Figure 5, as the agent has identified rub-
ble, the agent’s plan from that point is to clear the rubble before
proceeding further.

As an illustration of 3D visualization of an agent sequence, as
shown to a practitioner, Figure 6 shows a full trace of an execution of
actions. The figure includes several sensing actions, actions clearing
rubble and construction. The icons across the centre are coloured as
follows: grey if the action is yet to be visualised; yellow if currently
being visualised; or green if fully visualised.

GUI: PRESENTING 3D VISUALISATIONS

An important aspect of eXplainable Al Planning (XAIP) is help-
ing users understand what decisions have been made in a plan,
and why. As it is not always feasible to present all branched plan
linearisations, our approach is to select a diverse set of execution
traces, that characterise the possibilities captured within the full
branched plan, and to present these to the practitioner via a series
of 3D visualisations within the user interface. Here, we describe
the ways in which presentations can be organised to exploit plan
structure, as appropriate, to assist practitioners understanding by
giving some transparency to the agents’ planning strategy.

Communicating the Agent’s Intent

Building on [2], our approach to branching plan generation is based
on a specific strategy: construct the branched plan starting from
a single optimistic plan, 7optimistic, and iteratively branch for al-
ternative sensor values. In order to make this planning strategy
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transparent to the practitioner, and help them to understand the
assumptions made generating the plan, we use this optimistic plan
as the “backbone” for presentation of 3D visualisations.

Thus, within the user interface, both the agent’s optimistic plan
and the selected set of characterising plan traces can be presented to
the practitioner - in order to establish common ground between the
practitioner and the agent (the agent could follow one of the diverse
plans; however, because it is not used to guide plan construction it
may lack the rationality and focus of the optimistic plan).

User Interface Modes
The User Interface (GUI) has the following presentation modes:

o Simulation: presentation of 3D visualisations of selected traces
from the full branched plan prior to execution. In simulation
mode, each trace implies a set of assumed sensor valuations for
the sensing actions, which are used to generate the appropriate
visualisations (differentiated using a different render mode as
discussed earlier).

e Execution: presentation of 3D visualisation of the actual execution
from a concrete starting state through to a breakpoint, or the final
goal. A breakpoint is a state where the actual sensor valuations
differ from the assumed values in the plan trace being executed.

The appropriate mode of presentation of information will often
vary between applications. For example, in some scenarios, where
the practitioner must have complete understanding of the agent
plan before execution starts (e.g., high risk applications), simulation
can be used to safely explore different possible plan alternatives
prior to execution. Whereas in other situations it might be appro-
priate to interleave the presentation of information, via simulation,
throughout the execution (e.g., slower execution applications).
Based on the different modes of presentation the following ob-
servations have guided the design of our empirical evaluation: (i)
we observe that breakpoints, where the actual sensor valuations dif-
fer from the assumed sensor valuations during execution, provide
a useful opportunity to supply further information to the practi-
tioner; and (ii) as an agent executes its plan, the uncertainty in



Session 1E: Human-Agent Teams

Baseline

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

Upfront

@

optimistic

simulation

x4A

Figure 7: Overview of execution modes for the User Study with visualisation sequences depending on condition: BASELINE,
UPrFRONT or INTERLEAVED. Full branched plans were shown to UPFRONT or INTERLEAVED conditions ((c) or @ respectively), but not
BASELINE. All conditions were shown a combination of simulation and execution visualisation sequences, with k diverse plans,
depending on condition: BASELINE @-@; UPFRONT with k=10 @-; and INTERLEAVED with k=2 @-@ (see text for details).

the concrete state decreases, thus isolating a smaller portion of the
overall branched plan. Therefore, where appropriate, presenting
information at stages during execution, in an INTERLEAVED mode,
can provide sets of execution continuations that are more focused
towards the unfolding execution. Based on this observation, our
working hypothesis is that INTERLEAVED presentation will result in
increases in participant understanding of agent intent.

EMPIRICAL EVALUATION

For evaluation we developed a prototype interface featuring: (i)
Branched plan generation, based on the K-Replanner, extended to
output the full contingency tree; (ii) automated selection of a set
of execution traces characterising the scope of possibilities within
generated branched plans; (iii) radial visualisation of branched
plans, using the approach of [22, 24]; and (iv) a virtual environment
for presentation to practitioners via 3D visualisation of selected
traces. This was a virtual construction world which is representative
of the class of problems we are interested in. It features an agent,
performing construction tasks, with uncertainty in the required
preparation of the ground to allow for construction and movement.

User Study

We set up a user study to investigate the impact of different modes
of information presentation and exploration on practitioner under-
standing of agent plans, in terms of awareness of agent intended
actions in the presence of uncertainty, the agents’ overall goal and
how confident and prepared they felt to answer the questions.
The study was delivered via an online questionnaire with all
participants viewing a system briefing, covering the functioning of
the prototype using text, images and videos e.g. visual difference
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between simulation and execution, as in Figure 4. A single planning
instance was used for the study with 4 breakpoints (points where
the actual sensor values differ from those assumed in the optimistic
plan). Depending on experimental condition, participants were
shown and asked questions relating to radial visualisation of the
full branched plan and 3D visualisations (videos) of selected traces
in simulation or execution. We recruited 24 native english speakers
who were randomly assigned to one of three conditions which differ
with respect to the 3D visualisations shown and their organisation
presentation mode, as follows, and shown in Figure 7:

e BASELINE: participants were shown simulation of the optimistic
plan (@), followed by optimistic plan execution, to the next break-
point, @, or the goal. After each breakpoint this continued, with
simulation of the optimistic plan from the current state, followed
by execution of the optimistic plan looping through to the goal.

o UPFRONT: participants were shown the radial visualisation of
the full branched graph, (¢). Then simulation of each of k diverse
traces (rationale for k below) and the optimistic plan, @ fol-
lowed by execution of the optimistic plan through to the first
breakpoint, (¢). Continuation from the first breakpoint, repeat-
edly loops, showing simulation of the optimistic plan from the
current state, (), followed by execution of the optimistic plan to
the next breakpoint or goal, , repeating through to the goal.

o INTERLEAVED: participants were shown the radial visualisation
(h). Then simulation of each of k diverse traces (rationale for
k below) and the optimistic plan, (), followed by execution of
the optimistic plan, through to the next breakpoint or the goal,
@. Continuation from each breakpoint repeatedly loops starting
from the optimistic plan from the new current state.
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BREAKPOINT QUESTIONS: BREAKPOINT QUESTIONS
Q1: Partipant Informedness: Q1: Participant Q2: Participant Q3: % Awareness of
“.. sufficient information about the possible alternative executions for Informedness Confidence Agent Intention
you to anticipate the execution steps ..?” p U I B Y I B U I B
Q2: Participant Confidence: 1] 41 25 | 16 | 34 28 | 2.1 | 66.7 | 625 50.0
“How confident are you about your answer?” 2 || 40 31 | 1.7 | 3.9 28 | 1.8 | 77.8 | 625 60.0
Q3: Awareness of Agent Intention: 338 31 126 |39 23 | 25 | 333 | 875 60.0
“... what do you think the agent will do next?” 41139 25 |30 |39 21 | 28 | 66.7 | 87.5 80.0
H 39/ |28 |22 |38V |26 |23 611 | 750V | 625

POST-EXECUTION QUESTIONS:

Q4: Participant Informedness:

‘... How well prepared were you ..?”

Q5:

Participant Confidence:
“... do you know what the agent’s goal was? ... How confident are you?

Q6: Awareness of Agent Intention (overall Goal):
“.. do you know what the agent’s goal was? ... State what the agent’s

goal was”

Figure 8: User-Study Questions: Q1-Q3 were asked after each
breakpoint; Q4-Q6 were asked after the execution completed.

Rationale for values of k: We wanted to ensure a similar number
traces shown to INTERLEAVED and UPFRONT participants, so didn’t
use the silhouette scores directly as this would mean different num-
bers at each breakpoint and would introduce too much variation.
Instead, the following values of k were used: for INTERLEAVED k=2,
the mode of the silhouette scores across the breakpoints; and for
UPFRONT, k = 10, to ensure that these participants saw a similar
number to the overall number for INTERLEAVED.

User-Study Questions: Participant questions were either breakpoint
or post-execution. These questions are summarised in Figure 8.
Breakpoint questions are asked during execution, at each break-
point (points where the actual sensor values differ from the as-
sumed values in the optimistic plan being executed), and relate to
participants feelings of informedness, confidence and their actual
awareness of agent intent (the agents next planned action or overall
goal). For participant levels of informedness and confidence, ratings
were given on a 6-point likert scale with higher values denoting
higher levels, and for participant awareness of the agents next
action (breakpoint) and overall goal (post-execution) participants
were asked to select from multiple choice options.

Working Hypotheses: Regarding Informedness and Confidence, our
expectation was that the UPFRONT participants would report high
levels of both, with a strong sense of how the initial stages of execu-
tion would progress, but would perhaps lose confidence towards the
end, if the execution deviated from the plans they observed at the
start. With regard to participant awareness of agent intention, we
expected that the INTERLEAVED participants would most accurately
select the agents next action or overall goal, but possibly feel less
informed/confident, especially in early stages, or where execution
deviated from the small collection of plans they observed.

RESULTS

Breakpoint Questions. During presentation of the 3D visualisation
of plan execution, participants were asked a series of questions at
each breakpoint: the points at which the actual sensor values differ
from the assumed values in the optimistic plan. At each breakpoint,
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Figure 9: Responses for Breakpoint questions P1-4 and y
(average), for UpFRONT (U), INTERLEAVED (I), BASELINE (B). Q1
(6-point Likert scale: 0=Not at all, 5=Yes Fully), results con-
firm expectation that (U) receives more information earlier
and thus yields higher informedness rankings (overall avg.
3.9 (U), 2.8 (I), and 2.2 (B)). Q2 (6-point Likert scale: 0=No idea,
5=High): as expected, results show high confidence for (U)
with decreasing confidence for (I) and (B) respectively. Q3: re-
sults confirm expectation of increased participant awareness
of Agent Intention for (I) than (U) and (B). Details in text.

participants were asked to rate their informedness and confidence
to answer questions and identify the agents intent (select the agents
next action). Results are reported in Figure 9.

o (Q1) Participant Informedness: As expected the more informed
conditions, INTERLEAVED and UPFRONT, gave higher rankings
than BASELINE, with respect to receiving sufficient information
to anticipate execution steps they observed. Overall ratings are
highest for UPFRONT with an average rating of 3.9 (in compari-
son to 2.8 and 2.2 for INTERLEAVED and BASELINE respectively).
Of interest is the increased rankings over breakpoints 1-4 for
BASELINE. We suspect this results from clarification through ex-
posure to execution visualisations in the absence of diverse trace
simulations.

e (Q2) Participant Confidence: Ratings, are high for UPFRONT, avg.
3.8, with decreasing levels of confidence for INTERLEAVED and
BASELINE, 2.6 and 2.3 respectively. For UpFRONT, this is to be
expected, given the upfront simulation of diverse traces. Inter-
estingly, despite their confidence UPFRONT participants weren’t
necessarily correct in their answers to Q3, awareness of agent
intention, as discussed below.

o (Q3) Participant Awareness of Agent Intention (Next Action)Results
show that participant understanding of agent intentions (Next
Action), is highest for those in INTERLEAVED, with an overall avg.
of 75%. Overall performance on this question is poorer for both
UPFRONT (61.1%) and BASELINE (62.5%). For UPFRONT, analysis of
responses over the 4 breakpoints is interesting, with correctness
of answers decreasing as the execution progresses. This supports
our earlier conjecture that participants might lose confidence
towards later stage of execution if this deviated from the plans
presented at the start. From this interpretation, the results are
consistent with our expectation: that INTERLEAVED will most
accurately select agent intention as the simulations shown fit
more closely with their current understanding of the problem.

Post-Execution Questions. Following completion of execution all
participants were asked to rate their informedness, confidence and
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POST-EXECUTION QUESTIONS
Q4: Participant Q5: Participant
Informedness Confidence Agent Intention
U I B U I B U I B

[389 v [325 [31 [4/]275 [31 [667 [750 /]600 |

Q6: % Awareness of

Figure 10: Post-Execution Responses for Q4 (6 point Likert
scale: 0=Not Prepared, 5=Well Prepared), and Q5 (6 point
Likert scale: 0=Not Confident, 5=Very Confident)) and Q6.
Results consistent with breakpoint questions, supporting
expectation that: (i) ratings of informedness and confidence
would be higher for UprroNT; and (ii) INTERLEAVED would show
increased awareness of agents overall goal intention.

awareness of the agents overall goal (Q4-Q6 shown in Figure 8).
Responses to these questions are shown in Figure 10.

o (Q4-Q5) Participant Informedness and Confidence: For UPFRONT
this shows consistently high rankings of confidence and informed-
ness, which is consistent with their responses to the breakpoint
questions. Whilst the rankings for Q4-Q5 for INTERLEAVED and
BASELINE are lower than for UPFRONT, reflecting perhaps that
they are given less information initially (INTERLEAVED) or overall
(BAseLINE). Although this is increased for the post-execution re-
porting, reflecting the increase in information over the execution.

o (Q6) Participant Awareness of Agent Intent (overall Goal) In con-
trast to the breakpoint questions, users in this condition exhibited
similar accuracy, with respect to the agent goal, to INTERLEAVED.
This improvement suggests increase in level of informedness
from exposure to the execution visualisation itself.

In contrast to the execution questions, users in this condition
exhibited similar accuracy, with respect to the agent goal, to
INTERLEAVED. This improvement suggests increase in level of
informedness from exposure to the execution visualisation itself.

Overall, results of the study are encouraging and support our ex-
pectations. For Informedness and Confidence, the UPFRONT partic-
ipants reported higher levels of both, with a strong sense of how
the initial stages of execution would progress, but slight decreases
towards the end, as execution deviated from the plans they observed
at the start. With regard to participant awareness of agent inten-
tion, the results supported our expectation that the INTERLEAVED
participants would most accurately select the agents next action or
overall goal, but possibly feel less informed/confident, especially in
early stages, or where execution deviated from the small number of
plans they observed.

RELATED WORK

Explainable Al Planning (XAIP) [12], is an area of growing im-
portance and focus in planning, which is motivated by the need
for trust, interaction and transparency between users and Al con-
trolled agents [14, 15, 21, 28]. Communicating the intentions of the
agent plays an important role in XAIP. The form of visualisation for
communicating intention vary from annotations indicating objects
that are involved in the agent’s plan [7], the indication of intended
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movements of the robot [4] and a visualisation of the agent’s inter-
nal decision making [5]. A common approach is to use specialised
visualisations to present the intentions of an agent to a system user,
e.g., through projection [4, 19] or augmented reality [7, 33]. In [4]
it is demonstrated that projecting the robots intentions improves
the user rating of the robot. In [7] they build a domain specific vi-
sualisation, using augmented reality to project a robot’s intentions,
which also allows manipulation.

In [3], glyphs are organised to represent actions on a timeline and
uses domain dependent information to create action abstractions.
Our approach is compatible with plan abstraction visualisation
techniques (within sequences of non-sensing actions). The approach
in [1] defines a measure of importance, which is appropriate for
MDPs. Importance is based on comparisons of the expected rewards
for each action, which there is not an equivalent generated during
planning for branching plans (except solvability, which was not
an interesting feature of the problems that we considered here).
In [8], it’s assumed that the user model is available so specific
situations where the user’s understanding of the current sequence
might fail can be isolated. Thus, they consider explanations as
model corrections. We do not assume a user model, rather, that a
common ground can be established by exploiting sequential plan
visualisations.

The approach for visualising the complete branched plan that we
use here, is related to other domain independent visualisations [22-
24]. In [23] they present a plan visualisation, which exploits a visual
metaphor in order to communicate abstract planning concepts,
such as action preconditions. Our branched plan visualisation was
inspired by the state space visualisation of [22].

Selecting/generating sets of diverse plans has been investigated
[16], and various applications have been identified, including risk
assessment [29] and user preferences [26]. [9] adopt two diversity
measures, including the measure we use, and demonstrate that both
approaches lead to identifying diverse plans. They also demonstrate
that a domain specific diversity measure was particularly effective.
Our approach is compatible with any approach that can return a
set of diverse plans (especially those able to vary set size).

DISCUSSION AND CONCLUSION

We have considered the problem of visualising a contingent plan
and providing the user with visualisation of the intended plan and
key information about the contingency tree. The aim is to provide
access to the potential alternatives captured in the contingency tree,
so users can better understand and assess time required and risk im-
plied by the plan. The results of a user study assessing our approach
are promising. They indicate that users can gain an awareness of
agent intentions and the scope of alternative possibilities through
exposure to selected traces which characterise the branched plan
space.

In future work, the different modes of presentation and use of
the silhouette score will be further explored, along with user pref-
erences for different modes of presentation and the interface itself,
especially in the context of in-situ visualisation of actions through
mixed-reality, which will further support interactive exploration of
the agents’ plan traces.
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